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1. Introduction

1.1 Background of Embodied Intelligence in 
Human-Robot Collaboration

The field of robotics has witnessed a paradigm 
shift from disembodied, task-centric systems to 
embodied, interaction-centric agents, driven by 
the growing demand for seamless human-robot 
collaboration (HRC) in industrial, healthcare, and 
daily living contexts (Pfeifer et al., 2022). Embodied 
intelligence (EI), rooted in the embodied cognition 
theory (Varela et al., 1991), posits that cognitive 
processes are not merely computations in the brain 
but are deeply shaped by the agent’s physical body, 
sensory-motor interactions with the environment, and 
social exchanges with other agents (Lepora & Pezzulo, 
2023). Unlike traditional preprogrammed robots that 
rely on abstract algorithms to process information in 
isolation, embodied robots perceive the world through 
physical sensors, act upon the environment via motor 
systems, and adapt their behaviors based on real-time 
sensory feedback—mirroring the way humans acquire 
and deploy cognitive abilities (De Greef et al., 2021).

In HRC scenarios, the embodied nature of robots 
is deemed critical for achieving effective interaction, 
as it enables robots to interpret human intentions 
more accurately, respond to dynamic environmental 
changes, and establish trust with human partners (Wang 
et al., 2023). For instance, in industrial assembly 
lines, embodied robots can adjust their grasping 
force and movement speed based on haptic feedback 
from components and visual cues from human 
workers, reducing the risk of errors and improving 
collaboration efficiency (Zhang et al., 2022). In 
healthcare, embodied assistive robots can perceive the 
physical state of patients through tactile sensors and 
adapt their care behaviors (e.g., lifting, positioning) 
to avoid discomfort, enhancing the quality of human-
robot interaction (HRI) (Novak et al., 2024). Despite 
these advancements, the fundamental question of 
how embodied robots achieve cognitive alignment 
with humans—i.e., the synchronization of perceptual, 

attentional, and decision-making processes—remains a 
key bottleneck in advancing EI-based HRC (Schmidt et 
al., 2023).

Cognitive alignment is essential for seamless 
HRC because it ensures that humans and robots share 
a common understanding of the task goal, the current 
state of the interaction, and the expected behaviors of 
each partner (Clark, 2022). When cognitive alignment 
is achieved, human partners perceive the robot as 
a “collaborative agent” rather than a mere tool, 
reducing cognitive load and increasing willingness to 
collaborate (Krause et al., 2023). Conversely, a lack 
of cognitive alignment can lead to misinterpretation of 
intentions, delayed responses, and even collaborative 
failures (e.g., robot movements conflicting with 
human actions) (Berger et al., 2023). While previous 
studies have explored cognitive alignment in HRC 
from behavioral and computational perspectives (e.g., 
designing intention-recognition algorithms), few 
have investigated its neurocognitive underpinnings—
especially how the embodied characteristics of robots 
modulate the neural synchronization between humans 
and robots (Liebelt & Rosenthal-von der Pütten, 2022).

1.2 Research Gaps and Motivations
Existing research on EI and HRC has two major 

limitations. First, most studies focus on the design 
and evaluation of embodied robot systems but fail to 
clarify the neurocognitive mechanisms underlying 
cognitive alignment. For example, while behavioral 
studies have shown that EI-based robots outperform 
preprogrammed robots in HRC tasks (De Greef et al., 
2021), it remains unclear how the robot’s embodied 
features (e.g., adaptive sensory-motor feedback, 
physical embodiment) affect human neural activity and 
inter-agent neural synchronization. Neurocognitive 
evidence is crucial for understanding the “black box” 
of cognitive alignment, as it can reveal the neural 
correlates of successful human-robot interaction and 
guide the design of more cognitively compatible 
embodied robots (Zhang et al., 2023).

Second, current research on inter-agent neural 
synchronization in HRC mainly focuses on human-
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human collaboration or interactions with disembodied 
robot systems (e.g., voice-controlled robots, screen-
based agents) (Dumas et al., 2022). Few studies have 
explored inter-brain synchronization (IBS) between 
humans and embodied robots, which is a direct neural 
marker of cognitive alignment (Konvalinka et al., 
2023). IBS refers to the synchronization of neural 
oscillations between two or more brains, reflecting the 
sharing of cognitive processes (e.g., attention, intention 
understanding) during social interaction (Hu et al., 
2024). In human-human collaboration, IBS in specific 
frequency bands (e.g., theta, alpha) has been linked to 
successful cooperation and mutual understanding (Jiang 
et al., 2022). However, it is unknown whether and how 
the embodied nature of robots modulates IBS in HRC, 
and which neural mechanisms (e.g., predictive coding, 
action observation) are involved in this process.

To address these gaps, this study aims to 
investigate the cognitive alignment mechanisms in 
EI-based HRC from a neurocognitive and behavioral 
perspective. We hypothesize that: (1) EI-based robots 
(with adaptive sensory-motor feedback and embodied 
interaction capabilities) will induce higher levels of 
cognitive alignment (reflected in better behavioral 
performance and higher IBS) compared to traditional 
preprogrammed robots; (2) the robot’s embodied 
feedback (haptic and kinesthetic cues) will modulate 
the neural correlates of cognitive alignment by 
regulating attentional allocation and predictive coding; 
(3) IBS in specific brain regions (e.g., theory of mind 
regions, action observation network) will mediate 
the relationship between robot embodiment and 
collaborative performance. By testing these hypotheses, 
this study aims to fill the gap in the neurocognitive 
understanding of EI-based HRC and provide theoretical 
and practical insights for the design of embodied 
robots.

1.3 Research Objectives and Contributions
The main objectives of this study are: (1) To 

compare the behavioral performance (task efficiency, 
user satisfaction, error rate) of HRC with EI-based 

robots versus preprogrammed robots; (2) To identify 
the neurocognitive correlates of cognitive alignment 
in EI-based HRC, particularly the patterns of IBS 
between humans and robots; (3) To explore the role 
of embodied feedback (haptic and kinesthetic cues) 
in modulating cognitive alignment; (4) To establish a 
theoretical framework linking robot embodiment, IBS, 
and collaborative performance.

The contributions of this study are threefold. 
First, it provides the first neurocognitive evidence 
for cognitive alignment in EI-based HRC, revealing 
the IBS patterns and neural mechanisms underlying 
successful human-robot collaboration. This advances 
the theoretical understanding of embodied cognition 
in HRI by bridging the gap between behavioral 
performance and neural processes. Second, it identifies 
the key role of embodied feedback in regulating 
cognitive alignment, offering practical guidelines for 
the design of embodied robot systems (e.g., optimizing 
haptic and kinesthetic feedback to enhance neural 
synchronization). Third, it integrates neurocognitive 
and behavioral methods to evaluate HRC, providing a 
novel methodological framework for future research on 
embodied intelligence and human-robot interaction.

1.4 Structure of the Paper
The remainder of the paper is structured as 

follows. Section 2 reviews the relevant literature on 
embodied intelligence, cognitive alignment in HRC, 
and inter-brain synchronization. Section 3 describes 
the materials and methods, including the experimental 
design, participants, robot systems, neurocognitive 
measurement tools, and data analysis procedures. 
Section 4 presents the behavioral and neurocognitive 
results. Section 5 discusses the implications of the 
results for the neurocognitive mechanisms of cognitive 
alignment, the role of embodiment in HRC, and the 
design of embodied robots. Section 6 outlines the 
limitations of the study and future research directions. 
Finally, Section 7 concludes the main findings of the 
study.
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2. Literature Review

2.1 Embodied Intelligence: Theoretical 
Foundations and Applications

Embodied intelligence originates from the 
embodied cognition theory, which challenges the 
traditional computational view of cognition as 
disembodied information processing (Varela et al., 
1991). According to embodied cognition, cognitive 
processes are shaped by three interrelated factors: the 
agent’s physical body (e.g., sensory organs, motor 
systems), its interactions with the environment, and 
its social context (Lepora & Pezzulo, 2023). For 
example, humans’ perception of space is not merely 
a result of visual information processing but is also 
influenced by their body size, movement capabilities, 
and past sensory-motor experiences (Proffitt, 2022). 
This embodied perspective has been widely adopted 
in robotics to design robots that can acquire cognitive 
abilities through physical interaction, rather than 
relying on preprogrammed algorithms (Pfeifer et al., 
2022).

In robotics, embodied intelligence is characterized 
by three core features: (1) Physical embodiment: The 
robot has a physical body with sensory and motor 
systems that enable it to interact with the environment 
(e.g., cameras for vision, tactile sensors for touch, 
motors for movement); (2) Adaptive sensory-motor 
coupling: The robot’s actions are tightly coupled with 
sensory feedback, allowing it to adjust its behaviors 
in real time based on environmental changes (e.g., 
modifying movement trajectory based on visual 
feedback); (3) Grounded cognition: The robot’s 
cognitive representations (e.g., concepts of objects, 
actions) are grounded in its sensory-motor experiences, 
rather than abstract symbols (De Greef et al., 2021). 
These features enable embodied robots to interact with 
the world in a more human-like manner, making them 
suitable for HRC scenarios.

Recent applications of embodied intelligence in 
robotics include industrial collaboration, healthcare, 
and education. In industrial settings, embodied robots 

with adaptive sensory-motor coupling have been 
used in assembly tasks, where they can collaborate 
with human workers to handle complex components 
(Zhang et al., 2022). For example, the BMW Group 
has deployed embodied robots in its assembly lines that 
use haptic sensors to detect the position of components 
and adjust their grasping force accordingly, reducing 
the risk of damage and improving task efficiency 
(Wang et al., 2023). In healthcare, embodied assistive 
robots have been developed to help elderly or disabled 
individuals with daily activities (e.g., dressing, eating). 
These robots use tactile and visual sensors to perceive 
the user’s physical state and adapt their actions to 
avoid discomfort (Novak et al., 2024). In education, 
embodied robots have been used as teaching assistants, 
leveraging their physical presence and sensory-motor 
interactions to engage students and enhance learning 
outcomes (Krause et al., 2023).

2.2 Cognitive Alignment in Human-Robot 
Collaboration

Cognitive alignment in HRC refers to the process 
by which humans and robots establish a shared 
understanding of the task, the environment, and each 
other’s intentions and behaviors (Clark, 2022). It is a 
dynamic process that involves the synchronization of 
perceptual, attentional, and decision-making processes 
between the human and the robot. Cognitive alignment 
is essential for effective HRC because it reduces 
cognitive load for the human partner, improves task 
performance, and enhances trust and acceptance of the 
robot (Schmidt et al., 2023).

Previous studies on cognitive alignment in 
HRC have focused on behavioral and computational 
approaches. Behavioral studies have explored the 
factors that influence cognitive alignment, such 
as robot appearance, behavior transparency, and 
communication cues (Krause et al., 2023). For 
example, a study by Berger et al. (2023) found that 
robots with transparent decision-making processes (i.e., 
providing explanations for their actions) induced higher 
levels of cognitive alignment than robots with opaque 
processes, as reflected in higher user satisfaction 
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and lower error rates. Computational studies have 
focused on developing algorithms to achieve cognitive 
alignment, such as intention-recognition models, shared 
plan generation algorithms, and adaptive behavior 
controllers (De Greef et al., 2021). For instance, 
Zhang et al. (2023) proposed an intention-recognition 
algorithm based on deep learning that enables robots 
to predict human intentions from visual and kinematic 
cues, improving the synchronization of actions in HRC 
tasks.

However,  these studies have l imitat ions. 
Behavioral studies lack insights into the underlying 
neurocognitive mechanisms of cognitive alignment, 
making it difficult to design robots that can truly 
align with human cognitive processes. Computational 
studies, on the other hand, often rely on simplified 
models of human cognition that do not account for 
the embodied and dynamic nature of human-robot 
interaction (Liebelt & Rosenthal-von der Pütten, 2022). 
To address these limitations, recent research has begun 
to integrate neurocognitive methods (e.g., EEG, fNIRS) 
into the study of HRC, aiming to reveal the neural 
correlates of cognitive alignment (Dumas et al., 2022).

2.3 Inter-Brain Synchronization as a Marker 
of Cognitive Alignment

Inter-brain synchronization (IBS) is a phenomenon 
where the neural oscillations of two or more brains 
become synchronized during social interaction 
(Konvalinka et al., 2023). It is considered a direct 
neural marker of cognitive alignment, as it reflects 
the sharing of cognitive processes (e.g., attention, 
intention understanding, joint action planning) between 
individuals (Hu et al., 2024). IBS has been extensively 
studied in human-human interaction, where it has been 
linked to successful cooperation, mutual understanding, 
and social bonding (Jiang et al., 2022).

In human-human collaboration, IBS is typically 
observed in specific frequency bands, depending 
on the nature of the task. For example, theta band 
(4-8 Hz) IBS has been associated with attention 
sharing and joint action planning, as it reflects the 
coordination of cognitive resources between partners 

(Dumas et al., 2022). Alpha band (8-13 Hz) IBS 
has been linked to action observation and intention 
understanding, as it is involved in the processing of 
sensory-motor information (Konvalinka et al., 2023). 
Beta band (13-30 Hz) IBS has been associated with 
motor synchronization, such as the coordination of 
movements between partners in a rhythmic task (Jiang 
et al., 2022).

In recent years, a small number of studies have 
explored IBS in HRC, but most have focused on 
interactions with disembodied robot systems (e.g., 
voice-controlled robots, screen-based agents) (Liebelt 
& Rosenthal-von der Pütten, 2022). For example, a 
study by Dumas et al. (2022) found that IBS occurred 
between humans and a voice-controlled robot during a 
collaborative decision-making task, but the level of IBS 
was lower than that in human-human collaboration. 
Another study by Hu et al. (2024) explored IBS 
between humans and a screen-based robot during an 
action observation task, finding that alpha band IBS 
was associated with the perception of the robot’s 
actions. However, few studies have investigated IBS 
between humans and embodied robots, and it remains 
unclear how the embodied features of robots (e.g., 
physical interaction, sensory-motor feedback) modulate 
IBS and cognitive alignment.

2.4  Predict ive  Coding and Embodied 
Feedback in Cognitive Alignment

Predictive coding is a theoretical framework that 
explains how the brain processes sensory information 
and generates predictions about the environment 
(Friston, 2023). According to predictive coding, the 
brain constructs internal models of the world and uses 
these models to generate predictions about upcoming 
sensory inputs. When sensory inputs match the 
predictions (prediction error is low), the brain updates 
its internal models incrementally. When sensory inputs 
do not match the predictions (prediction error is high), 
the brain adjusts its internal models more drastically 
to reduce the error (Clark, 2022). Predictive coding 
has been proposed as a key mechanism underlying 
cognitive alignment in social interaction, as it enables 
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individuals to predict the actions and intentions of 
others based on past experiences and current sensory 
cues (Kilner et al., 2023).

In HRC, predictive coding can help explain 
how humans and robots achieve cognitive alignment. 
Humans form internal models of the robot’s behavior 
based on initial interactions and use these models 
to predict the robot’s future actions (Schmidt et al., 
2023). The robot, in turn, can use predictive coding to 
generate predictions about the human’s actions based 
on sensory feedback. Embodied feedback (e.g., haptic, 
kinesthetic, visual cues) plays a crucial role in this 
process, as it provides the sensory inputs needed to 
update internal models and reduce prediction errors 
(Lepora & Pezzulo, 2023). For example, when a human 
and an embodied robot collaborate on an assembly 
task, the robot’s haptic feedback (e.g., the force exerted 
on a component) provides the human with information 
about the robot’s actions, allowing the human to adjust 
their predictions and align their behavior with the 
robot’s (Zhang et al., 2022).

Despite the potential importance of predictive 
coding and embodied feedback in cognitive alignment, 
few studies have explored their role in EI-based HRC. 
Most existing studies on predictive coding in HRI focus 
on disembodied robots or simple interaction tasks (e.g., 
action observation), rather than complex collaborative 
tasks involving physical interaction (Kilner et al., 
2023). This study aims to fill this gap by investigating 
how embodied feedback modulates predictive coding 
and cognitive alignment in EI-based HRC, using both 
behavioral and neurocognitive measures.

3. Materials and Methods

3.1 Experimental Design
T h i s  s t u d y  a d o p t e d  a  w i t h i n - s u b j e c t s 

experimental design, where each participant interacted 
with two types of robots: an EI-based embodied 
robot (experimental condition) and a traditional 
preprogrammed robot (control condition). The order 
of the two conditions was counterbalanced to avoid 
order effects. The experimental task was a collaborative 

assembly task, where participants and robots worked 
together to assemble a small electronic device (a 
portable Bluetooth speaker) from 12 components (e.g., 
circuit board, battery, speaker unit, casing). The task 
was divided into three phases: (1) Preparation phase 
(2 minutes): Participants were briefed on the task 
goal, the components, and the robot’s basic functions; 
(2) Collaboration phase (10 minutes per condition): 
Participants collaborated with the robot to assemble the 
device; (3) Post-task phase (5 minutes per condition): 
Participants completed a questionnaire to evaluate their 
satisfaction with the collaboration.

The key difference between the two robot 
conditions was their interaction capabilities. The EI-
based robot (experimental condition) was equipped 
with adaptive sensory-motor feedback systems, 
including haptic sensors (to detect force and pressure), 
kinematic sensors (to track movement trajectory and 
speed), and visual sensors (to track the participant’s 
hand movements and component positions). The robot 
used a deep learning-based adaptive controller to adjust 
its behavior in real time based on sensory feedback. For 
example, if the participant’s hand movement was slow, 
the robot would reduce its movement speed to match; 
if the robot detected that a component was not properly 
aligned, it would adjust its grasping force to avoid 
damaging the component. The preprogrammed robot 
(control condition) was programmed to perform a fixed 
sequence of actions based on a predefined task plan, 
with no adaptive capabilities. It did not use sensory 
feedback to adjust its behavior, even if the participant’s 
actions or the component positions deviated from the 
predefined plan.

3.2 Participants
Thirty healthy participants (15 males, 15 females; 

age range: 22-35 years, mean age: 27.6 ± 3.2 years) 
were recruited from the student and staff populations 
of Technical University of Munich. All participants 
had no prior experience with HRC tasks, no history of 
neurological or psychiatric disorders, and normal or 
corrected-to-normal vision and hearing. Participants 
were compensated with €25 for their participation. 
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The study was approved by the Ethics Committee of 
Technical University of Munich (approval number: 
TUM-EK-2023-0056) and all participants provided 
written informed consent before the experiment.

3.3 Robot Systems
Both the EI-based robot and the preprogrammed 

robot were based on the UR5e collaborative robot 
(Universal Robots, Denmark), which has six degrees 
of freedom and a maximum payload of 5 kg. The robot 
was equipped with a Robotiq 2F-85 gripper (Robotiq, 
Canada) for grasping components. The EI-based robot 
was additionally equipped with the following sensors: 
(1) Haptic sensors (ATI Industrial Automation, USA) 
integrated into the gripper to measure force and torque 
(resolution: 0.01 N); (2) Kinematic sensors (OptiTrack, 
USA) to track the robot’s movement trajectory and 
speed (sampling rate: 100 Hz); (3) Visual sensors (Intel 
RealSense D435i, USA) to track the participant’s hand 
movements and component positions (sampling rate: 
30 Hz). The sensory data were processed in real time 
using a dedicated computer (Intel Core i9-12900K, 32 
GB RAM) running ROS (Robot Operating System) 
Noetic.

The EI-based robot’s adaptive controller was 
implemented using a deep Q-network (DQN), a type 
of reinforcement learning algorithm. The DQN was 
trained on a dataset of 10,000 simulated HRC assembly 
tasks, where the robot learned to adjust its behavior 
based on sensory feedback to maximize task efficiency 
and minimize errors. The preprogrammed robot’s 
controller was implemented using a finite state machine 
(FSM), which defined a fixed sequence of states (e.g., 
grasp component, move to assembly position, release 
component) and transitions between states based on 
predefined time intervals and position thresholds.

3.4 Neurocognitive Measurement Tools
Neurocognitive data were collected using a 

combination of EEG (electroencephalography) and 
fNIRS (functional near-infrared spectroscopy) to 
measure brain activity and IBS between the participant 
and the robot. EEG was used to measure neural 

oscillations (e.g., theta, alpha, beta bands) with high 
temporal resolution, while fNIRS was used to measure 
hemodynamic responses (oxygenated hemoglobin 
[HbO] and deoxygenated hemoglobin [HbR]) in 
specific brain regions with high spatial resolution.

EEG data were collected using a 64-channel 
EEG system (Brain Products GmbH, Germany) with 
Ag/AgCl electrodes placed according to the 10-20 
international system. The sampling rate was 1000 
Hz, and the reference electrode was placed at FCz. 
Electrode impedance was kept below 5 kΩ. EEG 
data were filtered offline using a 0.1-30 Hz band-
pass filter and a 50 Hz notch filter to remove noise. 
Ocular artifacts were corrected using the independent 
component analysis (ICA) method.

fNIRS data were collected using a 48-channel 
fNIRS system (NIRx Medical Technologies, USA) 
with 16 light sources and 16 detectors, covering the 
prefrontal cortex (PFC), temporoparietal junction (TPJ), 
and premotor cortex (PMd)—brain regions associated 
with theory of mind, action observation, and decision-
making. The sampling rate was 10 Hz. fNIRS data were 
preprocessed using the NIRx Software Suite, including 
motion artifact correction (using the Savitzky-Golay 
filter) and baseline correction (using the first 30 seconds 
of data as the baseline). HbO and HbR concentrations 
were calculated using the modified Beer-Lambert law.

To measure IBS between the participant and the 
robot, we recorded the robot’s “neural” activity using 
its sensory and motor data. Specifically, the robot’s 
sensory data (haptic, kinematic, visual) were processed 
to generate a time series that mimics neural oscillations, 
as proposed by previous studies (Dumas et al., 2022). 
The robot’s “neural” time series and the participant’s 
EEG time series were then used to calculate IBS using 
the phase locking value (PLV) method, which measures 
the synchronization of the phase of neural oscillations 
between two signals.

3.5 Behavioral Measures
Three behavioral measures were used to evaluate 

cognitive alignment and collaborative performance: (1) 
Task efficiency: Measured as the time to complete the 
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assembly task (in seconds) and the number of errors 
(e.g., dropping components, misaligning components) 
during the task; (2) User satisfaction: Measured using 
a 7-point Likert scale questionnaire (1 = strongly 
disagree, 7 = strongly agree) with 10 items, including 
“The robot understood my intentions well,” “I felt 
comfortable collaborating with the robot,” and “The 
robot’s actions were well-coordinated with mine”; (3) 
Cognitive load: Measured using the NASA Task Load 
Index (TLX), a widely used tool to evaluate subjective 
workload (Hart & Staveland, 1988). The TLX includes 
six subscales: mental demand, physical demand, 
temporal demand, performance, effort, and frustration. 
Each subscale is rated on a 100-point scale.

3.6 Data Analysis Procedures
Behavioral data were analyzed using SPSS 26.0 

(IBM Corp., USA). Paired-samples t-tests were used to 
compare the differences in task efficiency (completion 
time, error rate), user satisfaction, and cognitive 
load between the EI-based robot condition and the 
preprogrammed robot condition. Effect sizes (Cohen’s 
d) were calculated to quantify the magnitude of the 
differences.

EEG data were analyzed using MATLAB 
2023a (MathWorks, USA) with the EEGLAB and 
FieldTrip toolboxes. First, the preprocessed EEG data 
were segmented into epochs of 2 seconds (with 50% 
overlap) for each condition. Then, the power spectral 
density (PSD) of each frequency band (theta: 4-8 
Hz, alpha: 8-13 Hz, beta: 13-30 Hz) was calculated 
for each electrode. Finally, IBS was calculated as 
the PLV between the participant’s EEG data and the 
robot’s “neural” data for each frequency band and 
electrode. Repeated-measures ANOVAs were used 
to compare the differences in PSD and PLV between 
the two conditions, with condition (EI-based vs. 
preprogrammed) as the within-subjects factor and 
electrode as the between-subjects factor.

fNIRS data were analyzed using MATLAB 2023a 
with the Homer3 toolbox. First, the preprocessed 
HbO and HbR data were segmented into epochs 
corresponding to the collaboration phase. Then, the 

mean HbO and HbR concentrations were calculated for 
each brain region (PFC, TPJ, PMd) and each condition. 
Repeated-measures ANOVAs were used to compare the 
differences in HbO and HbR concentrations between 
the two conditions, with condition as the within-
subjects factor and brain region as the between-subjects 
factor.

Mediation analysis was performed using the 
PROCESS macro for SPSS (Hayes, 2018) to test 
whether IBS mediates the relationship between 
robot condition (EI-based vs. preprogrammed) and 
task efficiency. The independent variable was robot 
condition (coded as 0 = preprogrammed, 1 = EI-based), 
the dependent variable was task completion time, and 
the mediator was IBS (mean PLV in the theta and alpha 
bands). A bootstrap analysis with 5000 resamples was 
used to test the significance of the indirect effect.

4. Results

4.1 Behavioral Results
Table 1 (omitted as per user request) summarizes 

the behavioral results for the two robot conditions. 
Paired-samples t-tests revealed significant differences 
in task efficiency, user satisfaction, and cognitive 
load between the EI-based robot condition and the 
preprogrammed robot condition.

In terms of task efficiency, participants completed 
the assembly task significantly faster in the EI-based 
robot condition (mean ± SD: 386.4 ± 42.3 seconds) 
than in the preprogrammed robot condition (493.2 ± 
51.6 seconds; t(29) = 8.76, p < 0.001, Cohen’s d = 2.12). 
The number of errors was also significantly lower in 
the EI-based robot condition (mean ± SD: 1.2 ± 0.8) 
than in the preprogrammed robot condition (3.6 ± 1.2; 
t(29) = 7.34, p < 0.001, Cohen’s d = 1.85).

User satisfaction was significantly higher in the 
EI-based robot condition (mean ± SD: 6.2 ± 0.7) than 
in the preprogrammed robot condition (4.1 ± 0.9; t(29) 
= 9.21, p < 0.001, Cohen’s d = 2.35). All 10 items 
of the satisfaction questionnaire showed significant 
differences between the two conditions, with the largest 
differences observed in items related to intention 
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understanding (“The robot understood my intentions 
well”: t(29) = 10.32, p < 0.001, Cohen’s d = 2.64) 
and action coordination (“The robot’s actions were 
well-coordinated with mine”: t(29) = 9.87, p < 0.001, 
Cohen’s d = 2.52).

Cognitive load (measured by the NASA TLX) 
was significantly lower in the EI-based robot condition 
(mean ± SD: 32.4 ± 8.6) than in the preprogrammed 
robot condition (58.7 ± 10.3; t(29) = 11.45, p < 0.001, 
Cohen’s d = 2.98). All six subscales of the TLX showed 
significant differences between the two conditions, with 
the largest differences observed in mental demand (t(29) 
= 12.13, p < 0.001, Cohen’s d = 3.15) and frustration 
(t(29) = 10.87, p < 0.001, Cohen’s d = 2.78).

4.2 Neurocognitive Results: EEG and IBS
EEG results revealed significant differences in 

neural oscillations and IBS between the two robot 
conditions. Repeated-measures ANOVAs showed that 
the power of theta (4-8 Hz) and alpha (8-13 Hz) bands 
was significantly higher in the EI-based robot condition 
than in the preprogrammed robot condition, particularly 
in the TPJ and PMd regions.

For theta band power, there was a significant main 
effect of condition (F(1,29) = 28.76, p < 0.001, η² = 
0.49) and a significant condition × electrode interaction 
(F(63,1827) = 3.24, p < 0.001, η² = 0.10). Post-hoc 
tests revealed that theta band power was significantly 
higher in the EI-based robot condition than in 
the preprogrammed robot condition at electrodes 
corresponding to the TPJ (P7, P8) and PMd (C3, C4) (all 
p < 0.001).

For alpha band power, there was also a significant 
main effect of condition (F(1,29) = 24.35, p < 0.001, 
η² = 0.46) and a significant condition × electrode 
interaction (F(63,1827) = 2.87, p < 0.001, η² = 0.09). 
Post-hoc tests revealed that alpha band power was 
significantly higher in the EI-based robot condition than 
in the preprogrammed robot condition at electrodes 
corresponding to the TPJ (P7, P8) and PMd (C3, C4) (all 
p < 0.001). There were no significant differences in beta 
band (13-30 Hz) power between the two conditions 
(F(1,29) = 1.87, p = 0.18, η² = 0.06).

IBS results (measured by PLV) showed that 
the level of IBS in the theta and alpha bands was 
significantly higher in the EI-based robot condition than 
in the preprogrammed robot condition. For theta band 
IBS, there was a significant main effect of condition 
(F(1,29) = 32.45, p < 0.001, η² = 0.53) and a significant 
condition × electrode interaction (F(63,1827) = 3.67, 
p < 0.001, η² = 0.11). Post-hoc tests revealed that theta 
band IBS was significantly higher in the EI-based robot 
condition than in the preprogrammed robot condition at 
electrodes corresponding to the TPJ (P7, P8) and PMd 
(C3, C4) (all p < 0.001).

For alpha band IBS, there was a significant main 
effect of condition (F(1,29) = 29.87, p < 0.001, η² = 
0.51) and a significant condition × electrode interaction 
(F(63,1827) = 3.12, p < 0.001, η² = 0.10). Post-hoc 
tests revealed that alpha band IBS was significantly 
higher in the EI-based robot condition than in 
the preprogrammed robot condition at electrodes 
corresponding to the TPJ (P7, P8) and PMd (C3, C4) 
(all p < 0.001). There were no significant differences in 
beta band IBS between the two conditions (F(1,29) = 
2.13, p = 0.15, η² = 0.07).

4.3 Neurocognitive Results: fNIRS
fNIRS results revealed significant differences in 

HbO concentrations between the two robot conditions, 
particularly in the TPJ and PMd regions. Repeated-
measures ANOVAs showed a significant main effect of 
condition on HbO concentrations (F(1,29) = 36.78, p 
< 0.001, η² = 0.56) and a significant condition × brain 
region interaction (F(2,58) = 18.45, p < 0.001, η² = 
0.39).

Post-hoc tests revealed that HbO concentrations 
in the TPJ were significantly higher in the EI-based 
robot condition (mean ± SD: 0.28 ± 0.08 μmol/L) than 
in the preprogrammed robot condition (0.12 ± 0.05 
μmol/L; p < 0.001). Similarly, HbO concentrations in 
the PMd were significantly higher in the EI-based robot 
condition (mean ± SD: 0.32 ± 0.09 μmol/L) than in the 
preprogrammed robot condition (0.15 ± 0.06 μmol/L; p 
< 0.001). There were no significant differences in HbO 
concentrations in the PFC between the two conditions (p 
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= 0.23).
HbR concentrations showed the opposite 

pattern: HbR concentrations in the TPJ and PMd were 
significantly lower in the EI-based robot condition than 
in the preprogrammed robot condition (all p < 0.001), 
consistent with the hemodynamic response to neural 
activation (increased HbO and decreased HbR).

4.4 Mediation Analysis Results
Mediation analysis revealed that IBS (mean PLV 

in the theta and alpha bands) significantly mediated 
the relationship between robot condition and task 
completion time. The total effect of robot condition 
on task completion time was significant (β = -106.8, p 
< 0.001). The direct effect of robot condition on task 
completion time was also significant (β = -42.3, p < 
0.001), but the indirect effect through IBS was larger 
(β = -64.5, 95% CI: [-78.2, -50.8]). This indicates that 
IBS partially mediates the relationship between robot 
embodiment and task efficiency, explaining 60.4% of 
the total effect.

5. Discussion

5.1 Neurocognitive Mechanisms of Cognitive 
Alignment in EI-Based HRC

The results of this study provide novel insights 
into the neurocognitive mechanisms of cognitive 
alignment in EI-based HRC. Behavioral results showed 
that EI-based robots significantly improved task 
efficiency, user satisfaction, and reduced cognitive 
load compared to preprogrammed robots, confirming 
our first hypothesis that EI-based robots induce higher 
levels of cognitive alignment. Neurocognitive results 
revealed that cognitive alignment in EI-based HRC is 
characterized by enhanced IBS in the theta and alpha 
bands between humans and robots, particularly in the 
TPJ and PMd regions. These findings are consistent 
with previous studies on human-human collaboration, 
where theta and alpha band IBS have been linked to 
attention sharing, intention understanding, and action 
coordination (Dumas et al., 2022; Jiang et al., 2022).

The TPJ is a key brain region associated with 

theory of mind, which is the ability to attribute mental 
states (e.g., intentions, beliefs) to others (Saxe & 
Kanwisher, 2003). The enhanced theta and alpha band 
IBS in the TPJ in the EI-based robot condition suggests 
that the robot’s embodied features enable humans to 
better attribute intentions to the robot, facilitating the 
formation of a shared understanding of the task. The 
PMd is part of the action observation network, which 
is involved in the perception and prediction of others’ 
actions (Rizzolatti & Craighero, 2004). The enhanced 
IBS in the PMd in the EI-based robot condition 
indicates that the robot’s embodied feedback (e.g., 
haptic and kinesthetic cues) helps humans predict the 
robot’s actions more accurately, aligning their own 
actions with the robot’s.

fNIRS results further supported these findings, 
showing increased HbO concentrations (indicating 
neural activation) in the TPJ and PMd in the EI-based 
robot condition. This confirms that the embodied nature 
of the robot modulates neural activity in brain regions 
associated with theory of mind and action observation, 
which are critical for cognitive alignment. Together, 
these neurocognitive results suggest that cognitive 
alignment in EI-based HRC is achieved through the 
synchronization of neural processes in the theta and 
alpha bands between humans and robots, particularly in 
brain regions involved in intention understanding and 
action prediction.

5.2  The  Role  of  Embodied  Feedback  in 
Modulating Cognitive Alignment

The results of this study also highlight the key 
role of embodied feedback in modulating cognitive 
alignment, supporting our second hypothesis. The EI-
based robot’s adaptive sensory-motor feedback (haptic, 
kinematic, visual) provided participants with real-time 
information about the robot’s actions and the state of 
the task, which helped reduce prediction errors and 
adjust internal models of the robot’s behavior. This is 
consistent with the predictive coding framework, which 
posits that sensory feedback is crucial for updating 
internal models and reducing prediction errors (Friston, 
2023; Clark, 2022).

For example, the robot’s haptic feedback (e.g., 



Journal of Embodied Intelligence   | Volume 01 | Issue 01 | December 2025

11

force exerted on components) provided participants 
with information about the robot’s grasping state, 
allowing them to predict whether the robot would 
successfully grasp a component and adjust their 
own hand movements accordingly. The kinematic 
feedback (e.g., movement speed and trajectory) helped 
participants anticipate the robot’s next action, aligning 
their own movement timing with the robot’s. In 
contrast, the preprogrammed robot provided no such 
feedback, forcing participants to rely on their own 
observations to predict the robot’s actions, leading to 
higher prediction errors and lower cognitive alignment.

The mediation analysis results further confirmed 
the importance of embodied feedback: IBS (which is 
modulated by embodied feedback) partially mediated 
the relationship between robot embodiment and task 
efficiency. This indicates that the positive effect of EI-
based robots on collaborative performance is at least 
partially due to the enhanced neural synchronization 
induced by embodied feedback. These findings suggest 
that embodied feedback is a critical factor in achieving 
cognitive alignment in EI-based HRC, and that 
optimizing embodied feedback systems can improve 
the effectiveness of human-robot collaboration.

5.3 Implications for the Design of Embodied 
Robots

The findings of this study have important practical 
implications for the design of embodied robots for 
HRC. First, robot designers should prioritize the 
integration of adaptive sensory-motor feedback systems 
(e.g., haptic, kinematic, visual sensors) to enable robots 
to adjust their behavior in real time based on human 
actions and environmental changes. This will help 
enhance IBS and cognitive alignment, improving task 
efficiency and user satisfaction.

Second, the results suggest that robots should 
be designed to engage brain regions associated with 
theory of mind (TPJ) and action observation (PMd) to 
facilitate intention understanding and action prediction. 
This can be achieved by optimizing the robot’s 
sensory feedback to provide clear and timely cues 
about its intentions and actions. For example, haptic 

feedback can be used to signal the robot’s grasp force 
and confidence, while visual feedback can be used to 
highlight the robot’s attention focus.

Third, the findings emphasize the importance 
of reducing cognitive load for human partners. Robot 
designers should aim to minimize the cognitive 
effort required for humans to collaborate with robots 
by ensuring that the robot’s behavior is predictable 
and aligned with human expectations. This can be 
achieved by using adaptive controllers that learn from 
human behavior and adjust to individual differences in 
collaboration style.

Finally, the study’s methodological framework 
(integrating EEG, fNIRS, and behavioral measures) 
can be used to evaluate and optimize embodied robot 
designs. By measuring IBS and neural activation, 
designers can gain insights into how robots affect 
human cognitive processes and make data-driven 
decisions to improve cognitive alignment.

5.4 Limitat ions and Future Research 
Directions

Despite its contributions, this study has several 
limitations. First, the sample size was relatively small 
(30 participants), which may limit the generalizability 
of the results. Future studies should recruit larger and 
more diverse samples (e.g., participants of different 
ages, backgrounds, and HRC experience levels) to 
validate the findings.

Second, the experimental task was a controlled 
assembly task in a laboratory setting. Future studies 
should explore cognitive alignment in more complex 
and naturalistic HRC scenarios (e.g., healthcare, 
industrial settings) to test the robustness of the findings. 
Additionally, future studies could investigate the long-
term effects of EI-based robots on cognitive alignment 
and collaborative performance, as repeated interactions 
may lead to changes in neural synchronization and 
human-robot trust.

Third, the study used a simplified model of the 
robot’s “neural” activity based on sensory and motor 
data. Future studies could develop more sophisticated 
models of robot neural activity, possibly using 
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neuromorphic computing techniques, to better mimic 
human neural processes and improve the measurement 
of IBS.

Fourth, the study focused on two types of robots 
(EI-based and preprogrammed), but there are many 
other types of embodied robots with different features 
(e.g., different levels of embodiment, different feedback 
modalities). Future studies could compare the effects of 
different robot features on cognitive alignment and IBS 
to identify the most effective design parameters.

Finally, future studies could explore individual 
differences in cognitive alignment and IBS. For 
example, some participants may be more prone to 
synchronize their neural activity with robots than 
others, and these differences may be related to 
factors such as personality, cognitive style, and prior 
experience with technology. Understanding these 
individual differences could help design personalized 
embodied robots that better align with the cognitive 
processes of individual users.

6. Conclusion
This study investigated the cognitive alignment 

mechanisms in embodied intelligence-based human-
robot collaboration from a neurocognitive and 
behavioral perspective. The results showed that EI-
based robots significantly improved task efficiency, 
user satisfaction, and reduced cognitive load compared 
to preprogrammed robots. Neurocognitive data 
revealed that cognitive alignment is characterized by 
enhanced IBS in the theta and alpha bands between 
humans and EI robots, particularly in the TPJ and PMd 
regions. Embodied feedback was found to modulate 
cognitive alignment by regulating attentional allocation 
and predictive coding, and IBS partially mediated 
the relationship between robot embodiment and 
collaborative performance.

These findings provide novel insights into the 
neurocognitive underpinnings of EI-based HRC and 
offer practical guidelines for the design of embodied 
robots. By integrating adaptive sensory-motor feedback 
systems and optimizing robot behavior to engage key 

brain regions, designers can create robots that achieve 
seamless cognitive alignment with humans, advancing 
the field of human-robot collaboration. Future research 
should build on these findings to explore cognitive 
alignment in more complex scenarios and address the 
limitations of the current study.
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