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1. Introduction

1.1 Background of Embodied Intelligence in
Human-Robot Collaboration

The field of robotics has witnessed a paradigm
shift from disembodied, task-centric systems to
embodied, interaction-centric agents, driven by
the growing demand for seamless human-robot
collaboration (HRC) in industrial, healthcare, and
daily living contexts (Pfeifer et al., 2022). Embodied
intelligence (EI), rooted in the embodied cognition
theory (Varela et al., 1991), posits that cognitive
processes are not merely computations in the brain
but are deeply shaped by the agent’s physical body,
sensory-motor interactions with the environment, and
social exchanges with other agents (Lepora & Pezzulo,
2023). Unlike traditional preprogrammed robots that
rely on abstract algorithms to process information in
isolation, embodied robots perceive the world through
physical sensors, act upon the environment via motor
systems, and adapt their behaviors based on real-time
sensory feedback—mirroring the way humans acquire
and deploy cognitive abilities (De Greef et al., 2021).

In HRC scenarios, the embodied nature of robots
is deemed critical for achieving effective interaction,
as it enables robots to interpret human intentions
more accurately, respond to dynamic environmental
changes, and establish trust with human partners (Wang
et al., 2023). For instance, in industrial assembly
lines, embodied robots can adjust their grasping
force and movement speed based on haptic feedback
from components and visual cues from human
workers, reducing the risk of errors and improving
collaboration efficiency (Zhang et al., 2022). In
healthcare, embodied assistive robots can perceive the
physical state of patients through tactile sensors and
adapt their care behaviors (e.g., lifting, positioning)
to avoid discomfort, enhancing the quality of human-
robot interaction (HRI) (Novak et al., 2024). Despite
these advancements, the fundamental question of
how embodied robots achieve cognitive alignment

with humans—i.e., the synchronization of perceptual,

attentional, and decision-making processes—remains a
key bottleneck in advancing El-based HRC (Schmidt et
al., 2023).

Cognitive alignment is essential for seamless
HRC because it ensures that humans and robots share
a common understanding of the task goal, the current
state of the interaction, and the expected behaviors of
each partner (Clark, 2022). When cognitive alignment
is achieved, human partners perceive the robot as
a “collaborative agent” rather than a mere tool,
reducing cognitive load and increasing willingness to
collaborate (Krause et al., 2023). Conversely, a lack
of cognitive alignment can lead to misinterpretation of
intentions, delayed responses, and even collaborative
failures (e.g., robot movements conflicting with
human actions) (Berger et al., 2023). While previous
studies have explored cognitive alignment in HRC
from behavioral and computational perspectives (e.g.,
designing intention-recognition algorithms), few
have investigated its neurocognitive underpinnings—
especially how the embodied characteristics of robots
modulate the neural synchronization between humans
and robots (Liebelt & Rosenthal-von der Piitten, 2022).

1.2 Research Gaps and Motivations

Existing research on EI and HRC has two major
limitations. First, most studies focus on the design
and evaluation of embodied robot systems but fail to
clarify the neurocognitive mechanisms underlying
cognitive alignment. For example, while behavioral
studies have shown that El-based robots outperform
preprogrammed robots in HRC tasks (De Greef et al.,
2021), it remains unclear how the robot’s embodied
features (e.g., adaptive sensory-motor feedback,
physical embodiment) affect human neural activity and
inter-agent neural synchronization. Neurocognitive
evidence is crucial for understanding the “black box”
of cognitive alignment, as it can reveal the neural
correlates of successful human-robot interaction and
guide the design of more cognitively compatible
embodied robots (Zhang et al., 2023).

Second, current research on inter-agent neural

synchronization in HRC mainly focuses on human-
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human collaboration or interactions with disembodied
robot systems (e.g., voice-controlled robots, screen-
based agents) (Dumas et al., 2022). Few studies have
explored inter-brain synchronization (IBS) between
humans and embodied robots, which is a direct neural
marker of cognitive alignment (Konvalinka et al.,
2023). IBS refers to the synchronization of neural
oscillations between two or more brains, reflecting the
sharing of cognitive processes (e.g., attention, intention
understanding) during social interaction (Hu et al.,
2024). In human-human collaboration, IBS in specific
frequency bands (e.g., theta, alpha) has been linked to
successful cooperation and mutual understanding (Jiang
et al., 2022). However, it is unknown whether and how
the embodied nature of robots modulates IBS in HRC,
and which neural mechanisms (e.g., predictive coding,
action observation) are involved in this process.

To address these gaps, this study aims to
investigate the cognitive alignment mechanisms in
El-based HRC from a neurocognitive and behavioral
perspective. We hypothesize that: (1) El-based robots
(with adaptive sensory-motor feedback and embodied
interaction capabilities) will induce higher levels of
cognitive alignment (reflected in better behavioral
performance and higher IBS) compared to traditional
preprogrammed robots; (2) the robot’s embodied
feedback (haptic and kinesthetic cues) will modulate
the neural correlates of cognitive alignment by
regulating attentional allocation and predictive coding;
(3) IBS in specific brain regions (e.g., theory of mind
regions, action observation network) will mediate
the relationship between robot embodiment and
collaborative performance. By testing these hypotheses,
this study aims to fill the gap in the neurocognitive
understanding of El-based HRC and provide theoretical
and practical insights for the design of embodied

robots.

1.3 Research Objectives and Contributions

The main objectives of this study are: (1) To
compare the behavioral performance (task efficiency,

user satisfaction, error rate) of HRC with El-based

robots versus preprogrammed robots; (2) To identify
the neurocognitive correlates of cognitive alignment
in El-based HRC, particularly the patterns of IBS
between humans and robots; (3) To explore the role
of embodied feedback (haptic and kinesthetic cues)
in modulating cognitive alignment; (4) To establish a
theoretical framework linking robot embodiment, IBS,
and collaborative performance.

The contributions of this study are threefold.
First, it provides the first neurocognitive evidence
for cognitive alignment in El-based HRC, revealing
the IBS patterns and neural mechanisms underlying
successful human-robot collaboration. This advances
the theoretical understanding of embodied cognition
in HRI by bridging the gap between behavioral
performance and neural processes. Second, it identifies
the key role of embodied feedback in regulating
cognitive alignment, offering practical guidelines for
the design of embodied robot systems (e.g., optimizing
haptic and kinesthetic feedback to enhance neural
synchronization). Third, it integrates neurocognitive
and behavioral methods to evaluate HRC, providing a
novel methodological framework for future research on

embodied intelligence and human-robot interaction.

1.4 Structure of the Paper

The remainder of the paper is structured as
follows. Section 2 reviews the relevant literature on
embodied intelligence, cognitive alignment in HRC,
and inter-brain synchronization. Section 3 describes
the materials and methods, including the experimental
design, participants, robot systems, neurocognitive
measurement tools, and data analysis procedures.
Section 4 presents the behavioral and neurocognitive
results. Section 5 discusses the implications of the
results for the neurocognitive mechanisms of cognitive
alignment, the role of embodiment in HRC, and the
design of embodied robots. Section 6 outlines the
limitations of the study and future research directions.
Finally, Section 7 concludes the main findings of the

study.
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2. Literature Review

2.1 Embodied Intelligence: Theoretical

Foundations and Applications

Embodied intelligence originates from the
embodied cognition theory, which challenges the
traditional computational view of cognition as
disembodied information processing (Varela et al.,
1991). According to embodied cognition, cognitive
processes are shaped by three interrelated factors: the
agent’s physical body (e.g., sensory organs, motor
systems), its interactions with the environment, and
its social context (Lepora & Pezzulo, 2023). For
example, humans’ perception of space is not merely
a result of visual information processing but is also
influenced by their body size, movement capabilities,
and past sensory-motor experiences (Proffitt, 2022).
This embodied perspective has been widely adopted
in robotics to design robots that can acquire cognitive
abilities through physical interaction, rather than
relying on preprogrammed algorithms (Pfeifer et al.,
2022).

In robotics, embodied intelligence is characterized
by three core features: (1) Physical embodiment: The
robot has a physical body with sensory and motor
systems that enable it to interact with the environment
(e.g., cameras for vision, tactile sensors for touch,
motors for movement); (2) Adaptive sensory-motor
coupling: The robot’s actions are tightly coupled with
sensory feedback, allowing it to adjust its behaviors
in real time based on environmental changes (e.g.,
modifying movement trajectory based on visual
feedback); (3) Grounded cognition: The robot’s
cognitive representations (e.g., concepts of objects,
actions) are grounded in its sensory-motor experiences,
rather than abstract symbols (De Greef et al., 2021).
These features enable embodied robots to interact with
the world in a more human-like manner, making them
suitable for HRC scenarios.

Recent applications of embodied intelligence in
robotics include industrial collaboration, healthcare,

and education. In industrial settings, embodied robots

with adaptive sensory-motor coupling have been
used in assembly tasks, where they can collaborate
with human workers to handle complex components
(Zhang et al., 2022). For example, the BMW Group
has deployed embodied robots in its assembly lines that
use haptic sensors to detect the position of components
and adjust their grasping force accordingly, reducing
the risk of damage and improving task efficiency
(Wang et al., 2023). In healthcare, embodied assistive
robots have been developed to help elderly or disabled
individuals with daily activities (e.g., dressing, eating).
These robots use tactile and visual sensors to perceive
the user’s physical state and adapt their actions to
avoid discomfort (Novak et al., 2024). In education,
embodied robots have been used as teaching assistants,
leveraging their physical presence and sensory-motor
interactions to engage students and enhance learning
outcomes (Krause et al., 2023).

2.2 Cognitive Alignment in Human-Robot
Collaboration

Cognitive alignment in HRC refers to the process
by which humans and robots establish a shared
understanding of the task, the environment, and each
other’s intentions and behaviors (Clark, 2022). It is a
dynamic process that involves the synchronization of
perceptual, attentional, and decision-making processes
between the human and the robot. Cognitive alignment
is essential for effective HRC because it reduces
cognitive load for the human partner, improves task
performance, and enhances trust and acceptance of the
robot (Schmidt et al., 2023).

Previous studies on cognitive alignment in
HRC have focused on behavioral and computational
approaches. Behavioral studies have explored the
factors that influence cognitive alignment, such
as robot appearance, behavior transparency, and
communication cues (Krause et al., 2023). For
example, a study by Berger et al. (2023) found that
robots with transparent decision-making processes (i.e.,
providing explanations for their actions) induced higher
levels of cognitive alignment than robots with opaque

processes, as reflected in higher user satisfaction
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and lower error rates. Computational studies have
focused on developing algorithms to achieve cognitive
alignment, such as intention-recognition models, shared
plan generation algorithms, and adaptive behavior
controllers (De Greef et al., 2021). For instance,
Zhang et al. (2023) proposed an intention-recognition
algorithm based on deep learning that enables robots
to predict human intentions from visual and kinematic
cues, improving the synchronization of actions in HRC
tasks.

However, these studies have limitations.
Behavioral studies lack insights into the underlying
neurocognitive mechanisms of cognitive alignment,
making it difficult to design robots that can truly
align with human cognitive processes. Computational
studies, on the other hand, often rely on simplified
models of human cognition that do not account for
the embodied and dynamic nature of human-robot
interaction (Liebelt & Rosenthal-von der Piitten, 2022).
To address these limitations, recent research has begun
to integrate neurocognitive methods (e.g., EEG, fNIRS)
into the study of HRC, aiming to reveal the neural

correlates of cognitive alignment (Dumas et al., 2022).

2.3 Inter-Brain Synchronization as a Marker

of Cognitive Alignment

Inter-brain synchronization (IBS) is a phenomenon
where the neural oscillations of two or more brains
become synchronized during social interaction
(Konvalinka et al., 2023). It is considered a direct
neural marker of cognitive alignment, as it reflects
the sharing of cognitive processes (e.g., attention,
intention understanding, joint action planning) between
individuals (Hu et al., 2024). IBS has been extensively
studied in human-human interaction, where it has been
linked to successful cooperation, mutual understanding,
and social bonding (Jiang et al., 2022).

In human-human collaboration, IBS is typically
observed in specific frequency bands, depending
on the nature of the task. For example, theta band
(4-8 Hz) IBS has been associated with attention
sharing and joint action planning, as it reflects the

coordination of cognitive resources between partners

(Dumas et al., 2022). Alpha band (8-13 Hz) IBS
has been linked to action observation and intention
understanding, as it is involved in the processing of
sensory-motor information (Konvalinka et al., 2023).
Beta band (13-30 Hz) IBS has been associated with
motor synchronization, such as the coordination of
movements between partners in a rhythmic task (Jiang
etal., 2022).

In recent years, a small number of studies have
explored IBS in HRC, but most have focused on
interactions with disembodied robot systems (e.g.,
voice-controlled robots, screen-based agents) (Liebelt
& Rosenthal-von der Piitten, 2022). For example, a
study by Dumas et al. (2022) found that IBS occurred
between humans and a voice-controlled robot during a
collaborative decision-making task, but the level of IBS
was lower than that in human-human collaboration.
Another study by Hu et al. (2024) explored IBS
between humans and a screen-based robot during an
action observation task, finding that alpha band IBS
was associated with the perception of the robot’s
actions. However, few studies have investigated IBS
between humans and embodied robots, and it remains
unclear how the embodied features of robots (e.g.,
physical interaction, sensory-motor feedback) modulate

IBS and cognitive alignment.

2.4 Predictive Coding and Embodied
Feedback in Cognitive Alignment

Predictive coding is a theoretical framework that
explains how the brain processes sensory information
and generates predictions about the environment
(Friston, 2023). According to predictive coding, the
brain constructs internal models of the world and uses
these models to generate predictions about upcoming
sensory inputs. When sensory inputs match the
predictions (prediction error is low), the brain updates
its internal models incrementally. When sensory inputs
do not match the predictions (prediction error is high),
the brain adjusts its internal models more drastically
to reduce the error (Clark, 2022). Predictive coding
has been proposed as a key mechanism underlying

cognitive alignment in social interaction, as it enables
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individuals to predict the actions and intentions of
others based on past experiences and current sensory
cues (Kilner et al., 2023).

In HRC, predictive coding can help explain
how humans and robots achieve cognitive alignment.
Humans form internal models of the robot’s behavior
based on initial interactions and use these models
to predict the robot’s future actions (Schmidt et al.,
2023). The robot, in turn, can use predictive coding to
generate predictions about the human’s actions based
on sensory feedback. Embodied feedback (e.g., haptic,
kinesthetic, visual cues) plays a crucial role in this
process, as it provides the sensory inputs needed to
update internal models and reduce prediction errors
(Lepora & Pezzulo, 2023). For example, when a human
and an embodied robot collaborate on an assembly
task, the robot’s haptic feedback (e.g., the force exerted
on a component) provides the human with information
about the robot’s actions, allowing the human to adjust
their predictions and align their behavior with the
robot’s (Zhang et al., 2022).

Despite the potential importance of predictive
coding and embodied feedback in cognitive alignment,
few studies have explored their role in El-based HRC.
Most existing studies on predictive coding in HRI focus
on disembodied robots or simple interaction tasks (e.g.,
action observation), rather than complex collaborative
tasks involving physical interaction (Kilner et al.,
2023). This study aims to fill this gap by investigating
how embodied feedback modulates predictive coding
and cognitive alignment in El-based HRC, using both

behavioral and neurocognitive measures.

3. Materials and Methods

3.1 Experimental Design

This study adopted a within-subjects
experimental design, where each participant interacted
with two types of robots: an El-based embodied
robot (experimental condition) and a traditional
preprogrammed robot (control condition). The order
of the two conditions was counterbalanced to avoid

order effects. The experimental task was a collaborative

assembly task, where participants and robots worked
together to assemble a small electronic device (a
portable Bluetooth speaker) from 12 components (e.g.,
circuit board, battery, speaker unit, casing). The task
was divided into three phases: (1) Preparation phase
(2 minutes): Participants were briefed on the task
goal, the components, and the robot’s basic functions;
(2) Collaboration phase (10 minutes per condition):
Participants collaborated with the robot to assemble the
device; (3) Post-task phase (5 minutes per condition):
Participants completed a questionnaire to evaluate their
satisfaction with the collaboration.

The key difference between the two robot
conditions was their interaction capabilities. The EI-
based robot (experimental condition) was equipped
with adaptive sensory-motor feedback systems,
including haptic sensors (to detect force and pressure),
kinematic sensors (to track movement trajectory and
speed), and visual sensors (to track the participant’s
hand movements and component positions). The robot
used a deep learning-based adaptive controller to adjust
its behavior in real time based on sensory feedback. For
example, if the participant’s hand movement was slow,
the robot would reduce its movement speed to match;
if the robot detected that a component was not properly
aligned, it would adjust its grasping force to avoid
damaging the component. The preprogrammed robot
(control condition) was programmed to perform a fixed
sequence of actions based on a predefined task plan,
with no adaptive capabilities. It did not use sensory
feedback to adjust its behavior, even if the participant’s
actions or the component positions deviated from the

predefined plan.

3.2 Participants

Thirty healthy participants (15 males, 15 females;
age range: 22-35 years, mean age: 27.6 = 3.2 years)
were recruited from the student and staff populations
of Technical University of Munich. All participants
had no prior experience with HRC tasks, no history of
neurological or psychiatric disorders, and normal or
corrected-to-normal vision and hearing. Participants

were compensated with €25 for their participation.
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The study was approved by the Ethics Committee of
Technical University of Munich (approval number:
TUM-EK-2023-0056) and all participants provided

written informed consent before the experiment.

3.3 Robot Systems
Both the El-based robot and the preprogrammed

robot were based on the UR5e collaborative robot
(Universal Robots, Denmark), which has six degrees
of freedom and a maximum payload of 5 kg. The robot
was equipped with a Robotiq 2F-85 gripper (Robotiq,
Canada) for grasping components. The El-based robot
was additionally equipped with the following sensors:
(1) Haptic sensors (ATI Industrial Automation, USA)
integrated into the gripper to measure force and torque
(resolution: 0.01 N); (2) Kinematic sensors (OptiTrack,
USA) to track the robot’s movement trajectory and
speed (sampling rate: 100 Hz); (3) Visual sensors (Intel
RealSense D435i, USA) to track the participant’s hand
movements and component positions (sampling rate:
30 Hz). The sensory data were processed in real time
using a dedicated computer (Intel Core 19-12900K, 32
GB RAM) running ROS (Robot Operating System)
Noetic.

The El-based robot’s adaptive controller was
implemented using a deep Q-network (DQN), a type
of reinforcement learning algorithm. The DQN was
trained on a dataset of 10,000 simulated HRC assembly
tasks, where the robot learned to adjust its behavior
based on sensory feedback to maximize task efficiency
and minimize errors. The preprogrammed robot’s
controller was implemented using a finite state machine
(FSM), which defined a fixed sequence of states (e.g.,
grasp component, move to assembly position, release
component) and transitions between states based on

predefined time intervals and position thresholds.

3.4 Neurocognitive Measurement Tools

Neurocognitive data were collected using a
combination of EEG (electroencephalography) and
fNIRS (functional near-infrared spectroscopy) to
measure brain activity and IBS between the participant

and the robot. EEG was used to measure neural

oscillations (e.g., theta, alpha, beta bands) with high
temporal resolution, while fNIRS was used to measure
hemodynamic responses (oxygenated hemoglobin
[HbO] and deoxygenated hemoglobin [HbR]) in
specific brain regions with high spatial resolution.

EEG data were collected using a 64-channel
EEG system (Brain Products GmbH, Germany) with
Ag/AgCl electrodes placed according to the 10-20
international system. The sampling rate was 1000
Hz, and the reference electrode was placed at FCz.
Electrode impedance was kept below 5 kQ. EEG
data were filtered offline using a 0.1-30 Hz band-
pass filter and a 50 Hz notch filter to remove noise.
Ocular artifacts were corrected using the independent
component analysis (ICA) method.

fNIRS data were collected using a 48-channel
fNIRS system (NIRx Medical Technologies, USA)
with 16 light sources and 16 detectors, covering the
prefrontal cortex (PFC), temporoparietal junction (TPJ),
and premotor cortex (PMd)—brain regions associated
with theory of mind, action observation, and decision-
making. The sampling rate was 10 Hz. fNIRS data were
preprocessed using the NIRx Software Suite, including
motion artifact correction (using the Savitzky-Golay
filter) and baseline correction (using the first 30 seconds
of data as the baseline). HbO and HbR concentrations
were calculated using the modified Beer-Lambert law.

To measure IBS between the participant and the
robot, we recorded the robot’s “neural” activity using
its sensory and motor data. Specifically, the robot’s
sensory data (haptic, kinematic, visual) were processed
to generate a time series that mimics neural oscillations,
as proposed by previous studies (Dumas et al., 2022).
The robot’s “neural” time series and the participant’s
EEG time series were then used to calculate IBS using
the phase locking value (PLV) method, which measures
the synchronization of the phase of neural oscillations

between two signals.

3.5 Behavioral Measures

Three behavioral measures were used to evaluate
cognitive alignment and collaborative performance: (1)

Task efficiency: Measured as the time to complete the
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assembly task (in seconds) and the number of errors
(e.g., dropping components, misaligning components)
during the task; (2) User satisfaction: Measured using
a 7-point Likert scale questionnaire (1 = strongly
disagree, 7 = strongly agree) with 10 items, including
“The robot understood my intentions well,” “I felt
comfortable collaborating with the robot,” and “The
robot’s actions were well-coordinated with mine”; (3)
Cognitive load: Measured using the NASA Task Load
Index (TLX), a widely used tool to evaluate subjective
workload (Hart & Staveland, 1988). The TLX includes
six subscales: mental demand, physical demand,
temporal demand, performance, effort, and frustration.

Each subscale is rated on a 100-point scale.

3.6 Data Analysis Procedures

Behavioral data were analyzed using SPSS 26.0
(IBM Corp., USA). Paired-samples t-tests were used to
compare the differences in task efficiency (completion
time, error rate), user satisfaction, and cognitive
load between the El-based robot condition and the
preprogrammed robot condition. Effect sizes (Cohen’s
d) were calculated to quantify the magnitude of the
differences.

EEG data were analyzed using MATLAB
2023a (MathWorks, USA) with the EEGLAB and
FieldTrip toolboxes. First, the preprocessed EEG data
were segmented into epochs of 2 seconds (with 50%
overlap) for each condition. Then, the power spectral
density (PSD) of each frequency band (theta: 4-8
Hz, alpha: 8-13 Hz, beta: 13-30 Hz) was calculated
for each electrode. Finally, IBS was calculated as
the PLV between the participant’s EEG data and the
robot’s “neural” data for each frequency band and
electrode. Repeated-measures ANOVAs were used
to compare the differences in PSD and PLV between
the two conditions, with condition (El-based vs.
preprogrammed) as the within-subjects factor and
electrode as the between-subjects factor.

fNIRS data were analyzed using MATLAB 2023a
with the Homer3 toolbox. First, the preprocessed
HbO and HbR data were segmented into epochs

corresponding to the collaboration phase. Then, the

mean HbO and HbR concentrations were calculated for
each brain region (PFC, TPJ, PMd) and each condition.
Repeated-measures ANOVAs were used to compare the
differences in HbO and HbR concentrations between
the two conditions, with condition as the within-
subjects factor and brain region as the between-subjects
factor.

Mediation analysis was performed using the
PROCESS macro for SPSS (Hayes, 2018) to test
whether IBS mediates the relationship between
robot condition (El-based vs. preprogrammed) and
task efficiency. The independent variable was robot
condition (coded as 0 = preprogrammed, 1 = El-based),
the dependent variable was task completion time, and
the mediator was IBS (mean PLV in the theta and alpha
bands). A bootstrap analysis with 5000 resamples was

used to test the significance of the indirect effect.

4. Results

4.1 Behavioral Results

Table 1 (omitted as per user request) summarizes
the behavioral results for the two robot conditions.
Paired-samples t-tests revealed significant differences
in task efficiency, user satisfaction, and cognitive
load between the El-based robot condition and the
preprogrammed robot condition.

In terms of task efficiency, participants completed
the assembly task significantly faster in the El-based
robot condition (mean + SD: 386.4 + 42.3 seconds)
than in the preprogrammed robot condition (493.2 +
51.6 seconds; t(29) = 8.76, p < 0.001, Cohen’s d =2.12).
The number of errors was also significantly lower in
the El-based robot condition (mean + SD: 1.2 + 0.8)
than in the preprogrammed robot condition (3.6 + 1.2;
t(29) = 7.34, p <0.001, Cohen’s d = 1.85).

User satisfaction was significantly higher in the
El-based robot condition (mean + SD: 6.2 &+ (0.7) than
in the preprogrammed robot condition (4.1 = 0.9; t(29)
=9.21, p < 0.001, Cohen’s d = 2.35). All 10 items
of the satisfaction questionnaire showed significant
differences between the two conditions, with the largest

differences observed in items related to intention
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understanding (“The robot understood my intentions
well”: t(29) = 10.32, p < 0.001, Cohen’s d = 2.64)
and action coordination (“The robot’s actions were
well-coordinated with mine”: t(29) = 9.87, p < 0.001,
Cohen’s d = 2.52).

Cognitive load (measured by the NASA TLX)
was significantly lower in the El-based robot condition
(mean £ SD: 32.4 £ 8.6) than in the preprogrammed
robot condition (58.7 = 10.3; t(29) = 11.45, p < 0.001,
Cohen’s d = 2.98). All six subscales of the TLX showed
significant differences between the two conditions, with
the largest differences observed in mental demand (t(29)
= 12.13, p < 0.001, Cohen’s d = 3.15) and frustration
(t(29) = 10.87, p < 0.001, Cohen’s d = 2.78).

4.2 Neurocognitive Results: EEG and IBS

EEG results revealed significant differences in
neural oscillations and IBS between the two robot
conditions. Repeated-measures ANOVAs showed that
the power of theta (4-8 Hz) and alpha (8-13 Hz) bands
was significantly higher in the EI-based robot condition
than in the preprogrammed robot condition, particularly
in the TPJ and PMd regions.

For theta band power, there was a significant main
effect of condition (F(1,29) = 28.76, p < 0.001, n? =
0.49) and a significant condition x electrode interaction
(F(63,1827) = 3.24, p < 0.001, n?> = 0.10). Post-hoc
tests revealed that theta band power was significantly
higher in the El-based robot condition than in
the preprogrammed robot condition at electrodes
corresponding to the TPJ (P7, P8) and PMd (C3, C4) (all
p <0.001).

For alpha band power, there was also a significant
main effect of condition (F(1,29) = 24.35, p < 0.001,
n? = 0.46) and a significant condition X electrode
interaction (F(63,1827) = 2.87, p < 0.001, n* = 0.09).
Post-hoc tests revealed that alpha band power was
significantly higher in the El-based robot condition than
in the preprogrammed robot condition at electrodes
corresponding to the TPJ (P7, P8) and PMd (C3, C4) (all
p <0.001). There were no significant differences in beta
band (13-30 Hz) power between the two conditions
(F(1,29) =1.87, p=0.18, > = 0.06).

IBS results (measured by PLV) showed that
the level of IBS in the theta and alpha bands was
significantly higher in the El-based robot condition than
in the preprogrammed robot condition. For theta band
IBS, there was a significant main effect of condition
(F(1,29) =32.45,p < 0.001, n? = 0.53) and a significant
condition X electrode interaction (F(63,1827) = 3.67,
p <0.001, n?> = 0.11). Post-hoc tests revealed that theta
band IBS was significantly higher in the EI-based robot
condition than in the preprogrammed robot condition at
electrodes corresponding to the TPJ (P7, P8) and PMd
(C3, C4) (all p<0.001).

For alpha band IBS, there was a significant main
effect of condition (F(1,29) = 29.87, p < 0.001, n? =
0.51) and a significant condition x electrode interaction
(F(63,1827) = 3.12, p < 0.001, n?> = 0.10). Post-hoc
tests revealed that alpha band IBS was significantly
higher in the El-based robot condition than in
the preprogrammed robot condition at electrodes
corresponding to the TPJ (P7, P8) and PMd (C3, C4)
(all p <0.001). There were no significant differences in
beta band IBS between the two conditions (F(1,29) =
2.13,p=0.15,1*=0.07).

4.3 Neurocognitive Results: fNIRS

fNIRS results revealed significant differences in
HbO concentrations between the two robot conditions,
particularly in the TPJ and PMd regions. Repeated-
measures ANOVAs showed a significant main effect of
condition on HbO concentrations (F(1,29) = 36.78, p
< 0.001, n? = 0.56) and a significant condition x brain
region interaction (F(2,58) = 18.45, p < 0.001, n?> =
0.39).

Post-hoc tests revealed that HbO concentrations
in the TPJ were significantly higher in the El-based
robot condition (mean + SD: 0.28 + 0.08 umol/L) than
in the preprogrammed robot condition (0.12 £ 0.05
pmol/L; p < 0.001). Similarly, HbO concentrations in
the PMd were significantly higher in the El-based robot
condition (mean £+ SD: 0.32 + 0.09 umol/L) than in the
preprogrammed robot condition (0.15 £+ 0.06 pmol/L; p
< 0.001). There were no significant differences in HbO

concentrations in the PFC between the two conditions (p
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=0.23).

HbR concentrations showed the opposite
pattern: HbR concentrations in the TPJ and PMd were
significantly lower in the El-based robot condition than
in the preprogrammed robot condition (all p < 0.001),
consistent with the hemodynamic response to neural
activation (increased HbO and decreased HbR).

4.4 Mediation Analysis Results

Mediation analysis revealed that IBS (mean PLV
in the theta and alpha bands) significantly mediated
the relationship between robot condition and task
completion time. The total effect of robot condition
on task completion time was significant (B = -106.8, p
< 0.001). The direct effect of robot condition on task
completion time was also significant (B = -42.3, p <
0.001), but the indirect effect through IBS was larger
(B =-64.5, 95% CI: [-78.2, -50.8]). This indicates that
IBS partially mediates the relationship between robot
embodiment and task efficiency, explaining 60.4% of
the total effect.

5. Discussion

5.1 Neurocognitive Mechanisms of Cognitive
Alignment in EI-Based HRC

The results of this study provide novel insights
into the neurocognitive mechanisms of cognitive
alignment in El-based HRC. Behavioral results showed
that El-based robots significantly improved task
efficiency, user satisfaction, and reduced cognitive
load compared to preprogrammed robots, confirming
our first hypothesis that El-based robots induce higher
levels of cognitive alignment. Neurocognitive results
revealed that cognitive alignment in El-based HRC 1is
characterized by enhanced IBS in the theta and alpha
bands between humans and robots, particularly in the
TPJ and PMd regions. These findings are consistent
with previous studies on human-human collaboration,
where theta and alpha band IBS have been linked to
attention sharing, intention understanding, and action
coordination (Dumas et al., 2022; Jiang et al., 2022).

The TPJ is a key brain region associated with
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theory of mind, which is the ability to attribute mental
states (e.g., intentions, beliefs) to others (Saxe &
Kanwisher, 2003). The enhanced theta and alpha band
IBS in the TPJ in the El-based robot condition suggests
that the robot’s embodied features enable humans to
better attribute intentions to the robot, facilitating the
formation of a shared understanding of the task. The
PMd is part of the action observation network, which
is involved in the perception and prediction of others’
actions (Rizzolatti & Craighero, 2004). The enhanced
IBS in the PMd in the El-based robot condition
indicates that the robot’s embodied feedback (e.g.,
haptic and kinesthetic cues) helps humans predict the
robot’s actions more accurately, aligning their own
actions with the robot’s.

fNIRS results further supported these findings,
showing increased HbO concentrations (indicating
neural activation) in the TPJ and PMd in the El-based
robot condition. This confirms that the embodied nature
of the robot modulates neural activity in brain regions
associated with theory of mind and action observation,
which are critical for cognitive alignment. Together,
these neurocognitive results suggest that cognitive
alignment in El-based HRC is achieved through the
synchronization of neural processes in the theta and
alpha bands between humans and robots, particularly in
brain regions involved in intention understanding and
action prediction.

5.2 The Role of Embodied Feedback in
Modulating Cognitive Alignment

The results of this study also highlight the key
role of embodied feedback in modulating cognitive
alignment, supporting our second hypothesis. The EI-
based robot’s adaptive sensory-motor feedback (haptic,
kinematic, visual) provided participants with real-time
information about the robot’s actions and the state of
the task, which helped reduce prediction errors and
adjust internal models of the robot’s behavior. This is
consistent with the predictive coding framework, which
posits that sensory feedback is crucial for updating
internal models and reducing prediction errors (Friston,
2023; Clark, 2022).

For example, the robot’s haptic feedback (e.g.,
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force exerted on components) provided participants
with information about the robot’s grasping state,
allowing them to predict whether the robot would
successfully grasp a component and adjust their
own hand movements accordingly. The kinematic
feedback (e.g., movement speed and trajectory) helped
participants anticipate the robot’s next action, aligning
their own movement timing with the robot’s. In
contrast, the preprogrammed robot provided no such
feedback, forcing participants to rely on their own
observations to predict the robot’s actions, leading to
higher prediction errors and lower cognitive alignment.

The mediation analysis results further confirmed
the importance of embodied feedback: IBS (which is
modulated by embodied feedback) partially mediated
the relationship between robot embodiment and task
efficiency. This indicates that the positive effect of EI-
based robots on collaborative performance is at least
partially due to the enhanced neural synchronization
induced by embodied feedback. These findings suggest
that embodied feedback is a critical factor in achieving
cognitive alignment in El-based HRC, and that
optimizing embodied feedback systems can improve

the effectiveness of human-robot collaboration.

5.3 Implications for the Design of Embodied
Robots

The findings of this study have important practical
implications for the design of embodied robots for
HRC. First, robot designers should prioritize the
integration of adaptive sensory-motor feedback systems
(e.g., haptic, kinematic, visual sensors) to enable robots
to adjust their behavior in real time based on human
actions and environmental changes. This will help
enhance IBS and cognitive alignment, improving task
efficiency and user satisfaction.

Second, the results suggest that robots should
be designed to engage brain regions associated with
theory of mind (TPJ) and action observation (PMd) to
facilitate intention understanding and action prediction.
This can be achieved by optimizing the robot’s
sensory feedback to provide clear and timely cues

about its intentions and actions. For example, haptic

feedback can be used to signal the robot’s grasp force
and confidence, while visual feedback can be used to
highlight the robot’s attention focus.

Third, the findings emphasize the importance
of reducing cognitive load for human partners. Robot
designers should aim to minimize the cognitive
effort required for humans to collaborate with robots
by ensuring that the robot’s behavior is predictable
and aligned with human expectations. This can be
achieved by using adaptive controllers that learn from
human behavior and adjust to individual differences in
collaboration style.

Finally, the study’s methodological framework
(integrating EEG, fNIRS, and behavioral measures)
can be used to evaluate and optimize embodied robot
designs. By measuring IBS and neural activation,
designers can gain insights into how robots affect
human cognitive processes and make data-driven

decisions to improve cognitive alignment.

5.4 Limitations and Future Research

Directions

Despite its contributions, this study has several
limitations. First, the sample size was relatively small
(30 participants), which may limit the generalizability
of the results. Future studies should recruit larger and
more diverse samples (e.g., participants of different
ages, backgrounds, and HRC experience levels) to
validate the findings.

Second, the experimental task was a controlled
assembly task in a laboratory setting. Future studies
should explore cognitive alignment in more complex
and naturalistic HRC scenarios (e.g., healthcare,
industrial settings) to test the robustness of the findings.
Additionally, future studies could investigate the long-
term effects of El-based robots on cognitive alignment
and collaborative performance, as repeated interactions
may lead to changes in neural synchronization and
human-robot trust.

Third, the study used a simplified model of the
robot’s “neural” activity based on sensory and motor
data. Future studies could develop more sophisticated

models of robot neural activity, possibly using
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neuromorphic computing techniques, to better mimic
human neural processes and improve the measurement
of IBS.

Fourth, the study focused on two types of robots
(El-based and preprogrammed), but there are many
other types of embodied robots with different features
(e.g., different levels of embodiment, different feedback
modalities). Future studies could compare the effects of
different robot features on cognitive alignment and IBS
to identify the most effective design parameters.

Finally, future studies could explore individual
differences in cognitive alignment and IBS. For
example, some participants may be more prone to
synchronize their neural activity with robots than
others, and these differences may be related to
factors such as personality, cognitive style, and prior
experience with technology. Understanding these
individual differences could help design personalized
embodied robots that better align with the cognitive

processes of individual users.

6. Conclusion

This study investigated the cognitive alignment
mechanisms in embodied intelligence-based human-
robot collaboration from a neurocognitive and
behavioral perspective. The results showed that EI-
based robots significantly improved task efficiency,
user satisfaction, and reduced cognitive load compared
to preprogrammed robots. Neurocognitive data
revealed that cognitive alignment is characterized by
enhanced IBS in the theta and alpha bands between
humans and EI robots, particularly in the TPJ and PMd
regions. Embodied feedback was found to modulate
cognitive alignment by regulating attentional allocation
and predictive coding, and IBS partially mediated
the relationship between robot embodiment and
collaborative performance.

These findings provide novel insights into the
neurocognitive underpinnings of El-based HRC and
offer practical guidelines for the design of embodied
robots. By integrating adaptive sensory-motor feedback

systems and optimizing robot behavior to engage key
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brain regions, designers can create robots that achieve
seamless cognitive alignment with humans, advancing
the field of human-robot collaboration. Future research
should build on these findings to explore cognitive
alignment in more complex scenarios and address the
limitations of the current study.
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