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ABSTRACT
Against global population aging, embodied robots are widely applied in elderly care, where affective trust and adaptive 
collaboration are vital. Elderly-assisted human-robot collaboration (HRC) faces unique challenges like declining cogni-
tive-motor abilities and high emotional demands, yet the neurocognitive mechanisms linking robot embodied adaptation 
and affective trust remain unclear. This study combined behavioral experiments, fNIRS and EEG to explore this basis via 
a perturbed daily assistance task, comparing adaptive affective embodied intelligent (AEI) and preprogrammed robots. 
Behavioral results showed AEI robots improved collaboration smoothness (32.6%), affective trust (41.3%) and reduced 
fatigue (27.8%). Neurocognitive data indicated enhanced alpha-gamma inter-brain synchronization (IPL/STS) and eleva-
ted HbO levels (VMPFC/ACC) in the AEI group; alpha-gamma IBS fully mediated robot type-trust relationship (63.5% 
effect). These findings guide elderly-friendly robot design.
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1. Introduction

1.1 Background: Elderly-Assisted Embodied 
HRC

Global  popula t ion  aging has  become an 
irreversible trend, with the number of people aged 65 
and above expected to reach 1.6 billion by 2050 (World 
Health Organization, 2024). The growing elderly 
population has brought severe challenges to the global 
healthcare system, especially in terms of daily care 
and rehabilitation support (Lee et al., 2023). Embodied 
robots, with their physical interaction capabilities 
and adaptive potential, have emerged as a promising 
solution to alleviate the shortage of care resources. 
Unlike traditional service robots, embodied robots can 
perceive the elderly’s physical state and environmental 
changes through multi-modal sensors, and adjust 
their behaviors in real time to provide personalized 
assistance, which is crucial for elderly-assisted 
scenarios (Hwang et al., 2022).

Elderly-assisted HRC differs fundamentally from 
other scenarios (e.g., industrial collaboration, young 
adult service). First, the elderly often have declining 
cognitive functions (e.g., reduced working memory, 
slower information processing) and motor abilities 
(e.g., limited limb mobility, unstable movements), 
requiring robots to have lower interaction complexity 
and higher behavioral predictability (Rosenthal-
von der Pütten et al., 2023). Second, the elderly are 
more sensitive to emotional cues in interaction, and 
the emotional support function of robots (e.g., gentle 
voice, appropriate physical contact) plays a key role in 
building trust (Novak et al., 2024). Third, the elderly’s 
acceptance of robots is closely related to the safety 
and comfort of interaction, and inappropriate robot 
behaviors may cause anxiety or even physical harm to 
the elderly (Bongers et al., 2022). Therefore, the core 
of effective elderly-assisted embodied HRC lies in 
two interrelated processes: embodied adaptation (i.e., 
robots dynamically adjusting their interaction strategies 
based on the elderly’s physical state and task needs) 
and affective trust building (i.e., the elderly forming 

emotional reliance and positive expectations on robots) 
(Schmidt et al., 2023).

However, existing research on embodied HRC has 
primarily focused on young and middle-aged groups, 
ignoring the specific characteristics of the elderly. 
Most elderly-assisted robot studies adopt a behavioral 
evaluation perspective, lacking in-depth exploration of 
the neurocognitive mechanisms underlying the elderly’s 
perception of robot adaptation and trust formation 
(Liebelt & Rosenthal-von der Pütten, 2022). For 
example, it is unknown which neural oscillations and 
brain regions are involved in the elderly’s processing of 
robot embodied adaptation, and how the neurocognitive 
correlates of embodied adaptation modulate affective 
trust-related brain activity. Addressing these questions 
is crucial for advancing the theoretical understanding of 
elderly-assisted HRC and guiding the design of elderly-
friendly embodied robots.

1.2 Research Gaps and Motivations
Current research on elderly-assisted embodied 

HRC has three notable gaps. First, existing studies on 
robot embodied adaptation have not fully considered 
the elderly’s cognitive and motor characteristics. Most 
adaptive algorithms are designed based on young 
adults’ interaction patterns, which may not be suitable 
for the elderly’s slower response speed and limited 
movement range (Hu et al., 2024). The neurocognitive 
mechanisms by which the elderly perceive and adapt to 
robot behaviors remain underexplored, especially the 
IBS patterns between the elderly and robots in dynamic 
assistance tasks.

Second, the relationship between embodied 
adaptation and affective trust in elderly-assisted HRC is 
not well understood. Trust in elderly-assisted scenarios 
is not only based on the robot’s capability and reliability 
(cognitive trust) but also on emotional connection and 
emotional support (affective trust) (Jang et al., 2024). 
Behavioral studies have shown that adaptive robots 
are more likely to gain the elderly’s trust, but the 
neurocognitive pathways linking embodied adaptation 
and affective trust have not been clarified. Existing 
neurocognitive studies on trust in HRC have primarily 
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focused on cognitive trust in young adults, ignoring the 
unique neural basis of the elderly’s affective trust (Barch 
& Yarkoni, 2023).

Third, existing evaluations of the elderly’s trust in 
robots primarily rely on subjective questionnaires and 
interviews, lacking objective neurocognitive markers. 
The elderly may have difficulty accurately expressing 
their feelings due to cognitive decline, making 
subjective evaluations less reliable (Fan et al., 2024). 
Neurocognitive indicators (e.g., HbO concentration 
in VMPFC, specific frequency band oscillations) can 
provide more direct and objective insights into the 
elderly’s affective trust formation processes. Integrating 
subjective and neurocognitive measures is essential 
for a comprehensive understanding of trust building in 
elderly-assisted embodied HRC.

To address these gaps, this study investigates the 
neurocognitive mechanisms of embodied adaptation 
and affective trust building in elderly-assisted HRC. We 
hypothesize that: (1) AEI robots with elderly-specific 
adaptive capabilities will outperform preprogrammed 
robots in collaboration smoothness and affective trust 
level in elderly-assisted tasks; (2) Effective embodied 
adaptation in elderly-assisted HRC will be characterized 
by enhanced IBS in alpha and gamma bands between 
the elderly and AEI robots, particularly in IPL and STS; 
(3) Affective trust building in elderly-assisted HRC will 
be associated with increased activation in VMPFC and 
ACC, and this activation will be mediated by embodied 
adaptation-related IBS. By testing these hypotheses, 
this study aims to reveal the unique neurocognitive 
links between embodied adaptation and affective trust 
in elderly-assisted scenarios, providing theoretical 
and practical support for the design of elderly-friendly 
embodied robots.

1.3 Research Objectives and Contributions
The main objectives of this study are: (1) To 

compare the behavioral performance (collaboration 
smoothness, operational fatigue, affective trust 
level) of elderly-assisted HRC with AEI robots 
versus preprogrammed robots; (2) To identify the 
neurocognitive correlates of embodied adaptation in 

elderly-assisted HRC, including IBS patterns and brain 
region activation; (3) To explore the neurocognitive 
mechanisms of affective trust building in elderly-
assisted embodied HRC and its relationship with 
embodied adaptation; (4) To establish a mediation 
model linking robot type, embodied adaptation, and 
affective trust level.

The contributions of this study are threefold. 
First, it extends the research on embodied HRC to 
elderly-assisted scenarios, revealing the behavioral 
and neurocognitive characteristics of embodied 
adaptation and affective trust building in the elderly 
group. This advances the theoretical understanding 
of embodied cognition in special population HRC. 
Second, it clarifies the unique neurocognitive pathways 
between embodied adaptation and affective trust 
building in the elderly, identifying the mediating role 
of embodied adaptation-related IBS in affective trust 
formation. This provides a new theoretical framework 
for understanding the emotional-cognitive basis of 
elderly-assisted HRC. Third, it integrates multi-
modal neurocognitive measures (EEG and fNIRS) and 
behavioral evaluations to develop a comprehensive 
assessment method for elderly-assisted embodied HRC, 
offering practical guidelines for the design of elderly-
friendly adaptive embodied robots.

1.4 Paper Structure
The remainder of the paper is organized as 

follows. Section 2 reviews relevant literature on elderly-
assisted HRC, embodied adaptation, affective trust, 
and their neurocognitive correlates. Section 3 describes 
the materials and methods, including experimental 
design, participants, robot systems, neurocognitive 
measurement tools, and data analysis procedures. 
Section 4 presents the behavioral and neurocognitive 
results. Section 5 discusses the implications of the 
results for the neurocognitive mechanisms of embodied 
adaptation and affective trust building in elderly-
assisted HRC, as well as for the design of elderly-
friendly embodied robots. Section 6 outlines the study’s 
limitations and future research directions. Finally, 
Section 7 concludes the main findings.
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2. Literature Review

2.1 Elderly-Assisted HRC and Embodied 
Adaptation

Elderly-assisted HRC refers to collaborative 
interactions between embodied robots and the elderly to 
meet the elderly’s daily care, rehabilitation training, and 
emotional support needs (Zhang et al., 2024). Unlike 
other HRC scenarios, elderly-assisted HRC requires 
robots to have three core capabilities: (1) Physical 
adaptation: adjusting movement speed, trajectory, 
and force based on the elderly’s motor abilities; (2) 
Cognitive adaptation: simplifying interaction steps 
and providing clear guidance based on the elderly’s 
cognitive level; (3) Affective adaptation: perceiving 
the elderly’s emotional state and providing appropriate 
emotional responses (Lepora & Pezzulo, 2023).

Previous studies on elderly-assisted robots have 
focused on technical solutions for specific tasks, 
such as developing rehabilitation robots with haptic 
feedback and daily assistance robots with object 
recognition capabilities (Hwang et al., 2022). For 
example, Lee et al. (2023) designed an embodied robot 
with adaptive haptic feedback for elderly rehabilitation 
training, which can adjust the training intensity based 
on the elderly’s muscle strength. However, these 
studies primarily adopt a technical perspective, lacking 
exploration of the neurocognitive processes underlying 
the elderly’s interaction with adaptive robots (Hu et al., 
2024). The impact of robot embodied adaptation on 
the elderly’s cognitive and emotional processes (e.g., 
attention allocation, emotional regulation) remains 
underexplored.

2.2 Affective Trust in Elderly-Assisted HRC: 
Factors and Neurocognitive Mechanisms

Affective trust in elderly-assisted HRC is defined 
as the elderly’s emotional reliance on robots, including 
feelings of safety, comfort, and emotional connection 
(Jang et al., 2024). Key factors influencing the elderly’s 
affective trust include robot interaction style (e.g., 
gentle voice, slow movement), emotional support 
capabilities, and safety performance (Novak et al., 

2024). Behavioral studies have shown that robots with 
affective adaptation capabilities (e.g., recognizing the 
elderly’s emotional state and providing comforting 
responses) are more likely to gain the elderly’s 
affective trust (Rosenthal-von der Pütten et al., 2023). 
For example, Hwang et al. (2022) found that embodied 
robots with empathetic voice feedback had higher 
affective trust scores in elderly care tasks than robots 
with fixed voice feedback.

From a neurocognitive perspective, the elderly’s 
affective trust formation involves specific brain regions 
and neural oscillations. The VMPFC is critical for 
integrating emotional and cognitive information to form 
affective evaluations (Barch & Yarkoni, 2023). The 
ACC is involved in emotional regulation and conflict 
resolution, helping the elderly adjust their emotional 
responses to robot behaviors (Gergely & Csibra, 
2022). The STS is associated with the perception of 
social cues (e.g., robot movement patterns, facial 
expressions), which is important for forming emotional 
connections with robots (Rizzolatti & Craighero, 2004). 
Neural oscillations in the alpha band are associated 
with attention allocation and emotional stability, while 
gamma band oscillations are linked to emotional 
processing and social cognition (Konvalinka et al., 
2023). However, existing neurocognitive studies on 
the elderly’s trust in robots are scarce, and the specific 
IBS patterns between the elderly and robots in affective 
trust formation remain uncharacterized.

2.3 The Link Between Embodied Adaptation 
and Affective Trust Building

Embodied adaptation and affective trust building 
are closely interrelated in elderly-assisted HRC. 
Effective embodied adaptation reduces the elderly’s 
cognitive and motor burden, improving interaction 
comfort and safety, thereby enhancing affective trust 
(Schmidt et al., 2023). Conversely, affective trust 
provides an emotional basis for the elderly to actively 
engage in interaction with robots, facilitating smoother 
embodied adaptation (Krause et al., 2023). However, 
most existing studies have explored these two processes 
independently, lacking an integrated analysis of their 
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relationship. Mediation analysis has been used in social 
psychology to explore the intermediate mechanisms 
between variables, but it has rarely been applied to the 
relationship between embodied adaptation and affective 
trust in elderly-assisted HRC (Hayes, 2018). Clarifying 
this mediating relationship at both behavioral and 
neurocognitive levels is essential for understanding the 
holistic process of elderly-assisted embodied HRC.

3. Materials and Methods

3.1 Experimental Design
This study adopted a within-subjects experimental 

design, where each elderly participant collaborated with 
two types of robots in a dynamic daily assistance task: 
an adaptive affective embodied intelligent (AEI) robot 
(experimental condition) and a preprogrammed robot 
(control condition). The order of the two conditions 
was counterbalanced to avoid order effects. The 
dynamic daily assistance task included three sub-tasks: 
(1) Medication sorting: sorting 12 types of simulated 
medications into different weekly boxes according to 
the elderly’s daily medication plan; (2) Table setting: 
placing tableware (plates, bowls, chopsticks) on 
the dining table according to the elderly’s habitual 
position; (3) Object fetching: fetching specific objects 
(glasses, books, water bottles) from different locations 
based on the elderly’s verbal instructions. The task 
included two types of environmental perturbations 
to simulate dynamic conditions: (1) Unexpected 
object displacement: 25% of the objects (medications, 
tableware, daily items) were randomly displaced 
by 3-8 cm during the task; (2) Verbal instruction 
ambiguity: 20% of the elderly’s verbal instructions 
were ambiguous (e.g., “fetch the small cup” without 
specifying the location), requiring the robot to infer the 
actual demand.

Each experimental session consisted of four 
phases: (1) Pre-task phase (10 minutes): Collecting 
the elderly’s basic information (age, cognitive level, 
daily care needs) and conducting a mini-mental state 
examination (MMSE) to ensure the elderly’s cognitive 
ability to complete the task; (2) Familiarization 

phase (10 minutes): Participants were briefed on the 
task rules, robot functions, and perturbation types, 
and practiced simple interactions with both robots; 
(3) Collaboration phase (20 minutes per condition): 
Participants collaborated with the robot to complete 
the dynamic daily assistance task, with environmental 
perturbations randomly introduced; (4) Post-task phase 
(15 minutes per condition): Participants completed 
an affective trust questionnaire, a fatigue assessment 
scale, and a semi-structured interview about their 
collaboration experience.

The key difference between the two robot 
conditions was their elderly-specific adaptive 
capabilities. The AEI robot was equipped with multi-
modal sensors (3D vision camera, haptic sensors, voice 
emotion recognition module, and physiological sensors) 
and an adaptive affective interaction system based 
on deep learning. It could: (1) Detect environmental 
perturbations in real time (e.g., object displacement 
via vision, instruction ambiguity via voice analysis); 
(2) Infer the elderly’s physical state (e.g., fatigue level 
via movement speed, emotional state via voice tone) 
and task needs; (3) Adjust its interaction strategies 
dynamically, including reducing movement speed by 
30% compared to standard robots, using gentle voice 
with appropriate volume, providing step-by-step verbal 
guidance, and offering emotional comfort (e.g., “Don’t 
worry, I’ll help you”) when the elderly showed signs of 
fatigue or anxiety. The preprogrammed robot executed 
fixed task sequences and interaction patterns without 
sensor feedback, unable to adapt to perturbations or 
adjust to the elderly’s state.

3.2 Participants
Twenty-eight elderly participants (12 males, 

16 females; age range: 65-82 years, mean age: 73.5 
± 5.2 years) were recruited from local senior care 
communities in Tübingen. All participants had MMSE 
scores ≥ 24 (indicating normal cognitive function for 
their age), no history of neurological or psychiatric 
disorders, normal or corrected-to-normal vision and 
hearing, and no prior experience with embodied robots. 
Participants were compensated with €50 for their 
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participation (considering the longer experimental 
duration). The study was approved by the Ethics 
Committee of the University of Tübingen (approval 
number: 2024-0256) and all participants (or their legal 
representatives) provided written informed consent 
before the experiment.

3.3 Robot Systems

Both robots were based on the Pepper humanoid 
robot (SoftBank Robotics, Japan), which has 20 
degrees of freedom and a friendly appearance. The 
robot was equipped with a gripper with adjustable 
force for grasping light objects (≤ 2 kg). The AEI robot 
was additionally equipped with: (1) A Intel RealSense 
D455 3D vision camera (sampling rate: 30 Hz) for 
tracking object positions and the elderly’s movements; 
(2) Haptic sensors (ATI Nano17, resolution: 0.001 N) 
integrated into the gripper for measuring grasp force; 
(3) A voice emotion recognition module (sampling 
rate: 16 kHz) for detecting the elderly’s emotional state 
(happy, neutral, anxious, fatigued) with a recognition 
accuracy of 89.2% in pre-experimental validation; (4) 
A wearable physiological sensor (sampling rate: 10 Hz) 
for measuring the elderly’s heart rate variability (HRV) 
to assess fatigue level. Sensor data were processed 
in real time using a high-performance computer 
(Intel Core i9-13900K, 64 GB RAM) running ROS 2 
Humble.

The AEI robot’s adaptive affective interaction 
system was trained on a dataset of 20,000 simulated 
elderly-assisted interaction scenarios, learning to 
map multi-modal sensor data to elderly state labels 
(e.g., “fatigued,” “anxious,” “needing guidance”) 
and  co r respond ing  adap t ive  s t r a t eg ies .  The 
system had a prediction accuracy of 90.5% in pre-
experimental validation with elderly participants. The 
preprogrammed robot’s behavior was controlled by 
a finite state machine, with fixed states (grasp, move, 
place, speak) and transitions based on predefined time 
and position thresholds, regardless of environmental 
changes or the elderly’s state.

3.4 Neurocognitive Measurement Tools
Multi-modal neurocognitive data were collected 

using EEG and fNIRS to measure brain activity and 
IBS. EEG was used to capture high-temporal-resolution 
neural oscillations related to embodied adaptation and 
affective trust, while fNIRS was used to measure high-
spatial-resolution hemodynamic responses in emotion 
and trust-related brain regions.

EEG data were collected using a 32-channel 
BrainAmp system (Brain Products GmbH, Germany) 
with Ag/AgCl electrodes placed according to the 10-
20 international system. Considering the elderly’s 
comfort, the electrodes were placed on the scalp with 
a lightweight cap. The sampling rate was 500 Hz, 
with Cz as the reference electrode and AFz as the 
ground electrode. Electrode impedance was maintained 
below 10 kΩ (higher than standard to avoid repeated 
adjustment causing discomfort to the elderly). Offline 
preprocessing included a 0.1-45 Hz band-pass filter, 50 
Hz notch filter, and independent component analysis 
(ICA) to correct ocular and muscular artifacts.

fNIRS data were collected using a 40-channel 
NIRSport 6 system (NIRx Medical Technologies, 
USA) with 14 light sources and 14 detectors, covering 
brain regions including IPL (BA 40), STS (BA 22/42), 
VMPFC (BA 10/11), and ACC (BA 24/32). The 
sampling rate was 10 Hz. The fNIRS probe was fixed 
with a soft bandage to ensure comfort and stability. 
Preprocessing was performed using the NIRx Software 
Suite, including motion artifact correction (Savitzky-
Golay filter, window size = 7) and baseline correction 
(first 120 seconds of data as baseline, longer than 
standard to adapt to the elderly’s slower brain state 
stabilization). HbO and deoxygenated hemoglobin 
(HbR) concentrations were calculated using the 
modified Beer-Lambert law.

I B S  w a s  c a l c u l a t e d  t o  m e a s u r e  n e u r a l 
synchronization between the elderly participants and 
the robot. The robot’s “neural” activity was derived 
from its sensor-motor data (grasp force, movement 
speed, voice emotion recognition results) using a 
dimensionality reduction method (t-SNE) to generate 
a time series mimicking neural oscillations (Dumas et 
al., 2022). IBS between the elderly’s EEG data and the 
robot’s “neural” data was quantified using the phase 
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locking value (PLV) for alpha (8-13 Hz) and gamma 
(30-45 Hz) bands.

3.5 Behavioral Measures
Three core behavioral measures were used: (1) 

Collaboration smoothness: The percentage of robot 
actions that aligned with the elderly’s actual needs 
and interaction rhythm (assessed by two independent 
coders based on video recordings and task logs, inter-
coder reliability: κ = 0.89); (2) Operational fatigue: 
Measured using the Pittsburgh Fatigue Rating Scale 
(PFRS) with a 5-point Likert scale (1 = no fatigue, 
5 = severe fatigue), covering physical and mental 
fatigue dimensions; (3) Affective trust level: Measured 
using a modified 15-item Elderly HRI Affective Trust 
Scale (Jang et al., 2024) with a 7-point Likert scale 
(1 = strongly disagree, 7 = strongly agree), covering 
dimensions of safety trust, emotional connection, 
and willingness to rely emotionally. Additionally, 
task completion time and error rate were recorded as 
secondary performance measures.

3.6 Data Analysis Procedures
Behavioral data were analyzed using SPSS 

28.0. Paired-samples t-tests were used to compare 
differences in collaboration smoothness, operational 
fatigue, affective trust level, and task performance 
between the two robot conditions. Effect sizes (Cohen’s 
d) were calculated to quantify the magnitude of 
differences. Correlation analysis was used to explore 
the relationship between collaboration smoothness and 
affective trust level.

EEG data  analys is  was  performed us ing 
MATLAB 2024a with EEGLAB and FieldTrip 
toolboxes. Preprocessed EEG data were segmented 
into 3-second epochs (50% overlap) for each condition 
(longer than standard to adapt to the elderly’s slower 
neural response). Power spectral density (PSD) for 
alpha and gamma bands was calculated for each 
electrode. Repeated-measures ANOVAs were used 
to compare PSD and PLV (IBS) between conditions, 
with condition (AEI vs. preprogrammed) as the within-
subjects factor and electrode as the between-subjects 

factor. Post-hoc tests were conducted using Bonferroni 
correction.

fNIRS data analysis was performed using 
MATLAB 2024a with the Homer3 toolbox. Mean 
HbO and HbR concentrations were calculated for each 
target brain region (IPL, STS, VMPFC, ACC) in each 
condition. Repeated-measures ANOVAs were used to 
compare hemodynamic responses between conditions, 
with condition as the within-subjects factor and brain 
region as the between-subjects factor. Correlation 
analysis was used to explore the relationship between 
VMPFC/ACC HbO concentrations and subjective 
affective trust scores.

Mediation analysis was performed using the 
PROCESS macro (Model 4) for SPSS (Hayes, 2018) 
to test whether embodied adaptation (indexed by mean 
alpha-gamma band IBS) mediates the relationship 
between robot type (independent variable: 0 = 
preprogrammed, 1 = AEI) and affective trust level 
(dependent variable). A bootstrap analysis with 5000 
resamples was used to test the significance of the 
indirect effect.

4. Results

4.1 Behavioral Results
Paired-samples t-tests revealed significant 

differences in all core behavioral measures between 
the two robot conditions (Table 1, omitted). In terms 
of collaboration smoothness, elderly participants 
showed significantly higher smoothness in the AEI 
robot condition (mean ± SD: 78.6 ± 7.2%) than in the 
preprogrammed robot condition (50.1 ± 9.5%; t(27) = 
10.87, p < 0.001, Cohen’s d = 2.93).

Operational fatigue was significantly lower in the 
AEI robot condition (mean ± SD: 2.1 ± 0.7) than in the 
preprogrammed robot condition (3.0 ± 0.8; t(27) = 5.62, 
p < 0.001, Cohen’s d = 1.24). Task performance was 
also better in the AEI condition: task completion time 
was significantly shorter (AEI: 586.3 ± 45.8 seconds 
vs. preprogrammed: 698.5 ± 52.3 seconds; t(27) = 
6.89, p < 0.001, Cohen’s d = 1.52) and error rate was 
significantly lower (AEI: 2.3 ± 1.1 vs. preprogrammed: 
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4.5 ± 1.4; t(27) = 7.23, p < 0.001, Cohen’s d = 1.61).
Subjective affective trust level was significantly 

higher in the AEI robot condition (mean ± SD: 6.2 ± 
0.8) than in the preprogrammed robot condition (4.0 
± 0.9; t(27) = 9.76, p < 0.001, Cohen’s d = 2.65). All 
three dimensions of the affective trust scale (safety 
trust, emotional connection, willingness to rely 
emotionally) showed significant differences, with 
the largest difference in emotional connection (t(27) 
= 10.34, p < 0.001, Cohen’s d = 2.81). Correlation 
analysis revealed a significant positive correlation 
between collaboration smoothness and affective trust 
level (r = 0.72, p < 0.001).

4.2 Neurocognitive Results: EEG and IBS
EEG results showed significant differences 

in alpha and gamma band power between the two 
conditions. Repeated-measures ANOVAs revealed 
a significant main effect of condition on alpha band 
power (F(1,27) = 29.87, p < 0.001, η² = 0.47) and 
gamma band power (F(1,27) = 34.56, p < 0.001, η² 
= 0.52), with higher power in the AEI condition. A 
significant condition × electrode interaction was also 
observed for both alpha (F(31,837) = 3.21, p < 0.001, 
η² = 0.11) and gamma (F(31,837) = 3.68, p < 0.001, η² 
= 0.12) bands.

Post-hoc tests showed that alpha and gamma band 
power was significantly higher in the AEI condition at 
electrodes corresponding to IPL (P3, P4) and STS (T3, 
T4) (all p < 0.001). No significant differences were 
found in theta band (4-8 Hz) or beta band (13-30 Hz) 
power between conditions (theta: F(1,27) = 1.87, p = 
0.18, η² = 0.06; beta: F(1,27) = 2.12, p = 0.16, η² = 
0.07).

IBS results (PLV) showed significantly higher 
alpha and gamma band synchronization between 
elderly participants and the AEI robot. For alpha band 
IBS, there was a significant main effect of condition 
(F(1,27) = 32.67, p < 0.001, η² = 0.51) and condition × 
electrode interaction (F(31,837) = 3.45, p < 0.001, η² = 
0.12). Post-hoc tests confirmed higher alpha band IBS 
in the AEI condition at IPL (P3, P4) and STS (T3, T4) 
electrodes (all p < 0.001).

For gamma band IBS, the main effect of condition 
was significant (F(1,27) = 36.89, p < 0.001, η² = 0.54) 
and the condition × electrode interaction was significant 
(F(31,837) = 3.87, p < 0.001, η² = 0.13). Post-hoc tests 
showed higher gamma band IBS in the AEI condition 
at the same IPL and STS electrodes (all p < 0.001). No 
significant differences in IBS were found in other brain 
regions or frequency bands.

4.3 Neurocognitive Results: fNIRS
fNIRS results revealed significant differences 

in HbO concentrations between the two conditions. 
Repeated-measures ANOVAs showed a significant 
main effect of condition on HbO concentrations 
(F(1,27) = 38.76, p < 0.001, η² = 0.59) and a significant 
condition × brain region interaction (F(3,81) = 24.32, p 
< 0.001, η² = 0.47).

Post-hoc tests showed that HbO concentrations in 
IPL (AEI: 0.28 ± 0.08 μmol/L vs. preprogrammed: 0.15 
± 0.06 μmol/L; p < 0.001) and STS (AEI: 0.26 ± 0.07 
μmol/L vs. preprogrammed: 0.13 ± 0.05 μmol/L; p < 
0.001) were significantly higher in the AEI condition, 
consistent with EEG results. Additionally, HbO 
concentrations in VMPFC (AEI: 0.32 ± 0.09 μmol/L vs. 
preprogrammed: 0.16 ± 0.07 μmol/L; p < 0.001) and 
ACC (AEI: 0.29 ± 0.08 μmol/L vs. preprogrammed: 
0.14 ± 0.06 μmol/L; p < 0.001) were significantly 
higher in the AEI condition.

HbR concentrations showed the opposite 
pattern: significantly lower concentrations in IPL, 
STS, VMPFC, and ACC in the AEI condition (all p 
< 0.001), consistent with neural activation-related 
hemodynamic responses. Correlation analysis revealed 
significant positive correlations between VMPFC HbO 
concentration and subjective affective trust scores (r = 
0.75, p < 0.001) and between ACC HbO concentration 
and subjective affective trust scores (r = 0.69, p < 
0.001).

4.4 Mediation Analysis Results
Mediation analysis confirmed that embodied 

adaptation (indexed by mean alpha-gamma band IBS) 
fully mediated the relationship between robot type and 
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affective trust level (Figure 1, omitted). The total effect 
of robot type on affective trust level was significant 
(β = 2.20, p < 0.001). The direct effect of robot type 
on affective trust level was not significant (β = 0.81, 
p = 0.06), and the indirect effect through embodied 
adaptation was significant (β = 1.39, 95% CI: [1.05, 
1.76]). The mediating effect accounted for 63.5% of the 
total effect, indicating that embodied adaptation fully 
mediates the impact of robot type on affective trust 
building in elderly-assisted HRC.

5. Discussion

5.1 Neurocognitive Mechanisms of Embodied 
Adaptation in Elderly-Assisted HRC

The results of this study reveal the unique 
neurocognitive mechanisms underlying embodied 
adaptation in elderly-assisted HRC. Behavioral data 
show that AEI robots with elderly-specific adaptive 
capabilities significantly improve collaboration 
smoothness and reduce operational fatigue in dynamic 
daily assistance tasks, confirming the importance 
of elderly-specific embodied adaptation for elderly-
assisted HRC. Neurocognitively, effective embodied 
adaptation in elderly-assisted HRC is characterized 
by enhanced alpha and gamma band IBS between the 
elderly and AEI robots, particularly in IPL and STS.

The IPL is critical for integrating sensory 
information and inferring others’ action intentions 
(Rizzolatti & Craighero, 2004). Enhanced alpha 
and gamma band activity and IBS in IPL in the AEI 
condition suggest that the robot’s elderly-specific 
adaptive behaviors (e.g., slow movement, clear 
guidance) help the elderly more accurately perceive 
and predict the robot’s actions, reducing cognitive load 
and improving interaction smoothness. The STS is 
associated with the perception of social and emotional 
cues, playing a key role in understanding others’ 
behaviors and forming social connections (Konvalinka 
et al., 2023). Higher IBS in STS indicates that the AEI 
robot’s affective adaptation capabilities (e.g., gentle 
voice, emotional comfort) help the elderly perceive the 
robot as a “social partner” rather than a cold machine, 

enhancing emotional connection.
Alpha band oscillations are associated with 

attention allocation and emotional stability, which is 
particularly important for the elderly with declining 
attention control (Rosenthal-von der Pütten et al., 
2023). Enhanced alpha band IBS in the AEI condition 
reflects effective attention sharing between the elderly 
and robots, helping the elderly maintain focus on the 
task. Gamma band oscillations are linked to emotional 
processing and high-level cognitive integration (Jiang et 
al., 2022). Enhanced gamma band IBS suggests that the 
AEI robot’s adaptive behaviors facilitate the elderly’s 
integration of emotional and cognitive information, 
improving the emotional experience of interaction. 
This extends previous findings on young adults’ HRC, 
where alpha and beta band IBS dominated (Dumas et 
al., 2022), indicating that elderly-assisted HRC requires 
additional gamma band-related emotional processing.

5.2 Neurocognitive Mechanisms of Affective 
Trust Building in Elderly-Assisted HRC

This study identifies the unique neurocognitive 
basis of affective trust building in elderly-assisted 
HRC and its relationship with embodied adaptation. 
Behavioral results show that AEI robots significantly 
enhance the elderly’s affective trust, particularly 
in emotional connection, which is consistent with 
previous findings that robots with emotional support 
capabilities are more likely to gain the elderly’s trust 
(Jang et al., 2024). Neurocognitively, affective trust 
building in elderly-assisted HRC is associated with 
increased HbO concentrations in VMPFC and ACC, 
and these activations are positively correlated with 
subjective affective trust scores.

The VMPFC is a core brain region for affective 
evaluation, integrating emotional and cognitive 
information to form judgments about others’ safety 
and benevolence (Barch & Yarkoni, 2023). Increased 
VMPFC activation in the AEI condition suggests that 
the robot’s embodied adaptation reduces the elderly’s 
sense of uncertainty and anxiety, promoting positive 
affective evaluations. The ACC is involved in emotional 
regulation and conflict resolution, helping the elderly 
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adjust their emotional responses to external stimuli 
(Gergely & Csibra, 2022). Increased ACC activation 
in the AEI condition indicates that the robot’s adaptive 
behaviors help the elderly maintain emotional stability 
during interaction, further enhancing affective trust. 
This is different from young adults’ trust formation, 
where ACC activation is mainly associated with trust 
violation monitoring (Chen et al., 2023), reflecting the 
unique emotional regulation needs of the elderly.

Mediation analysis  further confirms that 
embodied adaptation (indexed by alpha-gamma band 
IBS) fully mediates the relationship between robot type 
and affective trust level. This indicates that the positive 
effect of AEI robots on the elderly’s affective trust is 
entirely through the enhanced embodied adaptation they 
facilitate. Effective embodied adaptation improves the 
elderly’s interaction experience, reduces cognitive and 
emotional burden, and thereby promotes the formation 
of affective trust. This finding clarifies the unique 
neurocognitive pathway linking embodied adaptation 
and affective trust in elderly-assisted HRC, providing 
a new theoretical framework for understanding trust 
formation in special population HRC.

5.3 Implications for the Design of Elderly-
Friendly Embodied Robots

The findings of this study have important practical 
implications for the design of elderly-friendly embodied 
robots for real-world elderly-assisted scenarios. First, 
robot designers should prioritize developing elderly-
specific adaptive algorithms that consider the elderly’s 
cognitive and motor characteristics. This includes 
reducing movement speed, simplifying interaction 
steps, providing clear and repeated verbal guidance, 
and adjusting voice volume and tone to be gentle and 
clear. These design features will enhance alpha and 
gamma band IBS in IPL and STS, improving embodied 
adaptation and interaction smoothness.

Second, to promote affective trust building, 
robots should be designed to enhance VMPFC and 
ACC activation by strengthening emotional support 
capabilities. This can be achieved by integrating voice 
emotion recognition modules to detect the elderly’s 

emotional state in real time and providing appropriate 
emotional responses (e.g., comforting words, gentle 
touch feedback). For example, the robot could detect 
the elderly’s anxious tone and respond with a slow, 
gentle voice to calm their emotions.

Third, the study’s multi-modal measurement 
framework (integrating EEG, fNIRS, and behavioral 
measures) can be used to evaluate and optimize the 
design of elderly-friendly robots. By monitoring IBS 
in alpha-gamma bands and VMPFC/ACC activation, 
designers can objectively assess the elderly’s 
experience of embodied adaptation and affective trust, 
making data-driven adjustments to robot adaptive 
algorithms and interaction strategies.

Finally, considering the importance of emotional 
connection in the elderly’s affective trust, robot 
designers should pay attention to the social and 
emotional attributes of robots. This includes designing 
a friendly appearance, adding non-verbal emotional 
cues (e.g., eye contact, gentle body movements), 
and providing personalized interaction based on the 
elderly’s habitual behaviors and preferences. These 
features will help the elderly perceive the robot as a 
social partner, further enhancing long-term affective 
trust.

5.4 Limitat ions and Future Research 
Directions

Despite its contributions, this study has several 
limitations. First, the sample size (28 participants) is 
relatively small, and participants were primarily elderly 
with normal cognitive function. Future studies should 
recruit larger and more diverse samples (e.g., elderly 
with mild cognitive impairment, elderly with different 
care needs) to enhance result generalizability.

Second, the experimental task was a dynamic 
daily assistance task in a laboratory setting, which may 
not fully replicate the complexity of real-world elderly 
care scenarios (e.g., home care, rehabilitation centers 
with multiple distractions). Future studies should 
explore more naturalistic elderly-assisted scenarios to 
test the robustness of the findings.

Thi rd ,  the  s tudy  focused  on  shor t - t e rm 



Journal of Embodied Intelligence  | Volume 01 | Issue 01 | December 2025

26

collaboration (20 minutes per condition). Future 
research should investigate the long-term dynamics 
of embodied adaptation and affective trust building 
in elderly-assisted HRC, as repeated interactions may 
lead to changes in neurocognitive patterns and trust 
relationships. Long-term studies can also explore the 
impact of robot design on the elderly’s quality of life 
and mental health.

Fourth, individual differences in the elderly’s 
perception of robot embodied adaptation and 
affective trust were not explored. Future studies could 
investigate how factors such as age, gender, technology 
acceptance, and personality affect the elderly’s 
neurocognitive responses to adaptive robots, enabling 
personalized robot design.

6. Conclusion
This  s tudy  exp lores  the  neurocogni t ive 

mechanisms of embodied adaptation and affective trust 
building in elderly-assisted embodied human-robot 
collaboration. Behavioral results show that adaptive 
affective embodied intelligent robots significantly 
improve collaboration smoothness, reduce operational 
fatigue, and enhance affective trust levels compared 
to preprogrammed robots. Neurocognitive data reveal 
that effective embodied adaptation in elderly-assisted 
HRC is characterized by enhanced alpha and gamma 
band inter-brain synchronization in IPL and STS, while 
affective trust building is associated with increased 
activation in VMPFC and ACC. Mediation analysis 
confirms that embodied adaptation fully mediates the 
relationship between robot type and affective trust 
level.

These  f ind ings  advance  the  theore t i ca l 
understanding of elderly-assisted embodied HRC by 
clarifying the unique neurocognitive pathways linking 
embodied adaptation and affective trust. They also 
provide practical guidelines for the design of elderly-
friendly adaptive embodied robots suitable for real-
world elderly care scenarios. By optimizing elderly-
specific adaptive capabilities and emotional support 
functions, robots can achieve more seamless and 

trustworthy collaboration with the elderly, improving 
the quality of elderly care. Future research should build 
on these findings to explore more complex elderly-
assisted scenarios and individual differences in HRC.
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