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ABSTRACT

Against global population aging, embodied robots are widely applied in elderly care, where affective trust and adaptive
collaboration are vital. Elderly-assisted human-robot collaboration (HRC) faces unique challenges like declining cogni-
tive-motor abilities and high emotional demands, yet the neurocognitive mechanisms linking robot embodied adaptation
and affective trust remain unclear. This study combined behavioral experiments, fNIRS and EEG to explore this basis via
a perturbed daily assistance task, comparing adaptive affective embodied intelligent (AEI) and preprogrammed robots.
Behavioral results showed AEI robots improved collaboration smoothness (32.6%), affective trust (41.3%) and reduced
fatigue (27.8%). Neurocognitive data indicated enhanced alpha-gamma inter-brain synchronization (IPL/STS) and eleva-
ted HbO levels (VMPFC/ACC) in the AEI group; alpha-gamma IBS fully mediated robot type-trust relationship (63.5%
effect). These findings guide elderly-friendly robot design.
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1. Introduction

1.1 Background: Elderly-Assisted Embodied
HRC

Global population aging has become an
irreversible trend, with the number of people aged 65
and above expected to reach 1.6 billion by 2050 (World
Health Organization, 2024). The growing elderly
population has brought severe challenges to the global
healthcare system, especially in terms of daily care
and rehabilitation support (Lee et al., 2023). Embodied
robots, with their physical interaction capabilities
and adaptive potential, have emerged as a promising
solution to alleviate the shortage of care resources.
Unlike traditional service robots, embodied robots can
perceive the elderly’s physical state and environmental
changes through multi-modal sensors, and adjust
their behaviors in real time to provide personalized
assistance, which is crucial for elderly-assisted
scenarios (Hwang et al., 2022).

Elderly-assisted HRC differs fundamentally from
other scenarios (e.g., industrial collaboration, young
adult service). First, the elderly often have declining
cognitive functions (e.g., reduced working memory,
slower information processing) and motor abilities
(e.g., limited limb mobility, unstable movements),
requiring robots to have lower interaction complexity
and higher behavioral predictability (Rosenthal-
von der Piitten et al., 2023). Second, the elderly are
more sensitive to emotional cues in interaction, and
the emotional support function of robots (e.g., gentle
voice, appropriate physical contact) plays a key role in
building trust (Novak et al., 2024). Third, the elderly’s
acceptance of robots is closely related to the safety
and comfort of interaction, and inappropriate robot
behaviors may cause anxiety or even physical harm to
the elderly (Bongers et al., 2022). Therefore, the core
of effective elderly-assisted embodied HRC lies in
two interrelated processes: embodied adaptation (i.e.,
robots dynamically adjusting their interaction strategies
based on the elderly’s physical state and task needs)
and affective trust building (i.e., the elderly forming

emotional reliance and positive expectations on robots)
(Schmidt et al., 2023).

However, existing research on embodied HRC has
primarily focused on young and middle-aged groups,
ignoring the specific characteristics of the elderly.
Most elderly-assisted robot studies adopt a behavioral
evaluation perspective, lacking in-depth exploration of
the neurocognitive mechanisms underlying the elderly’s
perception of robot adaptation and trust formation
(Liebelt & Rosenthal-von der Piitten, 2022). For
example, it is unknown which neural oscillations and
brain regions are involved in the elderly’s processing of
robot embodied adaptation, and how the neurocognitive
correlates of embodied adaptation modulate affective
trust-related brain activity. Addressing these questions
is crucial for advancing the theoretical understanding of
elderly-assisted HRC and guiding the design of elderly-
friendly embodied robots.

1.2 Research Gaps and Motivations

Current research on elderly-assisted embodied
HRC has three notable gaps. First, existing studies on
robot embodied adaptation have not fully considered
the elderly’s cognitive and motor characteristics. Most
adaptive algorithms are designed based on young
adults’ interaction patterns, which may not be suitable
for the elderly’s slower response speed and limited
movement range (Hu et al., 2024). The neurocognitive
mechanisms by which the elderly perceive and adapt to
robot behaviors remain underexplored, especially the
IBS patterns between the elderly and robots in dynamic
assistance tasks.

Second, the relationship between embodied
adaptation and affective trust in elderly-assisted HRC is
not well understood. Trust in elderly-assisted scenarios
is not only based on the robot’s capability and reliability
(cognitive trust) but also on emotional connection and
emotional support (affective trust) (Jang et al., 2024).
Behavioral studies have shown that adaptive robots
are more likely to gain the elderly’s trust, but the
neurocognitive pathways linking embodied adaptation
and affective trust have not been clarified. Existing

neurocognitive studies on trust in HRC have primarily
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focused on cognitive trust in young adults, ignoring the
unique neural basis of the elderly’s affective trust (Barch
& Yarkoni, 2023).

Third, existing evaluations of the elderly’s trust in
robots primarily rely on subjective questionnaires and
interviews, lacking objective neurocognitive markers.
The elderly may have difficulty accurately expressing
their feelings due to cognitive decline, making
subjective evaluations less reliable (Fan et al., 2024).
Neurocognitive indicators (e.g., HbO concentration
in VMPFC, specific frequency band oscillations) can
provide more direct and objective insights into the
elderly’s affective trust formation processes. Integrating
subjective and neurocognitive measures is essential
for a comprehensive understanding of trust building in
elderly-assisted embodied HRC.

To address these gaps, this study investigates the
neurocognitive mechanisms of embodied adaptation
and affective trust building in elderly-assisted HRC. We
hypothesize that: (1) AEI robots with elderly-specific
adaptive capabilities will outperform preprogrammed
robots in collaboration smoothness and affective trust
level in elderly-assisted tasks; (2) Effective embodied
adaptation in elderly-assisted HRC will be characterized
by enhanced IBS in alpha and gamma bands between
the elderly and AEI robots, particularly in IPL and STS;
(3) Affective trust building in elderly-assisted HRC will
be associated with increased activation in VMPFC and
ACC, and this activation will be mediated by embodied
adaptation-related IBS. By testing these hypotheses,
this study aims to reveal the unique neurocognitive
links between embodied adaptation and affective trust
in elderly-assisted scenarios, providing theoretical
and practical support for the design of elderly-friendly

embodied robots.

1.3 Research Objectives and Contributions

The main objectives of this study are: (1) To
compare the behavioral performance (collaboration
smoothness, operational fatigue, affective trust
level) of elderly-assisted HRC with AEI robots
versus preprogrammed robots; (2) To identify the

neurocognitive correlates of embodied adaptation in
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elderly-assisted HRC, including IBS patterns and brain
region activation; (3) To explore the neurocognitive
mechanisms of affective trust building in elderly-
assisted embodied HRC and its relationship with
embodied adaptation; (4) To establish a mediation
model linking robot type, embodied adaptation, and
affective trust level.

The contributions of this study are threefold.
First, it extends the research on embodied HRC to
elderly-assisted scenarios, revealing the behavioral
and neurocognitive characteristics of embodied
adaptation and affective trust building in the elderly
group. This advances the theoretical understanding
of embodied cognition in special population HRC.
Second, it clarifies the unique neurocognitive pathways
between embodied adaptation and affective trust
building in the elderly, identifying the mediating role
of embodied adaptation-related IBS in affective trust
formation. This provides a new theoretical framework
for understanding the emotional-cognitive basis of
elderly-assisted HRC. Third, it integrates multi-
modal neurocognitive measures (EEG and fNIRS) and
behavioral evaluations to develop a comprehensive
assessment method for elderly-assisted embodied HRC,
offering practical guidelines for the design of elderly-

friendly adaptive embodied robots.

1.4 Paper Structure

The remainder of the paper is organized as
follows. Section 2 reviews relevant literature on elderly-
assisted HRC, embodied adaptation, affective trust,
and their neurocognitive correlates. Section 3 describes
the materials and methods, including experimental
design, participants, robot systems, neurocognitive
measurement tools, and data analysis procedures.
Section 4 presents the behavioral and neurocognitive
results. Section 5 discusses the implications of the
results for the neurocognitive mechanisms of embodied
adaptation and affective trust building in elderly-
assisted HRC, as well as for the design of elderly-
friendly embodied robots. Section 6 outlines the study’s
limitations and future research directions. Finally,

Section 7 concludes the main findings.
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2. Literature Review

2.1 Elderly-Assisted HRC and Embodied
Adaptation

Elderly-assisted HRC refers to collaborative
interactions between embodied robots and the elderly to
meet the elderly’s daily care, rehabilitation training, and
emotional support needs (Zhang et al., 2024). Unlike
other HRC scenarios, elderly-assisted HRC requires
robots to have three core capabilities: (1) Physical
adaptation: adjusting movement speed, trajectory,
and force based on the elderly’s motor abilities; (2)
Cognitive adaptation: simplifying interaction steps
and providing clear guidance based on the elderly’s
cognitive level; (3) Affective adaptation: perceiving
the elderly’s emotional state and providing appropriate
emotional responses (Lepora & Pezzulo, 2023).

Previous studies on elderly-assisted robots have
focused on technical solutions for specific tasks,
such as developing rehabilitation robots with haptic
feedback and daily assistance robots with object
recognition capabilities (Hwang et al., 2022). For
example, Lee et al. (2023) designed an embodied robot
with adaptive haptic feedback for elderly rehabilitation
training, which can adjust the training intensity based
on the elderly’s muscle strength. However, these
studies primarily adopt a technical perspective, lacking
exploration of the neurocognitive processes underlying
the elderly’s interaction with adaptive robots (Hu et al.,
2024). The impact of robot embodied adaptation on
the elderly’s cognitive and emotional processes (e.g.,
attention allocation, emotional regulation) remains

underexplored.

2.2 Affective Trust in Elderly-Assisted HRC:

Factors and Neurocognitive Mechanisms

Affective trust in elderly-assisted HRC is defined
as the elderly’s emotional reliance on robots, including
feelings of safety, comfort, and emotional connection
(Jang et al., 2024). Key factors influencing the elderly’s
affective trust include robot interaction style (e.g.,
gentle voice, slow movement), emotional support

capabilities, and safety performance (Novak et al.,

2024). Behavioral studies have shown that robots with
affective adaptation capabilities (e.g., recognizing the
elderly’s emotional state and providing comforting
responses) are more likely to gain the elderly’s
affective trust (Rosenthal-von der Piitten et al., 2023).
For example, Hwang et al. (2022) found that embodied
robots with empathetic voice feedback had higher
affective trust scores in elderly care tasks than robots
with fixed voice feedback.

From a neurocognitive perspective, the elderly’s
affective trust formation involves specific brain regions
and neural oscillations. The VMPFC is critical for
integrating emotional and cognitive information to form
affective evaluations (Barch & Yarkoni, 2023). The
ACC is involved in emotional regulation and conflict
resolution, helping the elderly adjust their emotional
responses to robot behaviors (Gergely & Csibra,
2022). The STS is associated with the perception of
social cues (e.g., robot movement patterns, facial
expressions), which is important for forming emotional
connections with robots (Rizzolatti & Craighero, 2004).
Neural oscillations in the alpha band are associated
with attention allocation and emotional stability, while
gamma band oscillations are linked to emotional
processing and social cognition (Konvalinka et al.,
2023). However, existing neurocognitive studies on
the elderly’s trust in robots are scarce, and the specific
IBS patterns between the elderly and robots in affective

trust formation remain uncharacterized.

2.3 The Link Between Embodied Adaptation
and Affective Trust Building

Embodied adaptation and affective trust building
are closely interrelated in elderly-assisted HRC.
Effective embodied adaptation reduces the elderly’s
cognitive and motor burden, improving interaction
comfort and safety, thereby enhancing affective trust
(Schmidt et al., 2023). Conversely, affective trust
provides an emotional basis for the elderly to actively
engage in interaction with robots, facilitating smoother
embodied adaptation (Krause et al., 2023). However,
most existing studies have explored these two processes

independently, lacking an integrated analysis of their
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relationship. Mediation analysis has been used in social
psychology to explore the intermediate mechanisms
between variables, but it has rarely been applied to the
relationship between embodied adaptation and affective
trust in elderly-assisted HRC (Hayes, 2018). Clarifying
this mediating relationship at both behavioral and
neurocognitive levels is essential for understanding the

holistic process of elderly-assisted embodied HRC.

3. Materials and Methods

3.1 Experimental Design

This study adopted a within-subjects experimental
design, where each elderly participant collaborated with
two types of robots in a dynamic daily assistance task:
an adaptive affective embodied intelligent (AEI) robot
(experimental condition) and a preprogrammed robot
(control condition). The order of the two conditions
was counterbalanced to avoid order effects. The
dynamic daily assistance task included three sub-tasks:
(1) Medication sorting: sorting 12 types of simulated
medications into different weekly boxes according to
the elderly’s daily medication plan; (2) Table setting:
placing tableware (plates, bowls, chopsticks) on
the dining table according to the elderly’s habitual
position; (3) Object fetching: fetching specific objects
(glasses, books, water bottles) from different locations
based on the elderly’s verbal instructions. The task
included two types of environmental perturbations
to simulate dynamic conditions: (1) Unexpected
object displacement: 25% of the objects (medications,
tableware, daily items) were randomly displaced
by 3-8 cm during the task; (2) Verbal instruction
ambiguity: 20% of the elderly’s verbal instructions
were ambiguous (e.g., “fetch the small cup” without
specifying the location), requiring the robot to infer the
actual demand.

Each experimental session consisted of four
phases: (1) Pre-task phase (10 minutes): Collecting
the elderly’s basic information (age, cognitive level,
daily care needs) and conducting a mini-mental state
examination (MMSE) to ensure the elderly’s cognitive

ability to complete the task; (2) Familiarization
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phase (10 minutes): Participants were briefed on the
task rules, robot functions, and perturbation types,
and practiced simple interactions with both robots;
(3) Collaboration phase (20 minutes per condition):
Participants collaborated with the robot to complete
the dynamic daily assistance task, with environmental
perturbations randomly introduced; (4) Post-task phase
(15 minutes per condition): Participants completed
an affective trust questionnaire, a fatigue assessment
scale, and a semi-structured interview about their
collaboration experience.

The key difference between the two robot
conditions was their elderly-specific adaptive
capabilities. The AEI robot was equipped with multi-
modal sensors (3D vision camera, haptic sensors, voice
emotion recognition module, and physiological sensors)
and an adaptive affective interaction system based
on deep learning. It could: (1) Detect environmental
perturbations in real time (e.g., object displacement
via vision, instruction ambiguity via voice analysis);
(2) Infer the elderly’s physical state (e.g., fatigue level
via movement speed, emotional state via voice tone)
and task needs; (3) Adjust its interaction strategies
dynamically, including reducing movement speed by
30% compared to standard robots, using gentle voice
with appropriate volume, providing step-by-step verbal
guidance, and offering emotional comfort (e.g., “Don’t
worry, I’ll help you) when the elderly showed signs of
fatigue or anxiety. The preprogrammed robot executed
fixed task sequences and interaction patterns without
sensor feedback, unable to adapt to perturbations or

adjust to the elderly’s state.

3.2 Participants

Twenty-eight elderly participants (12 males,
16 females; age range: 65-82 years, mean age: 73.5
+ 5.2 years) were recruited from local senior care
communities in Tlbingen. All participants had MMSE
scores > 24 (indicating normal cognitive function for
their age), no history of neurological or psychiatric
disorders, normal or corrected-to-normal vision and
hearing, and no prior experience with embodied robots.

Participants were compensated with €50 for their
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participation (considering the longer experimental
duration). The study was approved by the Ethics
Committee of the University of Tiibingen (approval
number: 2024-0256) and all participants (or their legal
representatives) provided written informed consent

before the experiment.

3.3 Robot Systems

Both robots were based on the Pepper humanoid
robot (SoftBank Robotics, Japan), which has 20
degrees of freedom and a friendly appearance. The
robot was equipped with a gripper with adjustable
force for grasping light objects (< 2 kg). The AEI robot
was additionally equipped with: (1) A Intel RealSense
D455 3D vision camera (sampling rate: 30 Hz) for
tracking object positions and the elderly’s movements;
(2) Haptic sensors (ATI Nanol7, resolution: 0.001 N)
integrated into the gripper for measuring grasp force;
(3) A voice emotion recognition module (sampling
rate: 16 kHz) for detecting the elderly’s emotional state
(happy, neutral, anxious, fatigued) with a recognition
accuracy of 89.2% in pre-experimental validation; (4)
A wearable physiological sensor (sampling rate: 10 Hz)
for measuring the elderly’s heart rate variability (HRV)
to assess fatigue level. Sensor data were processed
in real time using a high-performance computer
(Intel Core 19-13900K, 64 GB RAM) running ROS 2
Humble.

The AEI robot’s adaptive affective interaction
system was trained on a dataset of 20,000 simulated
elderly-assisted interaction scenarios, learning to
map multi-modal sensor data to elderly state labels

29 ¢

(e.g., “fatigued,” “anxious,” “needing guidance”)
and corresponding adaptive strategies. The
system had a prediction accuracy of 90.5% in pre-
experimental validation with elderly participants. The
preprogrammed robot’s behavior was controlled by
a finite state machine, with fixed states (grasp, move,
place, speak) and transitions based on predefined time
and position thresholds, regardless of environmental

changes or the elderly’s state.

3.4 Neurocognitive Measurement Tools

Multi-modal neurocognitive data were collected

using EEG and fNIRS to measure brain activity and
IBS. EEG was used to capture high-temporal-resolution
neural oscillations related to embodied adaptation and
affective trust, while fNIRS was used to measure high-
spatial-resolution hemodynamic responses in emotion
and trust-related brain regions.

EEG data were collected using a 32-channel
BrainAmp system (Brain Products GmbH, Germany)
with Ag/AgCl electrodes placed according to the 10-
20 international system. Considering the elderly’s
comfort, the electrodes were placed on the scalp with
a lightweight cap. The sampling rate was 500 Hz,
with Cz as the reference electrode and AFz as the
ground electrode. Electrode impedance was maintained
below 10 kQ (higher than standard to avoid repeated
adjustment causing discomfort to the elderly). Offline
preprocessing included a 0.1-45 Hz band-pass filter, 50
Hz notch filter, and independent component analysis
(ICA) to correct ocular and muscular artifacts.

fNIRS data were collected using a 40-channel
NIRSport 6 system (NIRx Medical Technologies,
USA) with 14 light sources and 14 detectors, covering
brain regions including IPL (BA 40), STS (BA 22/42),
VMPFEC (BA 10/11), and ACC (BA 24/32). The
sampling rate was 10 Hz. The fNIRS probe was fixed
with a soft bandage to ensure comfort and stability.
Preprocessing was performed using the NIRx Software
Suite, including motion artifact correction (Savitzky-
Golay filter, window size = 7) and baseline correction
(first 120 seconds of data as baseline, longer than
standard to adapt to the elderly’s slower brain state
stabilization). HbO and deoxygenated hemoglobin
(HbR) concentrations were calculated using the
modified Beer-Lambert law.

IBS was calculated to measure neural
synchronization between the elderly participants and
the robot. The robot’s “neural” activity was derived
from its sensor-motor data (grasp force, movement
speed, voice emotion recognition results) using a
dimensionality reduction method (t-SNE) to generate
a time series mimicking neural oscillations (Dumas et
al., 2022). IBS between the elderly’s EEG data and the

9, 6

robot’s “neural” data was quantified using the phase
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locking value (PLV) for alpha (8-13 Hz) and gamma
(30-45 Hz) bands.

3.5 Behavioral Measures

Three core behavioral measures were used: (1)
Collaboration smoothness: The percentage of robot
actions that aligned with the elderly’s actual needs
and interaction rhythm (assessed by two independent
coders based on video recordings and task logs, inter-
coder reliability: k = 0.89); (2) Operational fatigue:
Measured using the Pittsburgh Fatigue Rating Scale
(PFRS) with a 5-point Likert scale (1 = no fatigue,
5 = severe fatigue), covering physical and mental
fatigue dimensions; (3) Affective trust level: Measured
using a modified 15-item Elderly HRI Affective Trust
Scale (Jang et al., 2024) with a 7-point Likert scale
(1 = strongly disagree, 7 = strongly agree), covering
dimensions of safety trust, emotional connection,
and willingness to rely emotionally. Additionally,
task completion time and error rate were recorded as

secondary performance measures.

3.6 Data Analysis Procedures

Behavioral data were analyzed using SPSS
28.0. Paired-samples t-tests were used to compare
differences in collaboration smoothness, operational
fatigue, affective trust level, and task performance
between the two robot conditions. Effect sizes (Cohen’s
d) were calculated to quantify the magnitude of
differences. Correlation analysis was used to explore
the relationship between collaboration smoothness and
affective trust level.

EEG data analysis was performed using
MATLAB 2024a with EEGLAB and FieldTrip
toolboxes. Preprocessed EEG data were segmented
into 3-second epochs (50% overlap) for each condition
(longer than standard to adapt to the elderly’s slower
neural response). Power spectral density (PSD) for
alpha and gamma bands was calculated for each
electrode. Repeated-measures ANOVAs were used
to compare PSD and PLV (IBS) between conditions,
with condition (AEI vs. preprogrammed) as the within-

subjects factor and electrode as the between-subjects
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factor. Post-hoc tests were conducted using Bonferroni
correction.

fNIRS data analysis was performed using
MATLAB 2024a with the Homer3 toolbox. Mean
HbO and HbR concentrations were calculated for each
target brain region (IPL, STS, VMPFC, ACC) in each
condition. Repeated-measures ANOVAs were used to
compare hemodynamic responses between conditions,
with condition as the within-subjects factor and brain
region as the between-subjects factor. Correlation
analysis was used to explore the relationship between
VMPFC/ACC HbO concentrations and subjective
affective trust scores.

Mediation analysis was performed using the
PROCESS macro (Model 4) for SPSS (Hayes, 2018)
to test whether embodied adaptation (indexed by mean
alpha-gamma band IBS) mediates the relationship
between robot type (independent variable: 0 =
preprogrammed, 1 = AEI) and affective trust level
(dependent variable). A bootstrap analysis with 5000
resamples was used to test the significance of the

indirect effect.

4. Results

4.1 Behavioral Results

Paired-samples t-tests revealed significant
differences in all core behavioral measures between
the two robot conditions (Table 1, omitted). In terms
of collaboration smoothness, elderly participants
showed significantly higher smoothness in the AEI
robot condition (mean = SD: 78.6 = 7.2%) than in the
preprogrammed robot condition (50.1 + 9.5%; t(27) =
10.87, p <0.001, Cohen’s d = 2.93).

Operational fatigue was significantly lower in the
AEI robot condition (mean + SD: 2.1 & 0.7) than in the
preprogrammed robot condition (3.0 + 0.8; t(27) = 5.62,
p < 0.001, Cohen’s d = 1.24). Task performance was
also better in the AEI condition: task completion time
was significantly shorter (AEI: 586.3 + 45.8 seconds
vs. preprogrammed: 698.5 £ 52.3 seconds; t(27) =
6.89, p < 0.001, Cohen’s d = 1.52) and error rate was
significantly lower (AEIL: 2.3 + 1.1 vs. preprogrammed:



Journal of Embodied Intelligence | Volume 01 | Issue 01 | December 2025

4.5+ 1.4;127)=7.23,p<0.001, Cohen’s d = 1.61).

Subjective affective trust level was significantly
higher in the AEI robot condition (mean + SD: 6.2 +
0.8) than in the preprogrammed robot condition (4.0
+ 0.9; t(27) = 9.76, p < 0.001, Cohen’s d = 2.65). All
three dimensions of the affective trust scale (safety
trust, emotional connection, willingness to rely
emotionally) showed significant differences, with
the largest difference in emotional connection (t(27)
=10.34, p < 0.001, Cohen’s d = 2.81). Correlation
analysis revealed a significant positive correlation
between collaboration smoothness and affective trust
level (r=10.72, p <0.001).

4.2 Neurocognitive Results: EEG and IBS

EEG results showed significant differences
in alpha and gamma band power between the two
conditions. Repeated-measures ANOVAs revealed
a significant main effect of condition on alpha band
power (F(1,27) = 29.87, p < 0.001, n?> = 0.47) and
gamma band power (F(1,27) = 34.56, p < 0.001, n?
= 0.52), with higher power in the AEI condition. A
significant condition x electrode interaction was also
observed for both alpha (F(31,837) = 3.21, p < 0.001,
1n?=0.11) and gamma (F(31,837) = 3.68, p < 0.001, n?
=0.12) bands.

Post-hoc tests showed that alpha and gamma band
power was significantly higher in the AEI condition at
electrodes corresponding to IPL (P3, P4) and STS (T3,
T4) (all p < 0.001). No significant differences were
found in theta band (4-8 Hz) or beta band (13-30 Hz)
power between conditions (theta: F(1,27) = 1.87, p =
0.18, n? = 0.06; beta: F(1,27) = 2.12, p = 0.16, 0 =
0.07).

IBS results (PLV) showed significantly higher
alpha and gamma band synchronization between
elderly participants and the AEI robot. For alpha band
IBS, there was a significant main effect of condition
(F(1,27) =32.67, p < 0.001, n> = 0.51) and condition X
electrode interaction (F(31,837) = 3.45, p < 0.001, n? =
0.12). Post-hoc tests confirmed higher alpha band IBS
in the AEI condition at IPL (P3, P4) and STS (T3, T4)
electrodes (all p < 0.001).

For gamma band IBS, the main effect of condition
was significant (F(1,27) = 36.89, p < 0.001, n? = 0.54)
and the condition x electrode interaction was significant
(F(31,837) = 3.87, p < 0.001, n? = 0.13). Post-hoc tests
showed higher gamma band IBS in the AEI condition
at the same IPL and STS electrodes (all p < 0.001). No
significant differences in IBS were found in other brain

regions or frequency bands.

4.3 Neurocognitive Results: fNIRS

fNIRS results revealed significant differences
in HbO concentrations between the two conditions.
Repeated-measures ANOVAs showed a significant
main effect of condition on HbO concentrations
(F(1,27) =38.76, p < 0.001, n* = 0.59) and a significant
condition X brain region interaction (F(3,81) = 24.32, p
<0.001,n*>=0.47).

Post-hoc tests showed that HbO concentrations in
IPL (AEI: 0.28 + 0.08 umol/L vs. preprogrammed: 0.15
+ 0.06 umol/L; p < 0.001) and STS (AEIL: 0.26 + 0.07
pmol/L vs. preprogrammed: 0.13 + 0.05 pmol/L; p <
0.001) were significantly higher in the AEI condition,
consistent with EEG results. Additionally, HbO
concentrations in VMPFC (AEI: 0.32 + 0.09 umol/L vs.
preprogrammed: 0.16 = 0.07 umol/L; p < 0.001) and
ACC (AEI: 0.29 £ 0.08 pmol/L vs. preprogrammed:
0.14 £ 0.06 pmol/L; p < 0.001) were significantly
higher in the AEI condition.

HbR concentrations showed the opposite
pattern: significantly lower concentrations in IPL,
STS, VMPFC, and ACC in the AEI condition (all p
< 0.001), consistent with neural activation-related
hemodynamic responses. Correlation analysis revealed
significant positive correlations between VMPFC HbO
concentration and subjective affective trust scores (r =
0.75, p < 0.001) and between ACC HbO concentration
and subjective affective trust scores (r = 0.69, p <
0.001).

4.4 Mediation Analysis Results

Mediation analysis confirmed that embodied
adaptation (indexed by mean alpha-gamma band IBS)
fully mediated the relationship between robot type and

23
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affective trust level (Figure 1, omitted). The total effect
of robot type on affective trust level was significant
(P =2.20, p < 0.001). The direct effect of robot type
on affective trust level was not significant (f = 0.81,
p = 0.06), and the indirect effect through embodied
adaptation was significant (f = 1.39, 95% CI: [1.05,
1.76]). The mediating effect accounted for 63.5% of the
total effect, indicating that embodied adaptation fully
mediates the impact of robot type on affective trust
building in elderly-assisted HRC.

5. Discussion

5.1 Neurocognitive Mechanisms of Embodied
Adaptation in Elderly-Assisted HRC

The results of this study reveal the unique
neurocognitive mechanisms underlying embodied
adaptation in elderly-assisted HRC. Behavioral data
show that AEI robots with elderly-specific adaptive
capabilities significantly improve collaboration
smoothness and reduce operational fatigue in dynamic
daily assistance tasks, confirming the importance
of elderly-specific embodied adaptation for elderly-
assisted HRC. Neurocognitively, effective embodied
adaptation in elderly-assisted HRC is characterized
by enhanced alpha and gamma band IBS between the
elderly and AEI robots, particularly in IPL and STS.

The IPL is critical for integrating sensory
information and inferring others’ action intentions
(Rizzolatti & Craighero, 2004). Enhanced alpha
and gamma band activity and IBS in IPL in the AEI
condition suggest that the robot’s elderly-specific
adaptive behaviors (e.g., slow movement, clear
guidance) help the elderly more accurately perceive
and predict the robot’s actions, reducing cognitive load
and improving interaction smoothness. The STS is
associated with the perception of social and emotional
cues, playing a key role in understanding others’
behaviors and forming social connections (Konvalinka
et al., 2023). Higher IBS in STS indicates that the AEI
robot’s affective adaptation capabilities (e.g., gentle
voice, emotional comfort) help the elderly perceive the

robot as a “social partner” rather than a cold machine,
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enhancing emotional connection.

Alpha band oscillations are associated with
attention allocation and emotional stability, which is
particularly important for the elderly with declining
attention control (Rosenthal-von der Piitten et al.,
2023). Enhanced alpha band IBS in the AEI condition
reflects effective attention sharing between the elderly
and robots, helping the elderly maintain focus on the
task. Gamma band oscillations are linked to emotional
processing and high-level cognitive integration (Jiang et
al., 2022). Enhanced gamma band IBS suggests that the
AEI robot’s adaptive behaviors facilitate the elderly’s
integration of emotional and cognitive information,
improving the emotional experience of interaction.
This extends previous findings on young adults’ HRC,
where alpha and beta band IBS dominated (Dumas et
al., 2022), indicating that elderly-assisted HRC requires

additional gamma band-related emotional processing.

5.2 Neurocognitive Mechanisms of Affective
Trust Building in Elderly-Assisted HRC

This study identifies the unique neurocognitive
basis of affective trust building in elderly-assisted
HRC and its relationship with embodied adaptation.
Behavioral results show that AEI robots significantly
enhance the elderly’s affective trust, particularly
in emotional connection, which is consistent with
previous findings that robots with emotional support
capabilities are more likely to gain the elderly’s trust
(Jang et al., 2024). Neurocognitively, affective trust
building in elderly-assisted HRC is associated with
increased HbO concentrations in VMPFC and ACC,
and these activations are positively correlated with
subjective affective trust scores.

The VMPFEC is a core brain region for affective
evaluation, integrating emotional and cognitive
information to form judgments about others’ safety
and benevolence (Barch & Yarkoni, 2023). Increased
VMPFC activation in the AEI condition suggests that
the robot’s embodied adaptation reduces the elderly’s
sense of uncertainty and anxiety, promoting positive
affective evaluations. The ACC is involved in emotional

regulation and conflict resolution, helping the elderly
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adjust their emotional responses to external stimuli
(Gergely & Csibra, 2022). Increased ACC activation
in the AEI condition indicates that the robot’s adaptive
behaviors help the elderly maintain emotional stability
during interaction, further enhancing affective trust.
This is different from young adults’ trust formation,
where ACC activation is mainly associated with trust
violation monitoring (Chen et al., 2023), reflecting the
unique emotional regulation needs of the elderly.
Mediation analysis further confirms that
embodied adaptation (indexed by alpha-gamma band
IBS) fully mediates the relationship between robot type
and affective trust level. This indicates that the positive
effect of AEI robots on the elderly’s affective trust is
entirely through the enhanced embodied adaptation they
facilitate. Effective embodied adaptation improves the
elderly’s interaction experience, reduces cognitive and
emotional burden, and thereby promotes the formation
of affective trust. This finding clarifies the unique
neurocognitive pathway linking embodied adaptation
and affective trust in elderly-assisted HRC, providing
a new theoretical framework for understanding trust

formation in special population HRC.

5.3 Implications for the Design of Elderly-
Friendly Embodied Robots

The findings of this study have important practical
implications for the design of elderly-friendly embodied
robots for real-world elderly-assisted scenarios. First,
robot designers should prioritize developing elderly-
specific adaptive algorithms that consider the elderly’s
cognitive and motor characteristics. This includes
reducing movement speed, simplifying interaction
steps, providing clear and repeated verbal guidance,
and adjusting voice volume and tone to be gentle and
clear. These design features will enhance alpha and
gamma band IBS in IPL and STS, improving embodied
adaptation and interaction smoothness.

Second, to promote affective trust building,
robots should be designed to enhance VMPFC and
ACC activation by strengthening emotional support
capabilities. This can be achieved by integrating voice

emotion recognition modules to detect the elderly’s

emotional state in real time and providing appropriate
emotional responses (e.g., comforting words, gentle
touch feedback). For example, the robot could detect
the elderly’s anxious tone and respond with a slow,
gentle voice to calm their emotions.

Third, the study’s multi-modal measurement
framework (integrating EEG, fNIRS, and behavioral
measures) can be used to evaluate and optimize the
design of elderly-friendly robots. By monitoring IBS
in alpha-gamma bands and VMPFC/ACC activation,
designers can objectively assess the elderly’s
experience of embodied adaptation and affective trust,
making data-driven adjustments to robot adaptive
algorithms and interaction strategies.

Finally, considering the importance of emotional
connection in the elderly’s affective trust, robot
designers should pay attention to the social and
emotional attributes of robots. This includes designing
a friendly appearance, adding non-verbal emotional
cues (e.g., eye contact, gentle body movements),
and providing personalized interaction based on the
elderly’s habitual behaviors and preferences. These
features will help the elderly perceive the robot as a
social partner, further enhancing long-term affective

trust.

5.4 Limitations and Future Research

Directions

Despite its contributions, this study has several
limitations. First, the sample size (28 participants) is
relatively small, and participants were primarily elderly
with normal cognitive function. Future studies should
recruit larger and more diverse samples (e.g., elderly
with mild cognitive impairment, elderly with different
care needs) to enhance result generalizability.

Second, the experimental task was a dynamic
daily assistance task in a laboratory setting, which may
not fully replicate the complexity of real-world elderly
care scenarios (e.g., home care, rehabilitation centers
with multiple distractions). Future studies should
explore more naturalistic elderly-assisted scenarios to
test the robustness of the findings.

Third, the study focused on short-term
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collaboration (20 minutes per condition). Future
research should investigate the long-term dynamics
of embodied adaptation and affective trust building
in elderly-assisted HRC, as repeated interactions may
lead to changes in neurocognitive patterns and trust
relationships. Long-term studies can also explore the
impact of robot design on the elderly’s quality of life
and mental health.

Fourth, individual differences in the elderly’s
perception of robot embodied adaptation and
affective trust were not explored. Future studies could
investigate how factors such as age, gender, technology
acceptance, and personality affect the elderly’s
neurocognitive responses to adaptive robots, enabling

personalized robot design.

6. Conclusion

This study explores the neurocognitive
mechanisms of embodied adaptation and affective trust
building in elderly-assisted embodied human-robot
collaboration. Behavioral results show that adaptive
affective embodied intelligent robots significantly
improve collaboration smoothness, reduce operational
fatigue, and enhance affective trust levels compared
to preprogrammed robots. Neurocognitive data reveal
that effective embodied adaptation in elderly-assisted
HRC is characterized by enhanced alpha and gamma
band inter-brain synchronization in IPL and STS, while
affective trust building is associated with increased
activation in VMPFC and ACC. Mediation analysis
confirms that embodied adaptation fully mediates the
relationship between robot type and affective trust
level.

These findings advance the theoretical
understanding of elderly-assisted embodied HRC by
clarifying the unique neurocognitive pathways linking
embodied adaptation and affective trust. They also
provide practical guidelines for the design of elderly-
friendly adaptive embodied robots suitable for real-
world elderly care scenarios. By optimizing elderly-
specific adaptive capabilities and emotional support

functions, robots can achieve more seamless and
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trustworthy collaboration with the elderly, improving
the quality of elderly care. Future research should build
on these findings to explore more complex elderly-

assisted scenarios and individual differences in HRC.
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