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ABSTRACT
Accurate passenger flow prediction is critical for optimizing urban public transportation operations, improving service 
quality, and reducing passenger waiting times. This study explores the application of three machine learning models—
Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Regression (SVR)—in predicting 
short-term passenger flow of urban bus networks. Using one-month (March 2023) operational data from 50 bus routes in 
Guangzhou, including passenger count, departure time, weather conditions, and holiday information, we evaluate the mo-
dels’ performance through metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean 
Absolute Percentage Error (MAPE). Results show that the GBDT model outperforms the other two: it achieves an MAE 
of 4.21, RMSE of 5.83, and MAPE of 6.78%, which are 18.3% and 25.6% lower in MAE than RF and SVR, respectively. 
The findings provide practical insights for public transportation agencies to adjust vehicle scheduling and improve resour-
ce allocation efficiency.
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1. Introduction

1.1 Research Background
With the rapid expansion of urban populations and 

the increasing demand for sustainable transportation, 
public transportation has become a core component of 
urban mobility systems. However, uneven passenger 
flow distribution—such as sudden surges during rush 
hours or sharp declines on holidays—poses significant 
challenges to transportation operations. For example, 
overcrowding on peak-hour buses leads to poor 
passenger experiences, while empty vehicles during 
off-peak periods waste resources. According to the 
2023 China Urban Public Transportation Development 
Report, the average passenger waiting time at bus 
stops in first-tier cities is 12.8 minutes, and 35% of 
buses operate with occupancy rates exceeding 80% 
during morning rush hours. Short-term passenger flow 
prediction (predicting flow in the next 15–60 minutes) 
can help address these issues by enabling proactive 
adjustments to vehicle departure frequencies and route 
planning.

Traditional prediction methods, such as statistical 
models (e.g., moving average, exponential smoothing), 
rely on linear assumptions and fail to capture the 
complex non-linear relationships between passenger 
flow and influencing factors (e.g., weather, holidays, 
traffic congestion). Machine learning models, by 
contrast, can learn from multi-dimensional data to 
identify hidden patterns, making them more suitable 
for passenger flow prediction. However, few studies 
have systematically compared the performance of tree-
based and kernel-based machine learning models in bus 
passenger flow scenarios, especially in the context of 
Chinese cities with unique traffic characteristics.

1.2 Research Significance
This study contributes to the field in three key 

ways: First, it provides a comprehensive comparison 
of three widely used machine learning models (RF, 
GBDT, SVR) in bus passenger flow prediction, filling 
the gap in existing research that often focuses on a 
single model. Second, it incorporates multiple real-

world influencing factors (e.g., real-time weather, 
public holiday schedules) into the prediction 
framework, improving the practical applicability of 
the models. Third, the case study of Guangzhou’s bus 
network offers valuable insights for transportation 
agencies in other Chinese cities, where similar urban 
and traffic conditions exist. The results can be directly 
used to optimize bus scheduling, reduce operational 
costs, and enhance passenger satisfaction.

1.3 Literature Review
Recent studies have demonstrated the potential 

of machine learning in public transportation passenger 
flow prediction. Wang et al. (2022) used RF to predict 
passenger flow of Beijing’s subway lines, achieving a 
MAPE of 8.2% by incorporating station location and 
time-of-day features. Li et al. (2023) applied GBDT 
to predict bus passenger flow in Shanghai, showing 
that the model outperformed linear regression by 
23% in terms of RMSE. However, these studies have 
limitations: some focus on subway systems (which 
have more stable flow patterns than buses) and others 
ignore critical factors such as weather and road traffic 
conditions.

SVR, a kernel-based model, has been used in 
small-scale passenger flow prediction tasks. Zhang 
et al. (2022) used SVR to predict passenger flow at a 
single bus stop in Chengdu, achieving a MAPE of 9.5%, 
but the model’s performance degraded when applied to 
multiple routes due to its high sensitivity to data scale. 
Tree-based models like RF and GBDT, by contrast, 
handle large-scale data more effectively and are less 
sensitive to noise, but their performance in different 
time periods (e.g., peak vs. off-peak) has not been fully 
explored. This study addresses these limitations by 
comparing all three models across multiple routes and 
time scenarios.

1.4 Research Outline
The rest of the paper is structured as follows: 

Section 2 describes the data collection process, 
including the selection of bus routes, data sources, and 
preprocessing steps. Section 3 introduces the three 
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machine learning models (RF, GBDT, SVR) and their 
adaptation to passenger flow prediction. Section 4 
presents the experimental design, results, and detailed 
analysis. Section 5 concludes the study and proposes 
future research directions.

2. Data Collection and Preprocessing

2.1 Study Area and Bus Routes
The study focuses on 50 bus routes in Guangzhou, 

a major city in southern China with a population of 
over 18 million. The routes were selected to cover 
different urban functional areas, including:

Central Business Districts (CBDs): 15 routes 
passing through Tianhe CBD and Zhujiang New Town, 
characterized by high passenger flow during workdays.

Residential Areas: 20 routes connecting suburban 
residential communities to urban centers, with peak 
flow during morning and evening commutes.

Educational and Medical Zones: 10 routes 
near universities (e.g., Sun Yat-sen University) and 
major hospitals, with fluctuating flow during academic 
semesters and weekends.

Tourist Areas: 5 routes passing through scenic 
spots (e.g., Canton Tower, Chimelong Paradise), with 
high flow during holidays and weekends.

2.2 Data Sources and Features
Data was collected from three main sources 

between March 1, 2023, and March 31, 2023 (31 days), 
covering 24 hours per day:

Bus Operational Data: Provided by Guangzhou 
Public Transportation Group, including real-time 
passenger count (collected via on-board IC card readers 
and infrared sensors), departure time from the starting 
station, and arrival time at key stops. This data was 
sampled at 15-minute intervals to align with the short-
term prediction goal.

Weather Data :  Obtained from the China 
Meteorological Administration, including daily 
precipitation (mm), average temperature (°C), and 
weather type (sunny, rainy, cloudy, foggy).

Temporal and Holiday Data: Compiled from 

official calendars, including time-of-day (morning: 
6:00–9:00, noon: 9:00–12:00, afternoon: 12:00–18:00, 
evening: 18:00–24:00, night: 0:00–6:00), day-of-week 
(workday vs. weekend), and public holidays (e.g., 
Qingming Festival holiday on April 5, 2023, which 
overlapped with the data collection period).

A total of 12 features were used for prediction, as 
listed in Table 1:

Feature 
Category

Feature 
Name Description

Temporal 
Features

Time-of-day
Categorical: morning, 

noon, afternoon, 
evening, night

Day-of-week Binary: 1 (workday), 0 
(weekend/holiday)

Holiday flag Binary: 1 (public holiday), 
0 (non-holiday)

Operational 
Features

Previous 
15-min 

passenger 
flow

Continuous: passenger 
count in the previous 15 

minutes

Previous 
30-min 

passenger 
flow

Continuous: passenger 
count in the previous 30 

minutes

Previous 
45-min 

passenger 
flow

Continuous: passenger 
count in the previous 45 

minutes

Departure 
delay

Continuous: delay 
(minutes) of the bus from 
the scheduled departure 

time

Weather 
Features

Temperature
Continuous: average 

temperature (°C) in the 
current hour

Precipitation Continuous: precipitation 
(mm) in the current hour

Weather type
Categorical: sunny (0), 

cloudy (1), rainy (2), 
foggy (3)

Route 
Features

Route length Continuous: total length 
(km) of the bus route

Number of 
stops

Continuous: total number 
of stops on the bus route
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2.3 Data Preprocessing
Raw data often contains noise and missing values, 

which can affect model performance. The following 
preprocessing steps were applied:

Missing Value Handling: Missing passenger 
flow data (accounting for 3.2% of the total) was filled 
using the average value of the same time period and 
day-of-week in the previous three weeks. For example, 
if passenger flow data for Route 1 at 8:00 on March 10 
(a Friday) was missing, the average of data from 8:00 
on March 3, March 2, and February 24 (all Fridays) 
was used. Missing weather data (0.8% of the total) was 
filled using linear interpolation between adjacent time 
points.

Outlier Detection and Removal: Outliers (e.g., 
passenger flow values exceeding 3 standard deviations 
from the mean) were identified using the Z-score 
method. These outliers (1.5% of the total) were mainly 
caused by equipment malfunctions (e.g., faulty IC card 
readers) and were replaced with the median value of 
the same time period.

Feature Encoding: Categorical features (e.g., 
time-of-day, weather type) were converted to numerical 
values using one-hot encoding. For example, the “time-
of-day” feature was encoded as five binary variables: 
[1,0,0,0,0] for morning, [0,1,0,0,0] for noon, and so on.

Data Normalization: Continuous features (e.g., 
temperature, passenger flow) were normalized to the 
range [0,1] using the min-max scaling method to avoid 
the influence of different units on model training.

After preprocessing, the dataset contained 
148,800 samples (50 routes × 31 days × 96 15-minute 
intervals per day). The dataset was split into training 
(60%), validation (20%), and test (20%) sets using 
a time-based split (training: March 1–18, validation: 
March 19–24, test: March 25–31) to simulate real-
world prediction scenarios where models are trained on 
historical data and tested on future data.

3. Machine Learning Models for 
Passenger Flow Prediction

3.1 Random Forest (RF)
RF is an ensemble learning model that constructs 

multiple decision trees and outputs the average 
prediction (for regression tasks) of all trees. The 
key advantage of RF is its ability to handle high-
dimensional data and avoid overfitting by introducing 
randomness into the tree-building process.

In the context of passenger flow prediction, the 
RF model works as follows: First, multiple bootstrap 
samples (randomly selected subsets of the training data 
with replacement) are generated. For each sample, a 
decision tree is built, and at each split of the tree, a 
random subset of features is considered (rather than 
all features) to reduce correlation between trees. For 
example, when building a tree to predict passenger 
flow, the model might randomly select “previous 15-
min passenger flow” and “temperature” as the features 
for splitting at a certain node. After training all trees, 
the final prediction for a new sample is the average of 
the predictions from all individual trees.

Key hyperparameters of the RF model tuned in 
this study include:

Number of trees: The number of decision trees in 
the ensemble (tuned from 50 to 500, with the optimal 
value set to 200).

Maximum tree depth: The maximum depth of 
each decision tree (tuned from 5 to 30, with the optimal 
value set to 15) to prevent overfitting.

Minimum samples per leaf: The minimum number 
of samples required to be at a leaf node (tuned from 1 
to 20, with the optimal value set to 5) to ensure each 
leaf has sufficient data to make reliable predictions.

3.2 Gradient Boosting Decision Tree (GBDT)
GBDT is another ensemble learning model that 

builds decision trees sequentially, where each new 
tree corrects the errors of the previous trees. Unlike 
RF, which uses parallel training of independent trees, 
GBDT uses a boosting approach to focus on samples 
that were previously mispredicted, leading to higher 
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prediction accuracy in many cases.
For passenger flow prediction, the GBDT model 

starts with a simple initial model (e.g., a constant value 
equal to the average passenger flow of the training 
data). For each subsequent tree, the model calculates 
the residual (difference between the actual passenger 
flow and the predicted flow from the existing ensemble) 
and trains a new tree to predict these residuals. The 
new tree is then added to the ensemble with a learning 
rate (a small weight) to control the contribution of each 
tree. This process is repeated until the number of trees 
reaches a predefined limit or the residual error stops 
decreasing.

Key hyperparameters of the GBDT model tuned 
in this study include:

Number of trees: Tuned from 50 to 500, with the 
optimal value set to 250.

Learning rate: The weight of each new tree (tuned 
from 0.01 to 0.3, with the optimal value set to 0.1) to 
balance model accuracy and overfitting.

Maximum tree depth: Tuned from 3 to 20, with 
the optimal value set to 10 to avoid complex trees that 
overfit to the training data.

3.3 Support Vector Regression (SVR)
SVR is a kernel-based regression model that 

maps input data into a high-dimensional feature space 
using a kernel function and finds a hyperplane that 
minimizes the prediction error while maximizing the 
margin between the hyperplane and the data points. 
SVR is particularly effective for handling non-linear 
relationships between features and the target variable.

In passenger flow prediction, SVR works by 
transforming the input features (e.g., time-of-day, 
weather) into a high-dimensional space where a linear 
regression model can be applied. The kernel function 
used in this study is the Radial Basis Function (RBF), 
which is widely used for non-linear tasks due to its 
flexibility. The RBF kernel measures the similarity 
between two samples and allows the model to capture 
complex patterns in the passenger flow data.

Key hyperparameters of the SVR model tuned in 
this study include:

C (regularization parameter): Controls the trade-
off between minimizing the prediction error and 
keeping the model simple (tuned from 0.1 to 100, with 
the optimal value set to 10). A larger C value focuses 
more on reducing training error, which may lead to 
overfitting.

Gamma (kernel coefficient): Determines the 
influence of a single training sample (tuned from 0.001 
to 1, with the optimal value set to 0.1). A larger gamma 
value means samples closer to the test point have a 
stronger influence on the prediction.

Epsilon (insensitive loss parameter): Defines the 
range of prediction errors that are considered acceptable 
(tuned from 0.01 to 1, with the optimal value set to 0.2). 
Errors within this range do not contribute to the loss 
function.

4. Experimental Results and Analysis

4.1 Experimental Setup
All models were implemented using Python 

3.9 and the scikit-learn library. The experimental 
environment included an Intel Core i7-12700H CPU, 
32 GB RAM, and an NVIDIA GeForce RTX 3060 
GPU. The models were trained using the training set, 
and hyperparameters were tuned using 5-fold cross-
validation on the validation set. The performance of 
the models was evaluated on the test set using three 
metrics:

Mean Absolute Error (MAE): Measures the 
average absolute difference between predicted and 
actual passenger flow, providing a straightforward 
measure of prediction error.

Root Mean Squared Error (RMSE): Measures 
the square root of the average squared difference 
between predicted and actual flow, penalizing larger 
errors more heavily than MAE.

Mean Absolute Percentage Error (MAPE): 
Measures the average percentage difference between 
predicted and actual flow, making it easy to compare 
performance across different routes with varying flow 
magnitudes.
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4.2 Overall Performance Comparison
Table 2 shows the overall performance of the 

three models on the test set:

Model MAE RMSE MAPE (%)

RF 5.15 7.02 8.29

GBDT 4.21 5.83 6.78

SVR 5.65 7.68 9.13

As shown in  Tab le  2 ,  the  GBDT mode l 
outperforms RF and SVR across all metrics.

GBDT’s MAE is 18.3% lower than RF (5.15 vs. 
4.21) and 25.6% lower than SVR (5.65 vs. 4.21), while 
its RMSE is 17.0% lower than RF (7.02 vs. 5.83) and 
24.1% lower than SVR (7.68 vs. 5.83). The MAPE 
of GBDT is also the lowest at 6.78%, which is 1.51 
and 2.35 percentage points lower than RF and SVR, 
respectively. This superior performance of GBDT can 
be attributed to its sequential tree-building mechanism: 
by focusing on correcting the errors of previous trees, 
GBDT effectively captures the non-linear relationships 
between passenger flow and influencing factors (e.g., 
the combined impact of rainy weather and morning 
rush hour on passenger volume). In contrast, RF’s 
parallel tree structure, while robust to overfitting, may 
miss subtle error patterns that GBDT identifies. SVR, 
on the other hand, struggles with the large-scale, multi-
dimensional dataset used in this study—its kernel 
function becomes less efficient when processing high-
volume data, leading to higher prediction errors.

4.3 Performance in Different Time Periods
To further evaluate the models’ adaptability to 

temporal variations in passenger flow, we analyzed 
their performance across five time periods: morning 

rush (6:00–9:00), noon (9:00–12:00), afternoon 
(12:00–18:00), evening rush (18:00–21:00), and night 
(21:00–6:00). The results are presented in Table 3:

Time Period Model MAE RMSE MAPE (%)

Morning Rush

RF 5.89 7.92 9.15

GBDT 4.72 6.53 7.48

SVR 6.43 8.56 10.02

Noon

RF 4.92 6.78 7.83

GBDT 4.01 5.56 6.35

SVR 5.37 7.21 8.64

Afternoon

RF 5.03 6.85 8.01

GBDT 4.15 5.72 6.62

SVR 5.49 7.33 8.87

Evening Rush

RF 6.02 8.11 9.37

GBDT 4.85 6.74 7.69

SVR 6.58 8.79 10.25

Night

RF 3.21 4.56 5.12

GBDT 2.89 3.98 4.67

SVR 3.65 5.02 5.89

Key Observations:
Rush Hour Performance: All models exhibit 

the highest prediction errors during morning and 
evening rushes. This is because rush-hour passenger 
flow is highly variable—affected by factors such as 
traffic congestion, last-minute commuting changes, 
and school drop-off/pick-up activities. Even so, GBDT 
maintains its advantage: during morning rush, its 
MAE is 19.9% lower than RF and 26.6% lower than 
SVR; during evening rush, the reductions are 19.4% 
and 26.3%, respectively. GBDT’s ability to learn error 
patterns from previous trees allows it to better adapt 
to the sudden flow surges (e.g., a 30% increase in 
passengers at a stop due to a delayed subway line) that 
are common during rushes.

Night Performance: Prediction errors are 
significantly lower at night, as passenger flow is sparse 
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and stable (most buses carry fewer than 10 passengers 
per interval). GBDT still outperforms the other models, 
but the performance gap narrows: its MAE is only 
9.9% lower than RF and 20.8% lower than SVR. This 
suggests that in scenarios with low flow variability, 
simpler models like RF may be sufficient, as the 
additional complexity of GBDT provides minimal 
accuracy gains.

4.4 Performance Across Different Urban 
Areas

We also compared the models’ performance across 
the four urban functional areas (CBDs, residential 
areas, educational/medical zones, tourist areas) to 
assess their adaptability to different flow patterns. The 
results are shown in Table 4:

Urban Area Model MAE RMSE MAPE 
(%)

CBDs

RF 5.76 7.68 8.93

GBDT 4.63 6.35 7.28

SVR 6.29 8.34 9.87

Residential 
Areas

RF 5.23 7.15 8.42

GBDT 4.31 5.92 6.85

SVR 5.78 7.83 9.26

Educational/
Medical Zones

RF 4.89 6.67 7.95

GBDT 4.05 5.48 6.43

SVR 5.32 7.01 8.58

Tourist Areas

RF 6.35 8.42 9.78

GBDT 5.12 6.98 8.01

SVR 6.91 9.05 10.53

Key Observations:
Tourist Areas: The highest prediction errors 

occur in tourist areas, where passenger flow is highly 
dependent on external factors (e.g., weather, special 

events, tourist season). For example, a sunny weekend 
can increase passenger flow by 50% compared to a 
rainy weekday. GBDT’s MAE is 19.4% lower than 
RF and 25.9% lower than SVR, highlighting its ability 
to model the unpredictable flow patterns in tourist 
zones. This is because GBDT can integrate multiple 
influencing factors (e.g., “sunny weather + weekend = 
high tourist flow”) more effectively than RF or SVR.

Educational/Medical Zones: These zones 
have relatively stable flow patterns (e.g., peak flow 
near hospitals during morning appointments, near 
universities during class breaks), leading to lower 
prediction errors. GBDT still performs best, but the gap 
with RF is smaller (MAE 17.2% lower) than in tourist 
areas.

4.5 Feature Importance Analysis
To understand which factors most influence 

passenger flow prediction, we analyzed the feature 
importance of the GBDT model (tree-based models 
naturally provide insights into feature relevance). The 
results are shown in Figure 1 (description of feature 
importance ranking, as visual figures are not embedded 
in text):

The top five most important features are:
Previous 15-min passenger flow (importance 

score: 0.28): Historical passenger flow in the most 
recent interval is the strongest predictor, as short-term 
flow tends to be continuous (e.g., high flow at 8:00 is 
likely to persist at 8:15).

Time-of-day (importance score: 0.21): Temporal 
patterns (e.g., rush hours vs. off-peak) directly 
determine flow magnitude, making this feature critical 
for capturing daily cycles.

Departure delay (importance score: 0.15): 
Bus delays often lead to passenger accumulation at 
stops (e.g., a 10-minute delay can double the number 
of waiting passengers), so this feature helps predict 
sudden flow surges.

Weather type (importance score: 0.12): Rainy 
or foggy weather reduces walking willingness, leading 
to higher bus ridership; sunny weather may increase 
private car use, reducing bus flow.
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Day-of-week (importance score: 0.09): Workdays 
have higher commuter flow, while weekends have 
higher leisure-related flow, making this feature key for 
distinguishing weekly patterns.

Less important features include “route length” 
(score: 0.04) and “number of stops” (score: 0.03), 
as these static route attributes have minimal impact 
on short-term flow variations. This analysis provides 
practical guidance for feature selection in future 
studies: focusing on the top five features can reduce 
model complexity without significant accuracy loss.

5. Conclusion and Future Work

5.1 Conclusion
This  s tudy sys temat ica l ly  compared the 

performance of three machine learning models (RF, 
GBDT, SVR) in short-term bus passenger flow 
prediction using a large-scale dataset from Guangzhou. 
The key findings are:

M o d e l  P e r f o r m a n c e  R a n k i n g :  G B D T 
outperforms RF and SVR across all evaluation metrics, 
time periods, and urban areas. Its ability to sequentially 
correct prediction errors allows it to capture the 
non-linear relationships between passenger flow 
and influencing factors (e.g., weather, delays) more 
effectively than the other models. GBDT achieves an 
overall MAE of 4.21, RMSE of 5.83, and MAPE of 
6.78%, making it the most suitable model for practical 
bus flow prediction.

Scenario Adaptability: All models perform best 
at night (low flow variability) and worst in tourist 
areas (unpredictable flow) and during rush hours (high 
variability). GBDT’s advantage is most pronounced 
in high-variability scenarios, while RF becomes more 
competitive in low-variability scenarios due to its lower 
computational cost.

Key Influencing Factors: Historical short-term 
flow (previous 15 minutes) and temporal attributes 
(time-of-day) are the most critical predictors of 
passenger flow. Incorporating real-time factors like 
departure delay and weather type further improves 
prediction accuracy.

The practical implications of these findings are:
Tr a n s p o r t a t i o n  O p e r a t i o n s :  P u b l i c 

transportation agencies can use the GBDT model 
to predict short-term passenger flow and adjust bus 
scheduling (e.g., increasing departure frequency during 
predicted high-flow intervals) to reduce overcrowding 
and waiting times.

Resource Allocation: In low-variability scenarios 
(e.g., night routes), agencies can use RF instead of 
GBDT to reduce computational costs while maintaining 
acceptable accuracy.

Feature Collection: Prioritizing the collection of 
real-time data (e.g., recent flow, departure delays) over 
static route data (e.g., route length) can optimize data 
collection efforts.

5.2 Future Work
This study can be extended in four directions:
Incorporating Real-Time Traffic Data: Future 

research can integrate real-time road traffic data (e.g., 
congestion levels on bus routes) into the prediction 
framework. Traffic congestion often delays buses and 
alters passenger flow (e.g., passengers may switch to 
alternative routes), so adding this feature could further 
improve GBDT’s accuracy.

Exploring Deep Learning Models: While this 
study focused on traditional machine learning models, 
deep learning models like Long Short-Term Memory 
(LSTM) or Graph Neural Networks (GNNs) may 
better capture long-term temporal dependencies (e.g., 
weekly flow patterns) or spatial correlations (e.g., flow 
between interconnected bus routes). Comparing these 
models with GBDT could identify new performance 
benchmarks.

Dynamic Prediction Horizons: This study 
focused on 15-minute predictions, but transportation 
agencies may need predictions for shorter (5-minute) 
or longer (30-minute) horizons. Future work can 
evaluate model performance across different horizons 
and develop adaptive models that adjust the prediction 
window based on real-time conditions.

Multi-Modal Data Fusion: Integrating data from 
other transportation modes (e.g., subway delays, ride-



Mathematical Methods in Data Science  | Volume 01 | Issue 01 | December 2025

9

hailing availability) could improve prediction accuracy. 
For example, a subway delay may lead to a sudden 
increase in bus ridership, so incorporating subway data 
would help the model anticipate such surges.
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A p p e n d i x :  S u p p l e m e n t a r y 
Experimental Details

To enhance the reproducibility and transparency 
of this study, this appendix provides additional details 
about the experimental setup, data samples, and model 
implementation.

A.1 Model Training Environment and 
Implementation

All models were implemented using Python 3.9, 
with the following key libraries and versions:

Sc ik i t - l ea rn  1 .2 .2  ( fo r  RF,  GBDT,  SVR 
implementation and hyperparameter tuning)

Pandas 1.5.3 (for  data  manipulat ion and 

preprocessing)
NumPy 1.24.3 (for numerical computations)
Matplot l ib 3.7.1 (for  feature importance 

visualization)
The computational environment included:
CPU: Intel Core i7-12700H (2.30 GHz, 14 cores, 

20 threads)
GPU: NVIDIA GeForce RTX 3060 (6 GB 

VRAM) – used for accelerating SVR’s kernel 
computations

RAM: 32 GB DDR4-3200
Operating System: Windows 11 Pro (22H2)
Training times for the models (on the 60% 

training set, 5-fold cross-validation) were:
RF: ~45 minutes (200 trees, maximum depth 15)
GBDT: ~60 minutes (250 trees, learning rate 0.1, 

maximum depth 10)
SVR:  ~90  minu te s  (C=10 ,  gamma=0 .1 , 

epsilon=0.2, RBF kernel)

A.2 Data Sample Example
Table A1 shows a sample of the preprocessed 

dataset (5 rows) to illustrate the feature structure and 
target variable (passenger flow in the next 15 minutes):

Pre-
vious 
15-
min 
Flow

Pre-
vious 

30-min 
Flow

Pre-
vious 
45-
min 
Flow

Depar-
ture 

Delay 

(min)

Tem-
pera-
ture 

(°C)

Pre-
cipi-

tation 

(mm)

Weath-
er Type 

(0=Sunny, 
1=Cloudy, 
2=Rainy, 
3=Foggy)

Route 
Length 

(km)

Num-
ber of 
Stops

Time-of-Day 
(One-Hot: 

Morning, Noon, 
Afternoon, Eve-

ning, Night)

Day-of-
Week 

(1=Work-
day, 

0=Week-
end)

Holiday 
Flag 

(1=Holiday, 
0=Non-Hol-

iday)

Target: 
Next 

15-min 
Flow

28 26 24 2 25.3 0 0 12.5 22 [1, 0, 0, 0, 0] 1 0 30

15 18 20 0 23.8 0 1 8.7 15 [0, 1, 0, 0, 0] 1 0 16

42 38 35 5 21.5 5.2 2 15.3 28 [0, 0, 1, 0, 0] 0 0 39

35 39 41 3 19.2 0 0 10.2 20 [0, 0, 0, 1, 0] 1 0 37

8 10 12 1 16.7 0 1 6.5 12 [0, 0, 0, 0, 1] 0 1 7
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A.3 Hyperparameter Tuning Details
Hyperparameter tuning was performed using 

5-fold cross-validation on the validation set, with 

the goal of minimizing MAE. The tuning ranges and 
optimal values for each model are summarized in Table 
A2:

Model Hyperparameter Tuning Range Optimal Value Reason for Optimal Selection

RF Number of trees 50, 100, 200, 
300, 500 200

200 trees balanced accuracy (MAE=4.32) 
and computational cost; 300+ trees showed 
minimal accuracy gain (MAE=4.28) but 
50% higher training time.

Maximum depth 5, 10, 15, 20, 30 15
Depth 15 avoided overfitting (validation 
MAE=4.32 vs. 4.89 at depth 30) while cap-
turing sufficient feature interactions.

Min samples per 
leaf 1, 5, 10, 15, 20 5 5 samples per leaf reduced noise from out-

liers (MAE=4.32 vs. 4.56 at 1 sample).

GBDT Number of trees 50, 100, 200, 
250, 300 250

250 trees achieved the lowest validation 
MAE (4.21); 300 trees led to overfitting 
(MAE=4.35).

Learning rate 0.01, 0.05, 0.1, 
0.2, 0.3 0.1 0.1 balanced convergence speed (100 ep-

ochs to reach minimum MA


