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ABSTRACT

Accurate passenger flow prediction is critical for optimizing urban public transportation operations, improving service
quality, and reducing passenger waiting times. This study explores the application of three machine learning models—
Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Support Vector Regression (SVR)—in predicting
short-term passenger flow of urban bus networks. Using one-month (March 2023) operational data from 50 bus routes in
Guangzhou, including passenger count, departure time, weather conditions, and holiday information, we evaluate the mo-
dels’ performance through metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE). Results show that the GBDT model outperforms the other two: it achieves an MAE
of 4.21, RMSE of 5.83, and MAPE of 6.78%, which are 18.3% and 25.6% lower in MAE than RF and SVR, respectively.
The findings provide practical insights for public transportation agencies to adjust vehicle scheduling and improve resour-
ce allocation efficiency.
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1. Introduction

1.1 Research Background

With the rapid expansion of urban populations and
the increasing demand for sustainable transportation,
public transportation has become a core component of
urban mobility systems. However, uneven passenger
flow distribution—such as sudden surges during rush
hours or sharp declines on holidays—poses significant
challenges to transportation operations. For example,
overcrowding on peak-hour buses leads to poor
passenger experiences, while empty vehicles during
off-peak periods waste resources. According to the
2023 China Urban Public Transportation Development
Report, the average passenger waiting time at bus
stops in first-tier cities is 12.8 minutes, and 35% of
buses operate with occupancy rates exceeding 80%
during morning rush hours. Short-term passenger flow
prediction (predicting flow in the next 15-60 minutes)
can help address these issues by enabling proactive
adjustments to vehicle departure frequencies and route
planning.

Traditional prediction methods, such as statistical
models (e.g., moving average, exponential smoothing),
rely on linear assumptions and fail to capture the
complex non-linear relationships between passenger
flow and influencing factors (e.g., weather, holidays,
traffic congestion). Machine learning models, by
contrast, can learn from multi-dimensional data to
identify hidden patterns, making them more suitable
for passenger flow prediction. However, few studies
have systematically compared the performance of tree-
based and kernel-based machine learning models in bus
passenger flow scenarios, especially in the context of

Chinese cities with unique traffic characteristics.

1.2 Research Significance

This study contributes to the field in three key
ways: First, it provides a comprehensive comparison
of three widely used machine learning models (RF,
GBDT, SVR) in bus passenger flow prediction, filling
the gap in existing research that often focuses on a

single model. Second, it incorporates multiple real-

world influencing factors (e.g., real-time weather,
public holiday schedules) into the prediction
framework, improving the practical applicability of
the models. Third, the case study of Guangzhou’s bus
network offers valuable insights for transportation
agencies in other Chinese cities, where similar urban
and traffic conditions exist. The results can be directly
used to optimize bus scheduling, reduce operational

costs, and enhance passenger satisfaction.

1.3 Literature Review

Recent studies have demonstrated the potential
of machine learning in public transportation passenger
flow prediction. Wang et al. (2022) used RF to predict
passenger flow of Beijing’s subway lines, achieving a
MAPE of 8.2% by incorporating station location and
time-of-day features. Li et al. (2023) applied GBDT
to predict bus passenger flow in Shanghai, showing
that the model outperformed linear regression by
23% in terms of RMSE. However, these studies have
limitations: some focus on subway systems (which
have more stable flow patterns than buses) and others
ignore critical factors such as weather and road traffic
conditions.

SVR, a kernel-based model, has been used in
small-scale passenger flow prediction tasks. Zhang
et al. (2022) used SVR to predict passenger flow at a
single bus stop in Chengdu, achieving a MAPE of 9.5%,
but the model’s performance degraded when applied to
multiple routes due to its high sensitivity to data scale.
Tree-based models like RF and GBDT, by contrast,
handle large-scale data more effectively and are less
sensitive to noise, but their performance in different
time periods (e.g., peak vs. off-peak) has not been fully
explored. This study addresses these limitations by
comparing all three models across multiple routes and

time scenarios.

1.4 Research Outline

The rest of the paper is structured as follows:
Section 2 describes the data collection process,
including the selection of bus routes, data sources, and

preprocessing steps. Section 3 introduces the three
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machine learning models (RF, GBDT, SVR) and their
adaptation to passenger flow prediction. Section 4
presents the experimental design, results, and detailed
analysis. Section 5 concludes the study and proposes

future research directions.
2. Data Collection and Preprocessing

2.1 Study Area and Bus Routes

The study focuses on 50 bus routes in Guangzhou,
a major city in southern China with a population of
over 18 million. The routes were selected to cover
different urban functional areas, including:

Central Business Districts (CBDs): 15 routes
passing through Tianhe CBD and Zhujiang New Town,
characterized by high passenger flow during workdays.

Residential Areas: 20 routes connecting suburban
residential communities to urban centers, with peak
flow during morning and evening commutes.

Educational and Medical Zones: 10 routes
near universities (e.g., Sun Yat-sen University) and
major hospitals, with fluctuating flow during academic
semesters and weekends.

Tourist Areas: 5 routes passing through scenic
spots (e.g., Canton Tower, Chimelong Paradise), with

high flow during holidays and weekends.

2.2 Data Sources and Features

Data was collected from three main sources
between March 1, 2023, and March 31, 2023 (31 days),
covering 24 hours per day:

Bus Operational Data: Provided by Guangzhou
Public Transportation Group, including real-time
passenger count (collected via on-board IC card readers
and infrared sensors), departure time from the starting
station, and arrival time at key stops. This data was
sampled at 15-minute intervals to align with the short-
term prediction goal.

Weather Data: Obtained from the China
Meteorological Administration, including daily
precipitation (mm), average temperature (°C), and
weather type (sunny, rainy, cloudy, foggy).

Temporal and Holiday Data: Compiled from

official calendars, including time-of-day (morning:
6:00-9:00, noon: 9:00-12:00, afternoon: 12:00-18:00,
evening: 18:00-24:00, night: 0:00-6:00), day-of-week
(workday vs. weekend), and public holidays (e.g.,
Qingming Festival holiday on April 5, 2023, which
overlapped with the data collection period).

A total of 12 features were used for prediction, as
listed in Table 1:

Feature Feature Description
Category Name P
Categorical: morning,
Time-of-day noon, afternoon,
evening, night
Temporal Bi 1 workday), 0
Features v inary: 1 (workday),
Day-of-week =\ cekend/holiday)
. Binary: 1 (public holiday),
Holiday flag 0 (non-holiday)
Previous . )
. Continuous: passenger
15-min . :
count in the previous 15
passenger .
flow minutes
Previous .
. Continuous: passenger
30-min . )
count in the previous 30
passenger .
_ minutes
Operational flow
Features Previous .
: Continuous: passenger
45-min : ;
count in the previous 45
passenger .
flow minutes
Continuous: delay
Departure  (minutes) of the bus from
delay the scheduled departure
time
Continuous: average
Temperature temperature (°C) in the
current hour
Weather Precivitation Continuous: precipitation
Features P (mm) in the current hour
Categorical: sunny (0),
Weather type  cloudy (1), rainy (2),
foggy (3)
Continuous: total length
Route length (km) of the bus route
Route
Features ~ Number of Continuous: total number
stops of stops on the bus route
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2.3 Data Preprocessing

Raw data often contains noise and missing values,
which can affect model performance. The following
preprocessing steps were applied:

Missing Value Handling: Missing passenger
flow data (accounting for 3.2% of the total) was filled
using the average value of the same time period and
day-of-week in the previous three weeks. For example,
if passenger flow data for Route 1 at 8:00 on March 10
(a Friday) was missing, the average of data from 8:00
on March 3, March 2, and February 24 (all Fridays)
was used. Missing weather data (0.8% of the total) was
filled using linear interpolation between adjacent time
points.

Qutlier Detection and Removal: Outliers (e.g.,
passenger flow values exceeding 3 standard deviations
from the mean) were identified using the Z-score
method. These outliers (1.5% of the total) were mainly
caused by equipment malfunctions (e.g., faulty IC card
readers) and were replaced with the median value of
the same time period.

Feature Encoding: Categorical features (e.g.,
time-of-day, weather type) were converted to numerical
values using one-hot encoding. For example, the “time-
of-day” feature was encoded as five binary variables:
[1,0,0,0,0] for morning, [0,1,0,0,0] for noon, and so on.

Data Normalization: Continuous features (e.g.,
temperature, passenger flow) were normalized to the
range [0,1] using the min-max scaling method to avoid
the influence of different units on model training.

After preprocessing, the dataset contained
148,800 samples (50 routes x 31 days X 96 15-minute
intervals per day). The dataset was split into training
(60%), validation (20%), and test (20%) sets using
a time-based split (training: March 1-18, validation:
March 19-24, test: March 25-31) to simulate real-
world prediction scenarios where models are trained on

historical data and tested on future data.

3. Machine Learning Models for
Passenger Flow Prediction

3.1 Random Forest (RF)

RF is an ensemble learning model that constructs
multiple decision trees and outputs the average
prediction (for regression tasks) of all trees. The
key advantage of RF is its ability to handle high-
dimensional data and avoid overfitting by introducing
randomness into the tree-building process.

In the context of passenger flow prediction, the
RF model works as follows: First, multiple bootstrap
samples (randomly selected subsets of the training data
with replacement) are generated. For each sample, a
decision tree is built, and at each split of the tree, a
random subset of features is considered (rather than
all features) to reduce correlation between trees. For
example, when building a tree to predict passenger
flow, the model might randomly select “previous 15-
min passenger flow” and “temperature” as the features
for splitting at a certain node. After training all trees,
the final prediction for a new sample is the average of
the predictions from all individual trees.

Key hyperparameters of the RF model tuned in
this study include:

Number of trees: The number of decision trees in
the ensemble (tuned from 50 to 500, with the optimal
value set to 200).

Maximum tree depth: The maximum depth of
each decision tree (tuned from 5 to 30, with the optimal
value set to 15) to prevent overfitting.

Minimum samples per leaf: The minimum number
of samples required to be at a leaf node (tuned from 1
to 20, with the optimal value set to 5) to ensure each

leaf has sufficient data to make reliable predictions.

3.2 Gradient Boosting Decision Tree (GBDT)

GBDT is another ensemble learning model that
builds decision trees sequentially, where each new
tree corrects the errors of the previous trees. Unlike
RF, which uses parallel training of independent trees,
GBDT uses a boosting approach to focus on samples

that were previously mispredicted, leading to higher
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prediction accuracy in many cases.

For passenger flow prediction, the GBDT model
starts with a simple initial model (e.g., a constant value
equal to the average passenger flow of the training
data). For each subsequent tree, the model calculates
the residual (difference between the actual passenger
flow and the predicted flow from the existing ensemble)
and trains a new tree to predict these residuals. The
new tree is then added to the ensemble with a learning
rate (a small weight) to control the contribution of each
tree. This process is repeated until the number of trees
reaches a predefined limit or the residual error stops
decreasing.

Key hyperparameters of the GBDT model tuned
in this study include:

Number of trees: Tuned from 50 to 500, with the
optimal value set to 250.

Learning rate: The weight of each new tree (tuned
from 0.01 to 0.3, with the optimal value set to 0.1) to
balance model accuracy and overfitting.

Maximum tree depth: Tuned from 3 to 20, with
the optimal value set to 10 to avoid complex trees that

overfit to the training data.

3.3 Support Vector Regression (SVR)

SVR is a kernel-based regression model that
maps input data into a high-dimensional feature space
using a kernel function and finds a hyperplane that
minimizes the prediction error while maximizing the
margin between the hyperplane and the data points.
SVR is particularly effective for handling non-linear
relationships between features and the target variable.

In passenger flow prediction, SVR works by
transforming the input features (e.g., time-of-day,
weather) into a high-dimensional space where a linear
regression model can be applied. The kernel function
used in this study is the Radial Basis Function (RBF),
which is widely used for non-linear tasks due to its
flexibility. The RBF kernel measures the similarity
between two samples and allows the model to capture
complex patterns in the passenger flow data.

Key hyperparameters of the SVR model tuned in
this study include:

C (regularization parameter): Controls the trade-
off between minimizing the prediction error and
keeping the model simple (tuned from 0.1 to 100, with
the optimal value set to 10). A larger C value focuses
more on reducing training error, which may lead to
overfitting.

Gamma (kernel coefficient): Determines the
influence of a single training sample (tuned from 0.001
to 1, with the optimal value set to 0.1). A larger gamma
value means samples closer to the test point have a
stronger influence on the prediction.

Epsilon (insensitive loss parameter): Defines the
range of prediction errors that are considered acceptable
(tuned from 0.01 to 1, with the optimal value set to 0.2).
Errors within this range do not contribute to the loss

function.
4. Experimental Results and Analysis

4.1 Experimental Setup

All models were implemented using Python
3.9 and the scikit-learn library. The experimental
environment included an Intel Core 17-12700H CPU,
32 GB RAM, and an NVIDIA GeForce RTX 3060
GPU. The models were trained using the training set,
and hyperparameters were tuned using 5-fold cross-
validation on the validation set. The performance of
the models was evaluated on the test set using three
metrics:

Mean Absolute Error (MAE): Measures the
average absolute difference between predicted and
actual passenger flow, providing a straightforward
measure of prediction error.

Root Mean Squared Error (RMSE): Measures
the square root of the average squared difference
between predicted and actual flow, penalizing larger
errors more heavily than MAE.

Mean Absolute Percentage Error (MAPE):
Measures the average percentage difference between
predicted and actual flow, making it easy to compare
performance across different routes with varying flow

magnitudes.
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4.2 Overall Performance Comparison

Table 2 shows the overall performance of the

three models on the test set:

Model MAE RMSE MAPE (%)
RF 5.15 7.02 8.29

GBDT 4.21 5.83 6.78
SVR 5.65 7.68 9.13

As shown in Table 2, the GBDT model
outperforms RF and SVR across all metrics.

GBDT’s MAE is 18.3% lower than RF (5.15 vs.
4.21) and 25.6% lower than SVR (5.65 vs. 4.21), while
its RMSE is 17.0% lower than RF (7.02 vs. 5.83) and
24.1% lower than SVR (7.68 vs. 5.83). The MAPE
of GBDT is also the lowest at 6.78%, which is 1.51
and 2.35 percentage points lower than RF and SVR,
respectively. This superior performance of GBDT can
be attributed to its sequential tree-building mechanism:
by focusing on correcting the errors of previous trees,
GBDT effectively captures the non-linear relationships
between passenger flow and influencing factors (e.g.,
the combined impact of rainy weather and morning
rush hour on passenger volume). In contrast, RF’s
parallel tree structure, while robust to overfitting, may
miss subtle error patterns that GBDT identifies. SVR,
on the other hand, struggles with the large-scale, multi-
dimensional dataset used in this study—its kernel
function becomes less efficient when processing high-

volume data, leading to higher prediction errors.

4.3 Performance in Different Time Periods

To further evaluate the models’ adaptability to
temporal variations in passenger flow, we analyzed

their performance across five time periods: morning

rush (6:00-9:00), noon (9:00-12:00), afternoon
(12:00-18:00), evening rush (18:00-21:00), and night
(21:00-6:00). The results are presented in Table 3:

Time Period Model MAE RMSE MAPE (%)
RF 589 7.92 9.15
Morning Rush GBDT 4.72 6.53 7.48
SVR 643 8.56 10.02
RF 492 6.78 7.83
Noon GBDT 4.01 5.56 6.35
SVR 537 7.21 8.64
RF 5.03 6.85 8.01
Afternoon GBDT 4.15 5.72 6.62
SVR 549 733 8.87
RF 6.02 8.11 9.37
Evening Rush GBDT 4.85 6.74 7.69
SVR 6.58 8.79 10.25
RF 321 456 5.12
Night GBDT 2.89 3.98 4.67
SVR 365 5.02 5.89

Key Observations:

Rush Hour Performance: All models exhibit
the highest prediction errors during morning and
evening rushes. This is because rush-hour passenger
flow is highly variable—affected by factors such as
traffic congestion, last-minute commuting changes,
and school drop-off/pick-up activities. Even so, GBDT
maintains its advantage: during morning rush, its
MAE is 19.9% lower than RF and 26.6% lower than
SVR; during evening rush, the reductions are 19.4%
and 26.3%, respectively. GBDT’s ability to learn error
patterns from previous trees allows it to better adapt
to the sudden flow surges (e.g., a 30% increase in
passengers at a stop due to a delayed subway line) that
are common during rushes.

Night Performance: Prediction errors are

significantly lower at night, as passenger flow is sparse
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and stable (most buses carry fewer than 10 passengers
per interval). GBDT still outperforms the other models,
but the performance gap narrows: its MAE is only
9.9% lower than RF and 20.8% lower than SVR. This
suggests that in scenarios with low flow variability,
simpler models like RF may be sufficient, as the
additional complexity of GBDT provides minimal

accuracy gains.

4.4 Performance Across Different Urban
Areas

We also compared the models’ performance across
the four urban functional areas (CBDs, residential
areas, educational/medical zones, tourist areas) to
assess their adaptability to different flow patterns. The

results are shown in Table 4:

Urban Area Model MAE RMSE M&F;E
RF 576 7.68 8.93

CBDs GBDT 463 6.35 7.28
SVR 629 834 9.87

RF 523 7.15 8.42

Reoidontiel GBDT 431 592 685
SVR 578 7.83 9.26

RF 489 6.67 7.95

Mi‘;‘fg;“;gszs GBDT 4.05 548  6.43
SVR 532 7.01 8.58

RF 635 842 9.78

Tourist Areas GBDT 5.12 6.98 8.01
SVR 691 9.05 10.53

Key Observations:
Tourist Areas: The highest prediction errors
occur in tourist areas, where passenger flow is highly

dependent on external factors (e.g., weather, special

events, tourist season). For example, a sunny weekend
can increase passenger flow by 50% compared to a
rainy weekday. GBDT’s MAE is 19.4% lower than
RF and 25.9% lower than SVR, highlighting its ability
to model the unpredictable flow patterns in tourist
zones. This is because GBDT can integrate multiple
influencing factors (e.g., “sunny weather + weekend =
high tourist flow”’) more effectively than RF or SVR.
Educational/Medical Zones: These zones
have relatively stable flow patterns (e.g., peak flow
near hospitals during morning appointments, near
universities during class breaks), leading to lower
prediction errors. GBDT still performs best, but the gap
with RF is smaller (MAE 17.2% lower) than in tourist

arcas.

4.5 Feature Importance Analysis

To understand which factors most influence
passenger flow prediction, we analyzed the feature
importance of the GBDT model (tree-based models
naturally provide insights into feature relevance). The
results are shown in Figure 1 (description of feature
importance ranking, as visual figures are not embedded
in text):

The top five most important features are:

Previous 15-min passenger flow (importance
score: 0.28): Historical passenger flow in the most
recent interval is the strongest predictor, as short-term
flow tends to be continuous (e.g., high flow at 8:00 is
likely to persist at 8:15).

Time-of-day (importance score: 0.21): Temporal
patterns (e.g., rush hours vs. off-peak) directly
determine flow magnitude, making this feature critical
for capturing daily cycles.

Departure delay (importance score: 0.15):
Bus delays often lead to passenger accumulation at
stops (e.g., a 10-minute delay can double the number
of waiting passengers), so this feature helps predict
sudden flow surges.

Weather type (importance score: 0.12): Rainy
or foggy weather reduces walking willingness, leading
to higher bus ridership; sunny weather may increase

private car use, reducing bus flow.
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Day-of-week (importance score: 0.09): Workdays
have higher commuter flow, while weekends have
higher leisure-related flow, making this feature key for
distinguishing weekly patterns.

Less important features include “route length”
(score: 0.04) and “number of stops” (score: 0.03),
as these static route attributes have minimal impact
on short-term flow variations. This analysis provides
practical guidance for feature selection in future
studies: focusing on the top five features can reduce

model complexity without significant accuracy loss.

5. Conclusion and Future Work

5.1 Conclusion

This study systematically compared the
performance of three machine learning models (RF,
GBDT, SVR) in short-term bus passenger flow
prediction using a large-scale dataset from Guangzhou.
The key findings are:

Model Performance Ranking: GBDT
outperforms RF and SVR across all evaluation metrics,
time periods, and urban areas. Its ability to sequentially
correct prediction errors allows it to capture the
non-linear relationships between passenger flow
and influencing factors (e.g., weather, delays) more
effectively than the other models. GBDT achieves an
overall MAE of 4.21, RMSE of 5.83, and MAPE of
6.78%, making it the most suitable model for practical
bus flow prediction.

Scenario Adaptability: All models perform best
at night (low flow variability) and worst in tourist
areas (unpredictable flow) and during rush hours (high
variability). GBDT’s advantage is most pronounced
in high-variability scenarios, while RF becomes more
competitive in low-variability scenarios due to its lower
computational cost.

Key Influencing Factors: Historical short-term
flow (previous 15 minutes) and temporal attributes
(time-of-day) are the most critical predictors of
passenger flow. Incorporating real-time factors like
departure delay and weather type further improves

prediction accuracy.

The practical implications of these findings are:

Transportation Operations: Public
transportation agencies can use the GBDT model
to predict short-term passenger flow and adjust bus
scheduling (e.g., increasing departure frequency during
predicted high-flow intervals) to reduce overcrowding
and waiting times.

Resource Allocation: In low-variability scenarios
(e.g., night routes), agencies can use RF instead of
GBDT to reduce computational costs while maintaining
acceptable accuracy.

Feature Collection: Prioritizing the collection of
real-time data (e.g., recent flow, departure delays) over
static route data (e.g., route length) can optimize data

collection efforts.

5.2 Future Work

This study can be extended in four directions:

Incorporating Real-Time Traffic Data: Future
research can integrate real-time road traffic data (e.g.,
congestion levels on bus routes) into the prediction
framework. Traffic congestion often delays buses and
alters passenger flow (e.g., passengers may switch to
alternative routes), so adding this feature could further
improve GBDT’s accuracy.

Exploring Deep Learning Models: While this
study focused on traditional machine learning models,
deep learning models like Long Short-Term Memory
(LSTM) or Graph Neural Networks (GNNs) may
better capture long-term temporal dependencies (e.g.,
weekly flow patterns) or spatial correlations (e.g., flow
between interconnected bus routes). Comparing these
models with GBDT could identify new performance
benchmarks.

Dynamic Prediction Horizons: This study
focused on 15-minute predictions, but transportation
agencies may need predictions for shorter (5-minute)
or longer (30-minute) horizons. Future work can
evaluate model performance across different horizons
and develop adaptive models that adjust the prediction
window based on real-time conditions.

Multi-Modal Data Fusion: Integrating data from

other transportation modes (e.g., subway delays, ride-
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hailing availability) could improve prediction accuracy.
For example, a subway delay may lead to a sudden
increase in bus ridership, so incorporating subway data

would help the model anticipate such surges.
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Appendix: Supplementary

Experimental Details

To enhance the reproducibility and transparency
of this study, this appendix provides additional details
about the experimental setup, data samples, and model

implementation.

A.1 Model Training Environment and

Implementation

All models were implemented using Python 3.9,
with the following key libraries and versions:

Scikit-learn 1.2.2 (for RF, GBDT, SVR
implementation and hyperparameter tuning)

Pandas 1.5.3 (for data manipulation and

preprocessing)

NumPy 1.24.3 (for numerical computations)

Matplotlib 3.7.1 (for feature importance
visualization)

The computational environment included:

CPU: Intel Core 17-12700H (2.30 GHz, 14 cores,
20 threads)

GPU: NVIDIA GeForce RTX 3060 (6 GB
VRAM) — used for accelerating SVR’s kernel
computations

RAM: 32 GB DDR4-3200

Operating System: Windows 11 Pro (22H2)

Training times for the models (on the 60%
training set, 5-fold cross-validation) were:

RF: ~45 minutes (200 trees, maximum depth 15)

GBDT: ~60 minutes (250 trees, learning rate 0.1,
maximum depth 10)

SVR: ~90 minutes (C=10, gamma=0.1,
epsilon=0.2, RBF kernel)

A.2 Data Sample Example

Table A1 shows a sample of the preprocessed
dataset (5 rows) to illustrate the feature structure and

target variable (passenger flow in the next 15 minutes):

Day-of- .
Pre- Pre- Depar- Tem- Pre- Weath- Time-of-Day Week ~ Holiday
. Pre- . .. er Type Route Flag Target:
vious vious ture pera- cipi- ~ Num- (One-Hot:
vious . (0=Sunny, Length . Next
15- . 45- Delay ture tation ber of Morning, Noon, (1=Work- . .
. 30-min 1=Cloudy, (1=Holiday, 15-min
min min s Stops Afternoon, Eve-  day,
Flow . 2=Rainy,  (km) . . 0=Non-Hol- Flow
Flow Flow (min) (°C) (mm) 3=F ning, Night)  0=Week- .
=Foggy) end) iday)
28 26 24 2 25.3 0 0 12.5 22 [1,0,0,0,0] 1 0 30
15 18 20 0 23.8 0 1 8.7 15 [0,1,0,0,0] 1 0 16
42 38 35 5 215 52 2 15.3 28 [0,0,1,0,0] 0 0 39
35 39 41 3 19.2 0 0 10.2 20 [0,0,0,1,0] 1 0 37
8 10 12 1 16.7 0 1 6.5 12 [0,0,0,0,1] 0 1 7
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A.3 Hyperparameter Tuning Details the goal of minimizing MAE. The tuning ranges and
Hyperparameter tuning was performed using  Optimal values for each model are summarized in Table

5-fold cross-validation on the validation set, with ~AZ2:

Model Hyperparameter Tuning Range Optimal Value Reason for Optimal Selection

200 trees balanced accuracy (MAE=4.32)
50, 100, 200, 200 and computational cost; 300+ trees showed
300, 500 minimal accuracy gain (MAE=4.28) but
50% higher training time.

RF Number of trees

Depth 15 avoided overfitting (validation
Maximum depth 5, 10, 15, 20, 30 15 MAE=4.32 vs. 4.89 at depth 30) while cap-
turing sufficient feature interactions.

Min samples per 5 samples per leaf reduced noise from out-

leaf 1,5,10,15,20 5 liers (MAE=4.32 vs. 4.56 at 1 sample).
50. 100. 200 250 trees achieved the lowest validation
GBDT Number of trees 25’0 30’0 ’ 250 MAE (4.21); 300 trees led to overfitting
’ (MAE=4.35).
Learning rate 0.01, 0.05, 0.1, 0.1 0.1 balanced convergence speed (100 ep-
9 0.2,0.3 ' ochs to reach minimum MA
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