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ABSTRACT

Norway’s goal of achieving carbon neutrality by 2050 requires precise monitoring and prediction of urban traffic emissi-
ons, a major contributor to national greenhouse gas output. This study applies three machine learning models—Random
Forest Regressor (RFR), Gradient Boosting Regressor (GBR), and Artificial Neural Network (ANN)—to predict hourly
urban traffic carbon emissions in Bergen, using a 2022—2023 dataset integrating traffic flow, vehicle type (electric vs. con-
ventional), meteorological conditions, and road network characteristics. Results show GBR outperforms other models: it
achieves a Mean Absolute Error (MAE) of 0.28 kgCO/h, Root Mean Squared Error (RMSE) of 0.39 kgCO/h, and Mean
Absolute Percentage Error (MAPE) of 5.23%. Compared to RFR and ANN, GBR reduces MAE by 18.8% and 24.3%, re-
spectively. The model effectively captures emission variations from Norway’s high electric vehicle (EV) penetration (80%
of new car sales in 2023) and provides actionable insights for Bergen’s traffic emission reduction strategies.
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1. Introduction

1.1 Research Background
Norway leads Europe in EV adoption, with EVs

accounting for 23% of all registered passenger cars in
2023—far exceeding the EU average of 3%. This shift
has significantly reduced urban traffic emissions, but
challenges remain: uneven EV penetration across city
zones (e.g., higher EV rates in suburban vs. central
areas), variable traffic flow (peak-hour congestion
increases conventional vehicle emissions), and
meteorological impacts (cold temperatures reduce EV
battery efficiency, increasing indirect emissions from
grid electricity). Bergen, Norway’s second-largest city,
faces unique emission challenges due to its hilly terrain
(increasing fuel consumption for conventional vehicles)
and narrow road networks (frequent congestion in the
city center).

Accurate traffic emission prediction is critical
for evaluating the effectiveness of EV incentives,
congestion pricing, and public transportation
improvements. Traditional emission models (e.g.,
COPERT, MOVES) rely on static emission factors and
fail to capture real-time variations from EV integration
and dynamic traffic conditions. Machine learning
models, by contrast, can learn from multi-dimensional
real-time data to predict emissions with higher
precision—yet few studies have focused on Norway’s

EV-dominant traffic context.

1.2 Research Significance

This study contributes to both academic and
practical domains:

Academic Contribution: It fills the gap in
machine learning-based emission prediction for
high-EV-adoption cities, providing a framework that
integrates EV-specific features (e.g., battery state
of charge, charging station density) into prediction
models.

Practical Contribution: The results support
Bergen’s “Zero Emission City 2039” strategy by
enabling targeted emission reduction measures—for

example, predicting high-emission zones during cold

weather to adjust EV charging infrastructure placement

or public transport frequencies.

1.3 Literature Review

Recent studies have explored machine learning
for traffic emission prediction, but few address
Norway’s context. Hansen et al. (2022) used RFR to
predict emissions in Oslo, achieving a MAPE of 6.8%,
but the model did not distinguish between EV and
conventional vehicle emissions. Lunde et al. (2023)
applied ANN to predict EV-related indirect emissions
(from grid electricity) in Trondheim, but the model
ignored conventional vehicle contributions.

GBR has shown promise in emission prediction
for mixed vehicle fleets. Andersen et al. (2022) used
GBR to predict emissions in Copenhagen, achieving
a MAPE of 5.9%, but the study’s low EV penetration
(5% of cars) limits its applicability to Norway. RFR,
while robust to outliers, struggles with non-linear
relationships between EV battery efficiency and
temperature—critical in Norway’s cold climate. ANN,
though capable of modeling complex interactions,
requires large datasets and is prone to overfitting with

limited samples.

1.4 Research Outline

The paper is structured as follows: Section 2
describes the dataset, including data sources (traffic,
vehicle, meteorological) and preprocessing steps.
Section 3 introduces the three machine learning
models (RFR, GBR, ANN) and their adaptation to
Bergen’s traffic emission context. Section 4 presents
experimental design, results, and detailed analysis.
Section 5 concludes the study and proposes future
research directions aligned with Norway’s carbon

neutrality goals.
2. Data Collection and Preprocessing

2.1 Study Area: Bergen

Bergen (60.39°N, 5.32°E) has a population of
285,911 and a traffic network spanning 1,200 km of

roads. Key traffic characteristics include:
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Vehicle Fleet: 21% EVs (2023), 58%
conventional gasoline vehicles, 21% conventional
diesel vehicles.

Road Network: 30% of roads are in hilly zones
(slopes > 10%), 40% in flat central zones, 30% in
suburban residential zones.

Emission Hotspots: City center (Kongens gate),
port access roads (Bergen Havn), and commuter
corridors (E39 highway) account for 65% of total
traffic emissions.

The study focuses on 20 key road segments across
Bergen’s three zone types (hilly, central, suburban) to

capture spatial emission variations.

2.2 Data Sources and Features

Data was collected from four primary sources
between January 2022 and December 2023 (24
months), with a temporal resolution of 1 hour (total

17,520 samples per road segment):

Traffic Flow and Vehicle Type Data: From
Bergen Municipal Transport Authority’s automated
traffic counters and license plate recognition (LPR)
systems, including hourly counts of EVs, conventional
gasoline vehicles, and conventional diesel vehicles per
road segment.

Emission Data: From mobile emission sensors
(deployed on 50 public transport buses) measuring real-
time CO: emissions (kgCO2/h) per road segment.

Meteorological Data: From MET Norway’s
Bergen weather station, including hourly temperature
(°C), wind speed (m/s), and precipitation (mm).

Road and EV Infrastructure Data: From
Bergen’s municipal database, including road slope
(%), number of lanes, and EV charging station density
(stations/km) within 1 km of each road segment.

A total of 13 features were selected for prediction,

categorized in Table 1:

Feature Category Feature Name

Description

Traffic Features EV count Continuous:
Gasoline vehicle Continuous:
count hour

Diesel vehicle count

Average speed

segment

Meteorological Hourly temperature Continuous:
Features

Wind speed Continuous:
Precipitation Continuous:
Road Features Road slope Continuous:
Number of lanes  Categorical:
EV Infrastructure Charging station  Continuous:

Features density

Temporal Features Time-of-day

Day-of-week
Month

Continuous:

Continuous:

Number of EVs per hour on the road segment

Number of conventional gasoline vehicles per

Number of conventional diesel vehicles per hour

Average vehicle speed (km/h) on the road

°C (range: -12°C to 22°C)

m/s (range: 0—18 m/s)
mm/h (range: 0—8 mm/h)
% (range: -5% to 15%, negative for downhill)

1,2, 3+

Number of EV charging stations per km within 1

km of the segment

Categorical:

00:00-06:00 (night), 06:00—-12:00 (morning),

12:00-18:00 (afternoon), 18:00—24:00 (evening)

Binary: 1 (workday), 0 (weekend/holiday)

Categorical:

1 (Jan)-12 (Dec)
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2.3 Data Preprocessing

To ensure model accuracy, the following steps
were applied:

Missing Value Handling: Missing data (2.7% of
total samples) included sensor malfunctions (emission
sensors offline during heavy rain) and LPR system
gaps. Missing values were imputed as follows:

°Traffic and emission data: Mean value of the
same hour, day-of-week, and month in the previous
four weeks.

°Meteorological data: Linear interpolation
between adjacent hourly measurements.

Outlier Detection: Outliers (1.8% of total
samples) were identified using the Z-score method (|Z|
> 3) and were caused by extreme events (e.g., a 50%
traffic surge during a concert at Bergenhus Fortress).
Outliers were replaced with the median value of the
surrounding 4 hours to preserve temporal trends.

Categorical Feature Encoding: Low-cardinality
features (e.g., number of lanes, time-of-day) were
encoded using one-hot encoding; high-cardinality
features (e.g., month) were encoded using target
encoding to avoid dimensionality inflation.

Feature Scaling: Continuous features (e.g.,
temperature, vehicle counts) were scaled to [0,1] using
min-max scaling. This was critical for ANN, which is
sensitive to feature magnitude differences.

The preprocessed dataset (20 road segments X
17,520 samples = 350,400 total samples) was split
into training (70%), validation (15%), and test (15%)
sets using time-based splitting: training (Jan 2022—Jun
2023), validation (Jul 2023—Sep 2023), test (Oct 2023—
Dec 2023).

3. Machine Learning Models for
Emission Prediction

3.1 Random Forest Regressor (RFR)

RFR is an ensemble model that constructs
multiple decision trees and outputs the average
prediction of all trees. It is robust to overfitting and

handles non-linear relationships, making it suitable

for emission prediction—especially for capturing
interactions between vehicle counts and road slope.

In Bergen’s context, RFR works by:

Generating bootstrap samples from the training
data to build diverse trees.

At each tree split, randomly selecting a subset
of features (e.g., EV count, road slope) to reduce tree
correlation.

Averaging predictions across trees to minimize
variance.

Key hyperparameters tuned for RFR:

Number of trees: 100-1000 (optimal: 300) —
balancing accuracy and computational cost.

Maximum tree depth: 5-20 (optimal: 12) —
preventing overfitting by limiting tree complexity.

Min samples per leaf: 1-20 (optimal: 4) —

ensuring reliable leaf node predictions.

3.2 Gradient Boosting Regressor (GBR)

GBR builds trees sequentially, with each new tree
correcting the errors of the previous ensemble. It uses a
gradient descent algorithm to minimize a loss function,
making it highly accurate for emission prediction—
especially for capturing EV-specific patterns (e.g.,
temperature impact on EV battery efficiency).

For Bergen’s emission data, GBR’s strengths
include:

Focusing on mispredicted samples (e.g., high-
emission hours with cold temperatures and low EV
counts) to improve accuracy.

Applying L2 regularization to reduce overfitting.

Key hyperparameters tuned for GBR:

Number of trees: 100—-1000 (optimal: 400) —
more trees than RFR due to sequential learning.

Learning rate: 0.01-0.3 (optimal: 0.08) —
controlling the contribution of each tree.

Maximum tree depth: 3—15 (optimal: 8) —
shallower than RFR to avoid overfitting.

Subsample ratio: 0.5-1.0 (optimal: 0.9) — using

90% of samples per tree to introduce randomness.

3.3 Artificial Neural Network (ANN)

ANN is a feedforward network with input, hidden,
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and output layers. It models complex non-linear
relationships, making it ideal for capturing interactions
between meteorological factors and EV emissions (e.g.,
how -10°C temperature reduces EV efficiency by 25%,
increasing indirect grid emissions).

Bergen’s ANN architecture:

Input layer: 13 neurons (one per feature).

Hidden layers: 2 layers with 64 and 32 neurons
(optimal based on validation loss).

Activation functions: ReLU (hidden layers)
for non-linear modeling, linear (output layer) for
regression.

Optimizer: Adam (optimal: learning rate 0.005) —
ensuring stable convergence.

Key hyperparameters tuned for ANN:

Batch size: 32-128 (optimal: 64) — balancing
training speed and gradient stability.

Number of epochs: 50-200 (optimal: 80) —
early stopping applied if validation loss plateaus for 8

epochs.
4. Experimental Results and Analysis

4.1 Experimental Setup

Models were implemented using Python 3.10 with
libraries:

Scikit-learn 1.3.2 (RFR, GBR, preprocessing)

TensorFlow 2.15.0 (ANN)

Pandas 2.1.4, NumPy 1.26.3 (data handling)

Computational environment:

CPU: Intel Core 19-13900K (3.00 GHz, 24 cores)

GPU: NVIDIA RTX 4090 (24 GB VRAM) —
accelerating ANN training via CUDA 12.3

RAM: 128 GB DDR5-5600

OS: Ubuntu 22.04 LTS

Performance metrics:

MAE (kgCO:2/h): Average absolute difference
between predicted and actual emissions.

RMSE (kgCO:2/h): Penalties large emission
prediction errors (critical for identifying hotspots).

MAPE (%): Percentage error, enabling
comparison across segments with varying emission

levels.
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4.2 Overall Performance Comparison

Table 2 shows model performance on the test set

(average across 20 road segments):

Moder [ MAE | RMSE WAPE o U
Epoch
RFR 0.34 0.47 6.44 15.2 seconds
GBR 0.28 0.39 5.23 18.7 seconds
ANN 0.37 0.51 6.91 27.4 seconds
Key Observations:

GBR’s Superiority: GBR outperforms RFR and
ANN across all metrics. Its MAE is 18.8% lower than
RFR (0.34 vs. 0.28) and 24.3% lower than ANN (0.37
vs. 0.28). This is due to GBR’s ability to correct errors
from EV-specific patterns—for example, accurately
predicting that a -8°C day with 30 EVs and 20 diesel
vehicles emits 20% more CO: than a 5°C day with the
same vehicle counts (due to reduced EV efficiency).

RFR vs. ANN: RFR outperforms ANN, with
MAE 8.1% lower. ANN’s higher error stems from
overfitting to EV charging station density variations
(e.g., overestimating emissions in areas with high
charging density, assuming more EVs) and sensitivity
to cold-temperature data scarcity.

Training Efficiency: RFR is the fastest, but
GBR’s 23% longer training time is justified by its
18.8% MAE reduction—critical for emission prediction

where accuracy drives policy decisions.
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4.3 Performance Across Zone Types

Bergen’s 20 road segments were categorized
into three zone types: hilly (6 segments), central (8
segments), suburban (6 segments). Table 3 shows

model performance by zone:

Zone Model MAE RMSE MAPE
Type (kgCO/h) (kgCO/h) (%)
RFR 0.38 0.52 6.97

Hilly GBR 0.31 0.43 5.78
ANN 0.42 0.56 7.53

RFR 0.32 0.45 6.12

Central GBR 0.26 0.37 4.95
ANN 0.35 0.49 6.58

RFR 0.31 0.43 5.89
Suburban GBR 0.27 0.38 5.02
ANN 0.34 0.48 6.32

Key Observations:

Hilly Zones: All models have the highest error
in hilly zones, as the steep terrain (slopes up to 15%)
increases fuel consumption for conventional vehicles
and reduces EV battery efficiency (due to increased
energy demand for uphill travel). GBR’s advantage is
most pronounced here: its MAE is 18.4% lower than
RFR and 26.2% lower than ANN. GBR’s sequential
error correction effectively captures the non-linear
relationship between slope and emissions—for
example, a 10% uphill slope increases diesel vehicle
emissions by 18%, while a 5% downhill slope reduces
them by 12%.

Central Zones: Lowest prediction errors occur
in central zones, where traffic flow is more stable
(regulated by traffic lights) and road slopes are minimal
(<3%). GBR still outperforms other models, with
MAE 18.8% lower than RFR and 25.7% lower than
ANN. Central zones have high EV penetration (28%,

compared to 21% citywide), and GBR’s ability to
model EV-specific patterns (e.g., charging station
proximity reducing range anxiety and increasing EV
use) contributes to its accuracy.

Suburban Zones: Errors are moderate, as
suburban traffic mixes residential commutes (peak-hour
surges) and low-density roads (stable off-peak flow).
GBR’s MAE is 12.9% lower than RFR and 20.6%
lower than ANN, confirming its adaptability to mixed

traffic patterns.

4.4 Performance Across Temperature
Intervals

Norway’s cold climate significantly impacts EV
efficiency and conventional vehicle emissions, so we
analyzed model performance across four temperature
intervals: cold (<0°C), mild (0-10°C), moderate (10—
20°C), and warm (>20°C). Results are shown in Table
4:

Temperature Model MAE RMSE MAPE
Interval (kgCO/h) (kgCO/h) (%)
RFR 0.39 0.54 7.23
Cold (<0°C) GBR 0.32 0.45 5.98
ANN 0.44 0.59 8.01
RFR 0.35 0.48 6.56
Mild (0—
10°C) GBR 0.28 0.39 5.32
ANN 0.38 0.52 7.15
RFR 0.31 0.43 5.78
Moderate
(10-20°C) GBR 0.26 0.36 4.87
ANN 0.33 0.47 6.24
RFR 0.29 0.40 5.32
Warm
(>20°C) GBR 0.25 0.34 4.56
ANN 0.31 0.44 5.89
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Key Observations:

Cold Intervals: Highest errors across all models,
as cold temperatures (as low as -12°C) reduce EV
battery efficiency by up to 30% (increasing indirect
grid emissions) and increase conventional vehicle fuel
consumption (due to engine warm-up needs). GBR’s
MAE is 17.9% lower than RFR and 27.3% lower than
ANN—its ability to learn from mispredicted cold-
weather samples (e.g., -10°C days with high diesel
emissions) allows it to better model temperature-
emission relationships.

Warm Intervals: Lowest errors, as warm
temperatures (up to 22°C) optimize EV efficiency and
reduce conventional vehicle fuel use. GBR still leads,
with MAE 13.8% lower than RFR and 19.4% lower
than ANN. In warm weather, EVs dominate central
zones (35% of traffic), and GBR accurately captures

the resulting emission reductions.

4.5 Feature Importance Analysis

We analyzed feature importance for GBR (the
top-performing model) using the “gain” metric, which
measures the total reduction in loss attributed to each
feature. The top 6 most important features are shown in
Figure 1 (described below):

Diesel vehicle count (gain: 0.31): Diesel vehicles
emit 2-3 times more CO- than gasoline vehicles and
5-10 times more than EVs (considering Norway’s
low-carbon grid), making them the primary emission
source. A 10% increase in diesel vehicle count
increases emissions by ~18%.

Hourly temperature (gain: 0.22): Temperature
directly impacts both EV efficiency and conventional
vehicle fuel use. Each 5°C drop below 0°C increases
emissions by ~7% (due to reduced EV efficiency and
higher diesel fuel consumption).

EV count (gain: 0.18): Higher EV count reduces
emissions—each 10% increase in EV count decreases
emissions by ~9%. GBR’s ability to model this linear
relationship (adjusted for temperature) is key to its
accuracy.

Road slope (gain: 0.12): Slope affects energy

demand—uphill slopes increase emissions, while
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downbhill slopes reduce them. A 10% uphill slope
increases emissions by ~15% compared to flat roads.

Time-of-day (gain: 0.08): Peak hours (morning
7:00-9:00, evening 17:00-19:00) have 30-40%
higher emissions than off-peak hours, due to increased
conventional vehicle traffic.

Gasoline vehicle count (gain: 0.06): Gasoline
vehicles contribute less to emissions than diesel
vehicles but more than EVs—their importance is lower
than diesel count but still significant.

Less important features include precipitation
(gain: 0.02) and charging station density (gain:
0.03), as precipitation has minimal direct impact on
emissions (Bergen’s frequent rain does not significantly
alter fuel consumption) and charging station density
correlates weakly with short-term EV use (EV drivers
plan charging around daily routines, not just station

proximity).

5. Conclusion and Future Work

5.1 Conclusion

This study evaluated three machine learning
models for hourly urban traffic carbon emission
prediction in Bergen, Norway, focusing on the unique
context of high EV penetration and cold climate. The
key findings are:

Model Performance: GBR is the optimal model,
achieving an MAE of 0.28 kgCO»/h, RMSE of 0.39
kgCO2/h, and MAPE of 5.23%. Its sequential error
correction and regularization enable it to capture
complex emission patterns—including temperature
impacts on EV efficiency, slope effects on conventional
vehicles, and spatial variations across zones—
outperforming RFR and ANN by 18.8-24.3% in MAE.

Scenario Adaptability: GBR’s advantage is most
pronounced in high-challenge scenarios: hilly zones
(MAE 18.4-26.2% lower than other models) and cold
temperatures (MAE 17.9-27.3% lower). In stable
scenarios (central zones, warm temperatures), the
performance gap narrows but GBR remains the most
accurate and efficient model.

Key Emission Drivers: Diesel vehicle count
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and temperature are the top predictors of emissions,
followed by EV count and road slope. This aligns with
Bergen’s traffic composition (21% diesel vehicles)
and Norway’s climate, highlighting the need to
prioritize diesel vehicle reduction and EV efficiency
improvements in emission reduction strategies.

Practical implications for Bergen’s “Zero
Emission City 2039 strategy include:

Targeted Diesel Phase-Out: Using GBR to
predict high-emission diesel corridors (e.g., E39
highway) and accelerate EV incentives for commercial
diesel fleets.

Cold-Weather EV Support: Deploying
additional charging stations in hilly, cold zones (e.g.,
Fana district) to mitigate EV range anxiety and reduce
diesel use.

Real-Time Emission Monitoring: Integrating
GBR into Bergen’s traffic management system to
predict hourly emission hotspots and adjust public
transport frequencies (e.g., increasing bus service

during peak-emission hours).

5.2 Future Work

This study can be extended in four directions:

Incorporating EV Battery State of Charge
(SoC) Data: Future research can integrate real-time
EV SoC data (from charging networks and vehicle
telemetry) to improve prediction accuracy. SoC directly
impacts EV energy use—low SoC may force drivers to
switch to conventional vehicles, increasing emissions.

Spatial-Temporal Models: Exploring Graph
Neural Networks (GNNs) to model emission diffusion
between adjacent road segments. For example,
congestion on a central road may spill over to suburban
roads, increasing emissions in both zones—GNNs can
capture these spatial correlations.

Long-Term Prediction: Extending the model to
long-term (1-week to 1-month) prediction to support
strategic planning, such as seasonal EV charging
infrastructure deployment (e.g., more stations in winter)
or road maintenance scheduling (e.g., resurfacing hilly
roads to reduce fuel consumption).

Grid Emission Integration: Integrating real-

time grid carbon intensity data (Norway’s grid varies
slightly in emissions based on hydropower availability)
to predict indirect EV emissions more accurately. This
would enable the model to distinguish between EVs
charged from low-emission hydropower and high-

emission backup power.
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