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ABSTRACT
Norway’s goal of achieving carbon neutrality by 2050 requires precise monitoring and prediction of urban traffic emissi-
ons, a major contributor to national greenhouse gas output. This study applies three machine learning models—Random 
Forest Regressor (RFR), Gradient Boosting Regressor (GBR), and Artificial Neural Network (ANN)—to predict hourly 
urban traffic carbon emissions in Bergen, using a 2022–2023 dataset integrating traffic flow, vehicle type (electric vs. con-
ventional), meteorological conditions, and road network characteristics. Results show GBR outperforms other models: it 
achieves a Mean Absolute Error (MAE) of 0.28 kgCO/h, Root Mean Squared Error (RMSE) of 0.39 kgCO/h, and Mean 
Absolute Percentage Error (MAPE) of 5.23%. Compared to RFR and ANN, GBR reduces MAE by 18.8% and 24.3%, re-
spectively. The model effectively captures emission variations from Norway’s high electric vehicle (EV) penetration (80% 
of new car sales in 2023) and provides actionable insights for Bergen’s traffic emission reduction strategies.
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1. Introduction

1.1 Research Background
Norway leads Europe in EV adoption, with EVs 

accounting for 23% of all registered passenger cars in 
2023—far exceeding the EU average of 3%. This shift 
has significantly reduced urban traffic emissions, but 
challenges remain: uneven EV penetration across city 
zones (e.g., higher EV rates in suburban vs. central 
areas), variable traffic flow (peak-hour congestion 
increases conventional vehicle emissions), and 
meteorological impacts (cold temperatures reduce EV 
battery efficiency, increasing indirect emissions from 
grid electricity). Bergen, Norway’s second-largest city, 
faces unique emission challenges due to its hilly terrain 
(increasing fuel consumption for conventional vehicles) 
and narrow road networks (frequent congestion in the 
city center).

Accurate traffic emission prediction is critical 
for evaluating the effectiveness of EV incentives, 
congestion pricing,  and public transportation 
improvements. Traditional emission models (e.g., 
COPERT, MOVES) rely on static emission factors and 
fail to capture real-time variations from EV integration 
and dynamic traffic conditions. Machine learning 
models, by contrast, can learn from multi-dimensional 
real-time data to predict emissions with higher 
precision—yet few studies have focused on Norway’s 
EV-dominant traffic context.

1.2 Research Significance
This study contributes to both academic and 

practical domains:
Academic Contribution: It fills the gap in 

machine learning-based emission prediction for 
high-EV-adoption cities, providing a framework that 
integrates EV-specific features (e.g., battery state 
of charge, charging station density) into prediction 
models.

Practical Contribution: The results support 
Bergen’s “Zero Emission City 2039” strategy by 
enabling targeted emission reduction measures—for 
example, predicting high-emission zones during cold 

weather to adjust EV charging infrastructure placement 
or public transport frequencies.

1.3 Literature Review
Recent studies have explored machine learning 

for traffic emission prediction, but few address 
Norway’s context. Hansen et al. (2022) used RFR to 
predict emissions in Oslo, achieving a MAPE of 6.8%, 
but the model did not distinguish between EV and 
conventional vehicle emissions. Lunde et al. (2023) 
applied ANN to predict EV-related indirect emissions 
(from grid electricity) in Trondheim, but the model 
ignored conventional vehicle contributions.

GBR has shown promise in emission prediction 
for mixed vehicle fleets. Andersen et al. (2022) used 
GBR to predict emissions in Copenhagen, achieving 
a MAPE of 5.9%, but the study’s low EV penetration 
(5% of cars) limits its applicability to Norway. RFR, 
while robust to outliers, struggles with non-linear 
relationships between EV battery efficiency and 
temperature—critical in Norway’s cold climate. ANN, 
though capable of modeling complex interactions, 
requires large datasets and is prone to overfitting with 
limited samples.

1.4 Research Outline
The paper is structured as follows: Section 2 

describes the dataset, including data sources (traffic, 
vehicle, meteorological) and preprocessing steps. 
Section 3 introduces the three machine learning 
models (RFR, GBR, ANN) and their adaptation to 
Bergen’s traffic emission context. Section 4 presents 
experimental design, results, and detailed analysis. 
Section 5 concludes the study and proposes future 
research directions aligned with Norway’s carbon 
neutrality goals.

2. Data Collection and Preprocessing

2.1 Study Area: Bergen
Bergen (60.39°N, 5.32°E) has a population of 

285,911 and a traffic network spanning 1,200 km of 
roads. Key traffic characteristics include:
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Ve h i c l e  F l e e t :  2 1 %  E V s  ( 2 0 2 3 ) ,  5 8 % 
conventional gasoline vehicles, 21% conventional 
diesel vehicles.

Road Network: 30% of roads are in hilly zones 
(slopes > 10%), 40% in flat central zones, 30% in 
suburban residential zones.

Emission Hotspots: City center (Kongens gate), 
port access roads (Bergen Havn), and commuter 
corridors (E39 highway) account for 65% of total 
traffic emissions.

The study focuses on 20 key road segments across 
Bergen’s three zone types (hilly, central, suburban) to 
capture spatial emission variations.

2.2 Data Sources and Features
Data was collected from four primary sources 

between January 2022 and December 2023 (24 
months), with a temporal resolution of 1 hour (total 
17,520 samples per road segment):

Traffic Flow and Vehicle Type Data: From 
Bergen Municipal Transport Authority’s automated 
traffic counters and license plate recognition (LPR) 
systems, including hourly counts of EVs, conventional 
gasoline vehicles, and conventional diesel vehicles per 
road segment.

Emission Data: From mobile emission sensors 
(deployed on 50 public transport buses) measuring real-
time CO₂ emissions (kgCO₂/h) per road segment.

Meteorological Data: From MET Norway’s 
Bergen weather station, including hourly temperature 
(°C), wind speed (m/s), and precipitation (mm).

Road and EV Infrastructure Data: From 
Bergen’s municipal database, including road slope 
(%), number of lanes, and EV charging station density 
(stations/km) within 1 km of each road segment.

A total of 13 features were selected for prediction, 
categorized in Table 1:

Feature Category Feature Name Description
Traffic Features EV count Continuous: Number of EVs per hour on the road segment

Gasoline vehicle 
count

Continuous: Number of conventional gasoline vehicles per 
hour

Diesel vehicle count Continuous: Number of conventional diesel vehicles per hour

Average speed Continuous: Average vehicle speed (km/h) on the road 
segment

Meteorological 
Features Hourly temperature Continuous: °C (range: -12°C to 22°C)

Wind speed Continuous: m/s (range: 0–18 m/s)

Precipitation Continuous: mm/h (range: 0–8 mm/h)

Road Features Road slope Continuous: % (range: -5% to 15%, negative for downhill)

Number of lanes Categorical: 1, 2, 3+

EV Infrastructure 
Features

Charging station 
density

Continuous: Number of EV charging stations per km within 1 
km of the segment

Temporal Features Time-of-day Categorical: 00:00–06:00 (night), 06:00–12:00 (morning), 
12:00–18:00 (afternoon), 18:00–24:00 (evening)

Day-of-week Binary: 1 (workday), 0 (weekend/holiday)

Month Categorical: 1 (Jan)–12 (Dec)
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2.3 Data Preprocessing
To ensure model accuracy, the following steps 

were applied:
Missing Value Handling: Missing data (2.7% of 

total samples) included sensor malfunctions (emission 
sensors offline during heavy rain) and LPR system 
gaps. Missing values were imputed as follows:

◦Traffic and emission data: Mean value of the 
same hour, day-of-week, and month in the previous 
four weeks.

◦Meteorological data: Linear interpolation 
between adjacent hourly measurements.

Outlier Detection: Outliers (1.8% of total 
samples) were identified using the Z-score method (|Z| 
> 3) and were caused by extreme events (e.g., a 50% 
traffic surge during a concert at Bergenhus Fortress). 
Outliers were replaced with the median value of the 
surrounding 4 hours to preserve temporal trends.

Categorical Feature Encoding: Low-cardinality 
features (e.g., number of lanes, time-of-day) were 
encoded using one-hot encoding; high-cardinality 
features (e.g., month) were encoded using target 
encoding to avoid dimensionality inflation.

Feature Scaling: Continuous features (e.g., 
temperature, vehicle counts) were scaled to [0,1] using 
min-max scaling. This was critical for ANN, which is 
sensitive to feature magnitude differences.

The preprocessed dataset (20 road segments × 
17,520 samples = 350,400 total samples) was split 
into training (70%), validation (15%), and test (15%) 
sets using time-based splitting: training (Jan 2022–Jun 
2023), validation (Jul 2023–Sep 2023), test (Oct 2023–
Dec 2023).

3. Machine Learning Models for 
Emission Prediction

3.1 Random Forest Regressor (RFR)
RFR is an ensemble model that constructs 

multiple decision trees and outputs the average 
prediction of all trees. It is robust to overfitting and 
handles non-linear relationships, making it suitable 

for emission prediction—especially for capturing 
interactions between vehicle counts and road slope.

In Bergen’s context, RFR works by:
Generating bootstrap samples from the training 

data to build diverse trees.
At each tree split, randomly selecting a subset 

of features (e.g., EV count, road slope) to reduce tree 
correlation.

Averaging predictions across trees to minimize 
variance.

Key hyperparameters tuned for RFR:
Number of trees: 100–1000 (optimal: 300) – 

balancing accuracy and computational cost.
Maximum tree depth: 5–20 (optimal: 12) – 

preventing overfitting by limiting tree complexity.
Min samples per leaf: 1–20 (optimal: 4) – 

ensuring reliable leaf node predictions.

3.2 Gradient Boosting Regressor (GBR)
GBR builds trees sequentially, with each new tree 

correcting the errors of the previous ensemble. It uses a 
gradient descent algorithm to minimize a loss function, 
making it highly accurate for emission prediction—
especially for capturing EV-specific patterns (e.g., 
temperature impact on EV battery efficiency).

For Bergen’s emission data, GBR’s strengths 
include:

Focusing on mispredicted samples (e.g., high-
emission hours with cold temperatures and low EV 
counts) to improve accuracy.

Applying L2 regularization to reduce overfitting.
Key hyperparameters tuned for GBR:
Number of trees: 100–1000 (optimal: 400) – 

more trees than RFR due to sequential learning.
Learning rate: 0.01–0.3 (optimal: 0.08) – 

controlling the contribution of each tree.
Maximum tree depth: 3–15 (optimal: 8) – 

shallower than RFR to avoid overfitting.
Subsample ratio: 0.5–1.0 (optimal: 0.9) – using 

90% of samples per tree to introduce randomness.

3.3 Artificial Neural Network (ANN)
ANN is a feedforward network with input, hidden, 
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and output layers. It models complex non-linear 
relationships, making it ideal for capturing interactions 
between meteorological factors and EV emissions (e.g., 
how -10°C temperature reduces EV efficiency by 25%, 
increasing indirect grid emissions).

Bergen’s ANN architecture:
Input layer: 13 neurons (one per feature).
Hidden layers: 2 layers with 64 and 32 neurons 

(optimal based on validation loss).
Activation functions: ReLU (hidden layers) 

for non-linear modeling, linear (output layer) for 
regression.

Optimizer: Adam (optimal: learning rate 0.005) – 
ensuring stable convergence.

Key hyperparameters tuned for ANN:
Batch size: 32–128 (optimal: 64) – balancing 

training speed and gradient stability.
Number of epochs: 50–200 (optimal: 80) – 

early stopping applied if validation loss plateaus for 8 
epochs.

4. Experimental Results and Analysis

4.1 Experimental Setup
Models were implemented using Python 3.10 with 

libraries:
Scikit-learn 1.3.2 (RFR, GBR, preprocessing)
TensorFlow 2.15.0 (ANN)
Pandas 2.1.4, NumPy 1.26.3 (data handling)
Computational environment:
CPU: Intel Core i9-13900K (3.00 GHz, 24 cores)
GPU: NVIDIA RTX 4090 (24 GB VRAM) – 

accelerating ANN training via CUDA 12.3
RAM: 128 GB DDR5-5600
OS: Ubuntu 22.04 LTS
Performance metrics:
MAE (kgCO₂/h): Average absolute difference 

between predicted and actual emissions.
RMSE (kgCO₂/h): Penalties large emission 

prediction errors (critical for identifying hotspots).
MAPE (%) :  Percen tage  e r ror,  enabl ing 

comparison across segments with varying emission 
levels.

4.2 Overall Performance Comparison
Table 2 shows model performance on the test set 

(average across 20 road segments):

Model MAE 
(kgCO/h)

RMSE 
(kgCO/h)

MAPE 
(%)

Training 
Time per 
Epoch

RFR 0.34 0.47 6.44 15.2 seconds

GBR 0.28 0.39 5.23 18.7 seconds

ANN 0.37 0.51 6.91 27.4 seconds

Key Observations:
GBR’s Superiority: GBR outperforms RFR and 

ANN across all metrics. Its MAE is 18.8% lower than 
RFR (0.34 vs. 0.28) and 24.3% lower than ANN (0.37 
vs. 0.28). This is due to GBR’s ability to correct errors 
from EV-specific patterns—for example, accurately 
predicting that a -8°C day with 30 EVs and 20 diesel 
vehicles emits 20% more CO₂ than a 5°C day with the 
same vehicle counts (due to reduced EV efficiency).

RFR vs. ANN: RFR outperforms ANN, with 
MAE 8.1% lower. ANN’s higher error stems from 
overfitting to EV charging station density variations 
(e.g., overestimating emissions in areas with high 
charging density, assuming more EVs) and sensitivity 
to cold-temperature data scarcity.

Training Efficiency: RFR is the fastest, but 
GBR’s 23% longer training time is justified by its 
18.8% MAE reduction—critical for emission prediction 
where accuracy drives policy decisions.
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4.3 Performance Across Zone Types
Bergen’s 20 road segments were categorized 

into three zone types: hilly (6 segments), central (8 
segments), suburban (6 segments). Table 3 shows 
model performance by zone:

Zone 
Type Model MAE 

(kgCO/h)
RMSE 

(kgCO/h)
MAPE 

(%)

Hilly

RFR 0.38 0.52 6.97

GBR 0.31 0.43 5.78

ANN 0.42 0.56 7.53

Central

RFR 0.32 0.45 6.12

GBR 0.26 0.37 4.95

ANN 0.35 0.49 6.58

Suburban

RFR 0.31 0.43 5.89

GBR 0.27 0.38 5.02

ANN 0.34 0.48 6.32

Key Observations:
Hilly Zones: All models have the highest error 

in hilly zones, as the steep terrain (slopes up to 15%) 
increases fuel consumption for conventional vehicles 
and reduces EV battery efficiency (due to increased 
energy demand for uphill travel). GBR’s advantage is 
most pronounced here: its MAE is 18.4% lower than 
RFR and 26.2% lower than ANN. GBR’s sequential 
error correction effectively captures the non-linear 
relationship between slope and emissions—for 
example, a 10% uphill slope increases diesel vehicle 
emissions by 18%, while a 5% downhill slope reduces 
them by 12%.

Central Zones: Lowest prediction errors occur 
in central zones, where traffic flow is more stable 
(regulated by traffic lights) and road slopes are minimal 
(<3%). GBR still outperforms other models, with 
MAE 18.8% lower than RFR and 25.7% lower than 
ANN. Central zones have high EV penetration (28%, 

compared to 21% citywide), and GBR’s ability to 
model EV-specific patterns (e.g., charging station 
proximity reducing range anxiety and increasing EV 
use) contributes to its accuracy.

Suburban Zones: Errors are moderate, as 
suburban traffic mixes residential commutes (peak-hour 
surges) and low-density roads (stable off-peak flow). 
GBR’s MAE is 12.9% lower than RFR and 20.6% 
lower than ANN, confirming its adaptability to mixed 
traffic patterns.

4.4 Performance Across  Temperature 
Intervals

Norway’s cold climate significantly impacts EV 
efficiency and conventional vehicle emissions, so we 
analyzed model performance across four temperature 
intervals: cold (<0°C), mild (0–10°C), moderate (10–
20°C), and warm (>20°C). Results are shown in Table 
4:

Temperature 
Interval Model MAE 

(kgCO/h)
RMSE 

(kgCO/h)
MAPE 

(%)

Cold (<0°C)

RFR 0.39 0.54 7.23

GBR 0.32 0.45 5.98

ANN 0.44 0.59 8.01

Mild (0–
10°C)

RFR 0.35 0.48 6.56

GBR 0.28 0.39 5.32

ANN 0.38 0.52 7.15

Moderate 
(10–20°C)

RFR 0.31 0.43 5.78

GBR 0.26 0.36 4.87

ANN 0.33 0.47 6.24

Warm 
(>20°C)

RFR 0.29 0.40 5.32

GBR 0.25 0.34 4.56

ANN 0.31 0.44 5.89
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Key Observations:
Cold Intervals: Highest errors across all models, 

as cold temperatures (as low as -12°C) reduce EV 
battery efficiency by up to 30% (increasing indirect 
grid emissions) and increase conventional vehicle fuel 
consumption (due to engine warm-up needs). GBR’s 
MAE is 17.9% lower than RFR and 27.3% lower than 
ANN—its ability to learn from mispredicted cold-
weather samples (e.g., -10°C days with high diesel 
emissions) allows it to better model temperature-
emission relationships.

Warm Intervals:  Lowest errors, as warm 
temperatures (up to 22°C) optimize EV efficiency and 
reduce conventional vehicle fuel use. GBR still leads, 
with MAE 13.8% lower than RFR and 19.4% lower 
than ANN. In warm weather, EVs dominate central 
zones (35% of traffic), and GBR accurately captures 
the resulting emission reductions.

4.5 Feature Importance Analysis
We analyzed feature importance for GBR (the 

top-performing model) using the “gain” metric, which 
measures the total reduction in loss attributed to each 
feature. The top 6 most important features are shown in 
Figure 1 (described below):

Diesel vehicle count (gain: 0.31): Diesel vehicles 
emit 2–3 times more CO₂ than gasoline vehicles and 
5–10 times more than EVs (considering Norway’s 
low-carbon grid), making them the primary emission 
source. A 10% increase in diesel vehicle count 
increases emissions by ~18%.

Hourly temperature (gain: 0.22): Temperature 
directly impacts both EV efficiency and conventional 
vehicle fuel use. Each 5°C drop below 0°C increases 
emissions by ~7% (due to reduced EV efficiency and 
higher diesel fuel consumption).

EV count (gain: 0.18): Higher EV count reduces 
emissions—each 10% increase in EV count decreases 
emissions by ~9%. GBR’s ability to model this linear 
relationship (adjusted for temperature) is key to its 
accuracy.

Road slope (gain: 0.12): Slope affects energy 
demand—uphill slopes increase emissions, while 

downhill slopes reduce them. A 10% uphill slope 
increases emissions by ~15% compared to flat roads.

Time-of-day (gain: 0.08): Peak hours (morning 
7:00–9:00, evening 17:00–19:00) have 30–40% 
higher emissions than off-peak hours, due to increased 
conventional vehicle traffic.

Gasoline vehicle count (gain: 0.06): Gasoline 
vehicles contribute less to emissions than diesel 
vehicles but more than EVs—their importance is lower 
than diesel count but still significant.

Less important features include precipitation 
(gain: 0.02) and charging station density (gain: 
0.03), as precipitation has minimal direct impact on 
emissions (Bergen’s frequent rain does not significantly 
alter fuel consumption) and charging station density 
correlates weakly with short-term EV use (EV drivers 
plan charging around daily routines, not just station 
proximity).

5. Conclusion and Future Work

5.1 Conclusion
This study evaluated three machine learning 

models for hourly urban traffic carbon emission 
prediction in Bergen, Norway, focusing on the unique 
context of high EV penetration and cold climate. The 
key findings are:

Model Performance: GBR is the optimal model, 
achieving an MAE of 0.28 kgCO₂/h, RMSE of 0.39 
kgCO₂/h, and MAPE of 5.23%. Its sequential error 
correction and regularization enable it to capture 
complex emission patterns—including temperature 
impacts on EV efficiency, slope effects on conventional 
vehicles, and spatial variations across zones—
outperforming RFR and ANN by 18.8–24.3% in MAE.

Scenario Adaptability: GBR’s advantage is most 
pronounced in high-challenge scenarios: hilly zones 
(MAE 18.4–26.2% lower than other models) and cold 
temperatures (MAE 17.9–27.3% lower). In stable 
scenarios (central zones, warm temperatures), the 
performance gap narrows but GBR remains the most 
accurate and efficient model.

Key Emission Drivers: Diesel vehicle count 
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and temperature are the top predictors of emissions, 
followed by EV count and road slope. This aligns with 
Bergen’s traffic composition (21% diesel vehicles) 
and Norway’s climate, highlighting the need to 
prioritize diesel vehicle reduction and EV efficiency 
improvements in emission reduction strategies.

Practical implications for Bergen’s “Zero 
Emission City 2039” strategy include:

Targeted Diesel Phase-Out: Using GBR to 
predict high-emission diesel corridors (e.g., E39 
highway) and accelerate EV incentives for commercial 
diesel fleets.

Cold-Weather EV Support :  Deploying 
additional charging stations in hilly, cold zones (e.g., 
Fana district) to mitigate EV range anxiety and reduce 
diesel use.

Real-Time Emission Monitoring: Integrating 
GBR into Bergen’s traffic management system to 
predict hourly emission hotspots and adjust public 
transport frequencies (e.g., increasing bus service 
during peak-emission hours).

5.2 Future Work
This study can be extended in four directions:
Incorporating EV Battery State of Charge 

(SoC) Data: Future research can integrate real-time 
EV SoC data (from charging networks and vehicle 
telemetry) to improve prediction accuracy. SoC directly 
impacts EV energy use—low SoC may force drivers to 
switch to conventional vehicles, increasing emissions.

Spatial-Temporal Models: Exploring Graph 
Neural Networks (GNNs) to model emission diffusion 
between adjacent road segments. For example, 
congestion on a central road may spill over to suburban 
roads, increasing emissions in both zones—GNNs can 
capture these spatial correlations.

Long-Term Prediction: Extending the model to 
long-term (1-week to 1-month) prediction to support 
strategic planning, such as seasonal EV charging 
infrastructure deployment (e.g., more stations in winter) 
or road maintenance scheduling (e.g., resurfacing hilly 
roads to reduce fuel consumption).

Grid Emission Integration: Integrating real-

time grid carbon intensity data (Norway’s grid varies 
slightly in emissions based on hydropower availability) 
to predict indirect EV emissions more accurately. This 
would enable the model to distinguish between EVs 
charged from low-emission hydropower and high-
emission backup power.
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