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1. Introduction

1.1 Research Background
Urban traffic congestion has become a critical 

challenge for Romania’s major cities, with Bucharest, 
Cluj-Napoca, and Iași ranking among the most 
congested urban areas in Eastern Europe (European 
Commission, 2022). According to the 2023 Romanian 
Urban Mobility Report, Bucharest residents spend an 
average of 98 hours annually in traffic delays—23% 
more than the European Union average. This congestion 
not only increases carbon emissions (contributing 31% 
of Bucharest’s urban CO₂ output) but also imposes 
economic costs equivalent to 2.1% of Romania’s GDP 
(Romanian Ministry of Transport, 2023).

Traditional traffic management in Romania 
relies on fixed traffic signal timings and manual route 
guidance, which fail to adapt to dynamic conditions 
such as rush-hour surges, construction zones, or special 
events. With the deployment of smart traffic sensors 
(e.g., loop detectors, camera-based analytics) in 12 
Romanian cities since 2021, there is now access to 
real-time, high-frequency traffic data—but a lack of 
mathematical tools to translate this data into actionable 
management strategies. Mathematical optimization 
methods, which excel at solving complex, multi-
constraint problems, offer a solution to bridge this gap 
by optimizing signal timings, routing, and resource 
allocation.

1.2 Research Significance
Theoretical significance: This study advances the 

application of mathematical optimization in Eastern 
European urban contexts, where traffic systems face 
distinct challenges (e.g., mixed flows of private 
cars, public transport, and informal vehicles; limited 
budget for infrastructure upgrades). By adapting linear 
programming and genetic algorithms to Romania’s 
unique traffic patterns, we expand the generalizability 
of optimization models beyond Western European or 
North American case studies.

Practical significance: The hybrid optimization 
model proposed here can be directly integrated into 

Romania’s existing smart traffic infrastructure. For 
example, in Bucharest’s Sector 1—where 40% of daily 
congestion occurs— the model can adjust traffic signal 
timings in real time based on sensor data, reducing 
delays for 120,000 daily commuters. Additionally, 
the model’s route optimization feature can support 
Romania’s ongoing expansion of public transport 
(e.g., Bucharest’s new metro line 6) by improving 
connections between bus, tram, and metro networks.

1.3 Research Status: Romania and Beyond

1.3.1 International Research

Global studies have demonstrated the value of 
mathematical optimization in traffic management. 
Smith et al. (2021) used linear programming to 
optimize traffic signal timings in London, reducing 
intersection delays by 22%. In a study of Seoul, Kim 
and Park (2022) applied genetic algorithms to dynamic 
route planning, cutting travel time variance by 27%. 
However, these models often assume well-maintained 
infrastructure and homogeneous traffic flows—
conditions not always met in Romania.

1.3.2 Romanian Research

Domestic research on traffic optimization remains 
limited but growing. Popescu et al. (2021) tested a 
basic linear programming model for Bucharest’s signal 
timings, achieving a 10% reduction in delays—but the 
model lacked real-time data integration. Marinescu and 
Ionescu (2022) used graph theory to map Cluj-Napoca’s 
traffic networks but did not incorporate optimization 
to improve flows. A key gap exists in hybrid models 
that combine multiple optimization methods to address 
Romania’s mixed traffic and infrastructure constraints.

1.4 Research Content and Methods

1.4.1 Research Content

The study focuses on three core objectives: (1) 
Develop a hybrid optimization model integrating linear 
programming (for signal timing), genetic algorithms 
(for route planning), and graph-based routing (for 
network analysis); (2) Validate the model using traffic 
data from three Romanian cities (Bucharest, Cluj-
Napoca, Iași) between 2021–2023; (3) Propose policy 
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recommendations for scaling the model to other 
Romanian urban areas.

1.4.2 Research Methods

Data collection: Gather real-time traffic data 
(vehicle counts, speed, queue lengths) from 500 smart 
sensors in target cities, supplemented by historical data 
from the Romanian National Road Authority (CNAIR) 
and public transport operator (STB Bucharest).

Model development: Use linear programming to 
optimize signal cycle lengths (minimizing intersection 
delays), genetic algorithms to generate dynamic routes 
(prioritizing time efficiency), and graph theory to 
model traffic networks (nodes = intersections, edges = 
road segments).

Empirical testing :  Compare the model’s 
performance to traditional systems in a 6-month trial 
(January–June 2023) in Bucharest’s Sector 1, Cluj-
Napoca’s city center, and Iași’s Unirii Square area.

2. Mathematical Optimization Methods 
for Traffic Management

2.1 Linear Programming for Traffic Signal 
Timing

Linear programming (LP) is used to optimize 
traffic signal timings at intersections, a critical factor 
in reducing congestion. The goal is to determine 
green light durations for each direction (e.g., north-
south, east-west) that minimize total delay, subject 
to constraints such as maximum cycle length and 
pedestrian crossing time.

2.1.1 Core Principles

In LP, the objective function is defined as the 
total delay across all traffic streams at an intersection. 
Delays are calculated based on vehicle arrival rates 
(from sensor data) and green light duration. Constraints 
include:

Cycle length constraint: Total signal cycle (sum 
of green, yellow, and red phases) cannot exceed 120 
seconds (to avoid excessive waits for pedestrians).

Green time minimum: Each direction must 
have at least 15 seconds of green light to clear queued 

vehicles.
Pedestrian constraint: Crosswalk signals require 

a minimum 10-second green phase to ensure safe 
crossing.

2.1.2 Application in Romanian Cities

For Bucharest’s Piata Unirii intersection—one of 
the busiest in the city, with 8,000 vehicles/hour during 
peak hours—the LP model was calibrated using 2022 
sensor data. The model adjusted green light durations 
from fixed 45-second intervals to dynamic ranges (30–
60 seconds) based on real-time vehicle counts. During 
a 1-month trial, this reduced average intersection delay 
from 72 seconds to 48 seconds—a 33% improvement.

In Iași, where intersections often have mixed 
traffic (cars, trams, and bicycles), the LP model 
was modified to include a "tram priority" constraint 
(minimum 20-second green light for tram lanes). This 
reduced tram delays by 25%, aligning with Iași’s goal 
of increasing public transport ridership by 15% by 
2025.

2.2 Genetic Algorithms for Dynamic Route 
Planning

Genetic algorithms (GAs)—inspired by biological 
evolution—are ideal for dynamic route planning, as 
they can adapt to real-time changes (e.g., accidents, 
road closures) by generating and refining candidate 
routes.

2.2.1 Core Principles

GAs operate through three key steps:
Initialization: Generate a set of candidate routes 

between an origin and destination (e.g., 50 routes from 
Bucharest’s Otopeni Airport to Sector 1).

Selection: Evaluate each route’s fitness (e.g., 
travel time, distance, congestion level) and select the 
top-performing routes to "reproduce."

Crossover and mutation: Combine segments 
of top routes (crossover) and introduce small changes 
(mutation, e.g., swapping a side street for a main road) 
to generate new routes. This process repeats until an 
optimal route emerges.
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2.2.2 Application in Romanian Cities

In Cluj-Napoca, a city with narrow, medieval-
era streets prone to sudden congestion, the GA model 
was integrated into a mobile app for commuters. The 
app uses real-time sensor data to update routes every 
5 minutes. During a 3-month trial (March–May 2023), 
6,000 users reported an average travel time reduction 
of 19% compared to using static GPS routes.

For commercial fleets (e.g., delivery vans in 
Bucharest), the GA model was extended to minimize 
total fleet travel time, not just individual routes. This 
reduced fleet fuel consumption by 12%, a significant 
benefit for Romanian logistics companies facing rising 
fuel costs.

2.3 Graph-Based Routing for Network 
Analysis

Graph theory models traffic networks as graphs, 
where nodes represent intersections and edges represent 
road segments (weighted by travel time, distance, or 
congestion level). This helps identify bottlenecks and 
optimize network-wide flow.

2.3.1 Core Principles

Key graph metrics used include:
Degree centrality: Nodes (intersections) with 

high connectivity (many edges) are identified as 
potential bottlenecks.

Betweenness centrality: Nodes that lie on the 
most shortest paths are prioritized for congestion 
mitigation (e.g., signal optimization).

Edge weight update: Road segment weights 
(travel time) are updated in real time using sensor data, 
ensuring the graph reflects current conditions.

2.3.2 Application in Romanian Cities

In Bucharest, the graph model identified 12 
"critical nodes" (e.g., Piata Victoriei, Calea Victoriei) 
that accounted for 45% of total city congestion. The 
model recommended targeted interventions: expanding 
sidewalks to reduce pedestrian-vehicle conflicts at Piata 
Victoriei, and adding a dedicated bus lane on Calea 
Victoriei. After implementation in late 2022, these 
nodes saw a 28% reduction in congestion duration.

In Cluj-Napoca, the graph model was used to 
plan a new bicycle lane network, connecting residential 
areas to the city center. The model identified low-
betweenness edges (quiet streets) as ideal for bicycle 
lanes, reducing conflicts with cars and increasing 
bicycle ridership by 30% in the first year.

3 .  H y b r i d  O p t i m i z a t i o n  M o d e l 
Construction

3.1 Model Framework
The hybrid model integrates linear programming 

(LP), genetic algorithms (GA), and graph-based routing 
into a single, cohesive system. The framework has 
three layers, with data flowing sequentially between 
them:

3.1.1 Data Input Layer

Collects multi-source traffic data:
Real-time data: Vehicle counts, speed, and 

queue lengths from 500 smart sensors (deployed by 
Romania’s Ministry of Transport) and 200 traffic 
cameras (managed by local police).

Historical data: 3 years of travel time records 
(2021–2023) from CNAIR, STB Bucharest, and ride-
hailing platforms (e.g., Bolt Romania).

Contextual data: Construction zones, special 
events (e.g., Bucharest’s George Enescu Festival), and 
public transport schedules (tram, bus, metro).

All data is preprocessed to remove outliers (e.g., 
sensor malfunctions) and standardized to a common 
format (timestamp, location, vehicle type).

3.1.2 Optimization Layer

The core layer, where three methods work in 
tandem:

Graph-based routing: First models the traffic 
network as a graph, updating edge weights (travel 
time) using real-time data. This identifies critical nodes 
(bottlenecks) to prioritize for LP optimization.

Linear programming :  Opt imizes  s ignal 
timings at critical nodes, using vehicle arrival rates 
from sensors to adjust green light durations. Results 
(optimized timings) are fed back to the graph to update 
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edge weights.
Genetic algorithms: Generates dynamic routes 

for commuters and fleets, using the updated graph (with 
optimized signal timings) to calculate route fitness. 
Routes are updated every 5 minutes to reflect new 
conditions.

3.1.3 Output Layer

Delivers actionable outputs to stakeholders:
For traffic managers: Real-time signal timing 

adjustments (sent to traffic control centers in Bucharest, 
Cluj-Napoca, and Iași) and weekly congestion reports.

F o r  c o m m u t e r s :  D y n a m i c  r o u t e 
recommendations (via mobile apps, SMS alerts, and 
road signs).

For policymakers: Long-term insights (e.g., 
bottleneck locations for infrastructure upgrades) 
and environmental impact reports (CO₂ reduction 
estimates).

3.2 Model Calibration for Romanian Traffic 
Conditions

The model was calibrated to address unique 
challenges of Romanian traffic:

Mixed traffic: The LP model includes a "vehicle 
type" parameter, assigning higher priority to trams 
and buses (to support public transport) and adjusting 
green times for slower-moving vehicles (e.g., delivery 
trucks).

Aging infrastructure: The graph model weights 
road segments by pavement condition (from CNAIR’s 
2022 infrastructure report), avoiding routes with 
frequent potholes that cause slowdowns.

Seasonal variation: In winter (November–
February), when snow and ice increase travel times, 
the GA model adds a "weather factor" to route fitness, 
prioritizing main roads (which are plowed first) over 
side streets.

4. Empirical Testing in Romanian 
Cities

4.1 Test Design

A 6-month trial (January–June 2023) was 
conducted in three Romanian cities, with the hybrid 
model tested against traditional traffic management 
systems (fixed signal timings, static routes). Key test 
areas included:

Bucharest: Sector 1 (25 intersections, 100 
sensors) and the Otopeni Airport–Sector 1 corridor.

Cluj-Napoca: City center (18 intersections, 
80 sensors) and the Cluj-Napoca Railway Station–
University area.

Iași: Unirii Square (12 intersections, 60 sensors) 
and the Iași International Airport–City Center route.

Performance metrics included:
Congestion duration: Time spent in traffic 

moving < 20 km/h.
Average travel time: Time to traverse key 

corridors.
Public transport delay: Time lost by buses and 

trams at intersections.
CO₂ emissions: Measured via sensor data and 

vehicle count.

4.2 Test Results

4.2.1 Bucharest

Congestion duration: Reduced by 28% in Sector 
1 (from 120 minutes/day to 86 minutes/day) and 22% 
on the Otopeni Airport corridor.

Average travel time: Cut by 19% on the airport 
corridor (from 45 minutes to 36 minutes).

Public transport delay: Bus delays decreased 
by 31% at Sector 1 intersections, increasing on-time 
performance from 62% to 83%.

CO₂ emissions: Reduced by 14% in Sector 1, 
equivalent to 1,200 fewer tons of CO₂ over 6 months.

4.2.2 Cluj-Napoca

Congestion duration: Decreased by 24% in the 
city center (from 95 minutes/day to 72 minutes/day).

Average travel time: Reduced by 17% on the 
railway station–university route (from 30 minutes to 25 
minutes).

Bicycle ridership: Increased by 30% due to 
optimized bicycle lane routes, aligning with Cluj-
Napoca’s "Green City" initiative.
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4.2.3 Iași

Congestion duration: Fell by 21% around Unirii 
Square (from 105 minutes/day to 83 minutes/day).

Tram delay: Tram delays decreased by 27% at 
Unirii Square intersections, improving tram ridership 
by 12%.

4.3 Comparison to Traditional Systems
Across all  three cit ies,  the hybrid model 

outperformed traditional systems:
Congestion reduction: 2–3x more effective 

than fixed signal timings (traditional systems reduced 
congestion by only 8–12%).

Travel time savings: 1.5x greater than static GPS 
routes (traditional routes cut travel time by 10–13%).

Public transport improvement:  2x more 
effective at reducing bus/tram delays (traditional 
systems improved on-time performance by only 10–
15%).

5. Limitations and Future Directions

5.1 Limitations

5.1.1 Data Coverage Constraints

The model relies heavily on data from smart 
sensors, which are currently only deployed in 12 major 
Romanian cities (e.g., Bucharest, Cluj-Napoca, Iași). 
Smaller cities (e.g., Timișoara, Brașov) and rural-
urban fringe areas lack sufficient sensor infrastructure, 
making it difficult to apply the model universally. 
Additionally, sensor data in some older neighborhoods 
of Bucharest (e.g., Sector 5) is incomplete due to 
outdated equipment, leading to minor inaccuracies in 
signal timing optimization.

5.1.2 Integration with Informal Traffic Elements

 Romanian traffic often includes informal 
elements such as street vendors, unregistered vehicles, 
and pedestrian jaywalking—factors that are not fully 
captured in the current model. For example, street 
vendors in Cluj-Napoca’s historic center occasionally 
block road segments, causing unexpected congestion 
that the model cannot predict in real time, as these 
events are not recorded in formal data sources.

5.1.3 Interoperability with Existing Systems

Romania’s traffic management infrastructure 
is fragmented, with different cities using different 
control systems (e.g., Bucharest uses Siemens 
traffic controllers, while Iași uses local Romanian-
developed software). The hybrid model requires 
custom integration with each system, increasing 
deployment costs and complexity. In some cases, this 
interoperability issue delayed the model’s trial in Iași 
by 2 weeks.

5.1.4 Weather-Related Adaptability Gaps

While the model includes a basic "weather factor" 
for winter conditions, it does not fully account for 
extreme weather events such as heavy rain, fog, or 
heatwaves—all of which significantly impact traffic 
flow in Romania. For example, heavy rain in Bucharest 
in May 2023 caused flooding on Calea Moșilor, 
leading to a 40% increase in travel time that the model 
underestimated by 15%.

5.2 Future Research Directions
To address the above limitations and expand the 

model’s impact, future research will focus on four key 
areas:

5.2.1 Expand Data Infrastructure for Smaller Cities

Collaborate with Romania’s Ministry of Transport 
to deploy low-cost sensors (e.g., solar-powered 
traffic counters) in 8 additional medium-sized cities 
(Timișoara, Brașov, Constanța, etc.) by 2025. Develop 
a "lightweight" version of the model that requires fewer 
data inputs, using historical traffic patterns and satellite 
imagery to supplement limited real-time data in rural-
urban areas.

5.2.2 Incorporate Informal Traffic Data

Integrate alternative data sources to capture 
informal traffic elements, such as:

◦Crowdsourced data from commuter apps (e.g., 
Waze, Bolt) to identify street vendor blockages or 
unregistered vehicles;

◦Camera-based computer vision (using existing 
traffic cameras) to detect pedestrian jaywalking and 
adjust signal timings accordingly.
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A pilot study in Bucharest’s Sector 5 will test this 
integration, with initial results expected by late 2024.

5.2.3 Develop a Unified Integration Platform

Partner  wi th  Romanian tech f i rms (e .g . , 
UiPath, Endava) to build a unified API (Application 
Programming Interface) that connects the hybrid model 
to all major traffic control systems used in Romania. 
This platform will reduce deployment time by 50% and 
lower integration costs by standardizing data formats 
and communication protocols.

5.2.4. Enhance Weather and Extreme Event 
Adaptability

Integrate real-time weather data from Romania’s 
National Meteorological Administration (ANM) 
into the model, with machine learning algorithms to 
predict traffic flow changes during extreme weather. 
For example, the model will learn to adjust route 
recommendations 1–2 hours in advance of heavy rain, 
prioritizing elevated roads (e.g., Bucharest’s Mihai 
Bravu overpass) that are less prone to flooding.

6 .  C o n c l u s i o n s  a n d  P o l i c y 
Recommendations

6.1 Main Conclusions
This study develops and validates a hybrid 

mathematical optimization model for urban traffic 
management in Romania, with three key findings:

6.1.1 Mathematical Optimization Delivers Tangible 
Traffic Improvements

The integration of linear programming (signal 
timing), genetic algorithms (route planning), and 
graph-based routing (network analysis) reduces peak-
hour congestion by 21–28% and cuts average travel 
time by 17–19% across Bucharest, Cluj-Napoca, and 
Iași. These results outperform traditional traffic systems 
by 2–3x, demonstrating the value of data-driven 
mathematical methods in addressing Romania’s unique 
traffic challenges.

6.1.2 Model Calibration to Local Context is Critical

Adapting the model to Romania’s mixed traffic 

(cars, trams, bicycles), aging infrastructure, and 
seasonal weather conditions is essential for success. 
For example, adding a "tram priority" constraint in 
Iași reduced public transport delays by 27%, while 
weighting road segments by pavement condition in 
Bucharest minimized slowdowns from potholes.

6.1.3 Scalability Requires Infrastructure and Policy 
Support

While the model works effectively in major cities, 
its expansion to smaller areas and full integration with 
existing systems depends on investments in sensor 
infrastructure and cross-city collaboration. Without 
these, the model’s impact will remain limited to 
Romania’s largest urban centers.

6.2 Policy Recommendations
To maximize the model’s benefits and advance 

sustainable urban mobility in Romania, we propose 
five policy actions for government agencies, local 
authorities, and private stakeholders:

6.2.1 For Romania’s Ministry of Transport

Fund Sensor Infrastructure Expansion : 
Allocate 15 million RON (≈3 million EUR) in the 
2024–2025 budget to deploy low-cost traffic sensors in 
8 medium-sized cities (Timișoara, Brașov, Constanța, 
Craiova, Galați, Ploiești, Brăila, Oradea). Prioritize 
areas with high commuter traffic (e.g., Timișoara’s 
E671 highway corridor) to ensure immediate impact.

Mandate Data Sharing Standards: Issue a 
regulation requiring all city traffic control systems to 
adopt the unified API (developed in Section 5.2.3) by 
2026. This will eliminate interoperability barriers and 
allow the model to be deployed nationwide at lower 
cost.

6.2.2 For Local City Governments

Pilot the Model in High-Congestion Zones: For 
cities without full sensor coverage (e.g., Brașov), start 
with a 3-month pilot in high-congestion areas (e.g., 
Brașov’s Piata Sfatului) using existing camera data 
and crowdsourced inputs. Use pilot results to secure 
additional funding for sensor deployment.

Integrate with Public Transport Plans: Align 
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the model’s route optimization with public transport 
expansion projects, such as Bucharest’s metro line 6 
(scheduled to open in 2026) and Cluj-Napoca’s new 
tram network. For example, use the model to adjust bus 
routes to connect with metro stations, increasing public 
transport ridership by 10–15%.

6.2.3 For Private and Academic Stakeholders

Collaborate on Low-Cost Sensor Development: 
Partner with Romanian universities (e.g., University 
of Bucharest, Polytechnic University of Timișoara) to 
develop affordable, locally produced traffic sensors 
(costing <500 RON each) that are compatible with 
the model. This will reduce reliance on imported 
equipment and lower long-term maintenance costs.

Launch a Commuter Engagement Campaign: 
Work with ride-hailing and navigation apps (Bolt, 
Waze) to promote the model’s dynamic route 
recommendations to users. For example, offer small 
incentives (e.g., 5% discount on Bolt rides) for 
commuters who follow the model’s routes, increasing 
adoption and improving overall traffic flow.

6.3 Future Outlook
By 2027, the hybrid optimization model has the 

potential to reduce national urban traffic congestion 
by 20–25%, cut CO₂ emissions from road transport by 
12–15%, and save Romanian commuters an average 
of 40–50 hours annually in traffic delays. These 
improvements will not only enhance quality of life for 
residents but also support Romania’s broader goals 
of reducing greenhouse gas emissions (per the EU’s 
Green Deal) and improving economic productivity by 
reducing time lost to congestion.

Ultimately,  the model  demonstrates  how 
mathematical optimization—tailored to local context—
can transform urban mobility in Eastern Europe, 
offering a scalable blueprint for other countries facing 
similar challenges of aging infrastructure, mixed traffic, 
and limited resources.

7. Extension Research: Adaptation of 
the Optimization Model to Small and 

Medium-Sized Romanian Cities
While the hybrid optimization model has 

demonstrated significant effectiveness in Romania’s 
major cities (Bucharest, Cluj-Napoca, Iași), small 
and medium-sized cities (SMSCs) such as Timișoara, 
Brașov, and Constanța face distinct traffic challenges—
yet lack the sensor infrastructure and technical capacity 
to adopt the full model. This chapter presents targeted 
research on adapting the model to SMSCs, including 
traffic characteristic analysis, lightweight model design, 
and pilot validation, to promote nationwide scalability.

7.1 Traffic Characteristics of Romanian 
SMSCs

Romanian SMSCs (defined by the National 
Institute of Statistics as cities with populations 
between 50,000 and 200,000) exhibit four key traffic 
characteristics that differ from major cities, requiring 
model adjustments:

7.1.1 Lower Traffic Volume but Higher Variability

SMSC traffic volumes are 30–50% lower than 
in Bucharest (e.g., Timișoara’s peak-hour vehicle 
count is 4,200 vehicles/hour, compared to 8,000 in 
Bucharest’s Sector 1). However, variability is higher 
due to irregular events: for example, Brașov’s annual 
Oktoberfest attracts 50,000+ visitors, increasing traffic 
volume by 200% over 3 days, while Constanța’s 
summer tourism season (June–August) doubles coastal 
road traffic. This variability makes static signal timings 
(still used in 80% of SMSCs) ineffective, as they 
cannot adapt to sudden surges.

7.1.2 Mixed Traffic Dominated by Private Vehicles

Unlike Bucharest (where public transport 
accounts for 35% of daily trips), SMSCs rely heavily 
on private vehicles (70–80% of trips), with limited 
public transport options (e.g., Timișoara has only 2 
tram lines, compared to Bucharest’s 14). Additionally, 
informal vehicles (e.g., small delivery vans, agricultural 
vehicles in rural-urban fringes) make up 15–20% of 
traffic in SMSCs, causing frequent slowdowns due to 
size mismatches with urban roads (e.g., narrow streets 
in Brașov’s historic center).
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7.1.3 Limited Sensor and Technical Infrastructure

Only 3 of Romania’s 18 SMSCs (Timișoara, 
Brașov, Constanța) have basic traffic sensors, and 
none have dedicated traffic management centers. 
Most SMSCs rely on manual traffic control (e.g., 
police officers at key intersections) and paper-based 
traffic data records, leading to incomplete data for the 
full model. Technical capacity is also limited: 60% 
of SMSC transport departments have fewer than 2 
staff with data analysis skills, compared to 8–10 in 
Bucharest.

7.1.4 Strong Rural-Urban Linkages

SMSC traffic is heavily influenced by rural 
commuters: for example, 40% of Timișoara’s morning 
traffic comes from surrounding villages (e.g., Giarmata, 
Sânmihaiu Român), creating concentrated congestion 
on rural-urban corridors (e.g., DN6 in Timișoara). 
These corridors often lack sidewalks and bike lanes, 
increasing conflicts between pedestrians, cyclists, and 
vehicles—a factor not fully addressed in the original 
model.

7.2 Design of a Lightweight Optimization 
Model for SMSCs

To address these characteristics, a "lightweight" 
version of the hybrid model was developed, with 
three key modifications to reduce data and technical 
requirements:

7.2.1 Simplified Data Inputs

The lightweight model replaces the full model’s 
12 data inputs with 5 core, easily accessible inputs:

Daily traffic counts: Collected via low-cost, 
solar-powered sensors (costing ~450 RON each) 
deployed at 3–5 key intersections per city (e.g., Piata 
Unirii in Timișoara, Piata Sfatului in Brașov). These 
sensors require minimal maintenance and transmit data 
via 4G to a cloud-based platform (accessible via a web 
browser, no specialized software needed).

Historical event calendars: Provided by local 
governments (e.g., Brașov’s Oktoberfest, Constanța’s 
Sea Festival) to predict traffic surges 1–2 weeks in 
advance.

Road network maps: Open-source maps from 
OpenStreetMap, pre-processed to highlight critical 
corridors (e.g., rural-urban links) and narrow streets 
(prone to informal vehicle congestion).

Public transport schedules: Shared by local 
operators (e.g., Timișoara’s RATT) to prioritize bus/
tram routes in signal timing.

Weather forecasts: Integrated from ANM’s free 
API to adjust for rain, fog, or snow—key for SMSCs 
with limited snow-clearing capacity.

This simplification reduces data collection costs 
by 70% compared to the full model, making it feasible 
for SMSCs with limited budgets.

7.2.2 Streamlined Optimization Methods

The lightweight model retains the full model’s 
three core methods but streamlines their complexity:

Graph-based routing: Uses a simplified graph 
with only 20–30 nodes (intersections) per city (vs. 
100+ in Bucharest), focusing on critical corridors. Edge 
weights are updated daily (vs. hourly in the full model) 
to reduce computational load.

Linear programming: Optimizes signal timings 
for only 3–5 key intersections (vs. 25+ in Bucharest), 
with fixed cycle lengths (90 seconds) to simplify 
calculations. A "special event mode" is added to extend 
green times for event-related traffic (e.g., festival 
attendees in Brașov).

Genetic algorithms: Generates 10 candidate 
routes (vs. 50 in the full model) for commuters, with 
fitness based on travel time and road width (to avoid 
narrow streets for large vehicles). Routes are updated 
weekly (vs. every 5 minutes) via a simple mobile 
app (available for Android/iOS, no technical training 
required).

These adjustments  reduce computat ional 
requirements, allowing the model to run on standard 
laptops (vs. dedicated servers for the full model)—
critical for SMSCs without technical infrastructure.

7.2.3 User-Friendly Interface

A web-based interface was developed for the 
lightweight model, designed for users with limited 
technical skills. The interface has three tabs:
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Data Upload: Allows users to input traffic counts 
and event calendars via Excel spreadsheets (no coding 
required).

Optimization Results: Displays signal timing 
recommendations (e.g., "Green light for north-south 
direction: 40 seconds") and route maps (visualized with 
color-coded corridors).

Report Generator: Automatically generates 
monthly PDF reports  with key metr ics  (e .g . , 
"Congestion reduced by 15% on DN6 corridor") for 
local government meetings.

User testing with Timișoara’s transport department 
showed that staff could master the interface in 2 hours 
of training—far less than the 8 hours needed for the full 
model.

7.3 Pilot Validation in Timișoara and Brașov
A 4-month pilot (July–October 2023) was 

conducted in Timișoara (medium-sized, population 
319,000) and Brașov (small-sized, population 267,000) 
to test the lightweight model. The pilot focused on two 
key objectives: evaluating performance and assessing 
usability.

7.3.1 Performance Results

In Timișoara, the model was deployed on the DN6 
corridor (connecting the city center to rural areas) and 
at Piata Unirii (a busy downtown intersection):

Congestion duration: Reduced by 21% on the 
DN6 corridor (from 75 minutes/day to 60 minutes/day) 
during the summer tourism season.

Average travel time: Cut by 16% on the DN6 
corridor (from 32 minutes to 27 minutes), with 
particularly strong results during weekend tourism 
surges (22% reduction).

Signal  t iming eff ic iency :  Pia ta  Unir i i ’s 
intersection delay decreased by 24% (from 65 seconds 
to 49 seconds), as the model’s "special event mode" 
adapted to concerts at the nearby Banatul Philharmonic.

In Brașov, the model was tested on the Poarta 
Șchei corridor (historic center) and during Oktoberfest 
(September 2023):

Congestion duration: Reduced by 18% on Poarta 
Șchei (from 68 minutes/day to 56 minutes/day), with a 

25% reduction during Oktoberfest (when traffic volume 
peaked at 8,500 vehicles/hour).

Informal vehicle conflicts: Decreased by 30% 
on Poarta Șchei, as the model’s route recommendations 
avoided narrow streets for large delivery vans.

Public transport delay: Bus delays on the 
corridor decreased by 19% (from 42 seconds to 34 
seconds), improving on-time performance from 68% to 
82%.

These results, while slightly lower than the full 
model’s performance in major cities, are significant 
for  SMSCs—especial ly given the 70% lower 
implementation cost.

7.3.2 Usability Assessment

A survey of 15 staff from Timișoara and Brașov’s 
transport departments (conducted post-pilot) evaluated 
the model’s usability:

Ease of use: 87% of respondents rated the web 
interface as "easy" or "very easy" to use, with no 
reported issues with data upload or result interpretation.

Technical capacity fit: 93% stated the model did 
not require additional technical staff, and 80% reported 
using the monthly reports in government meetings.

Cost  sat isfact ion :  100% of  respondents 
considered the model’s cost (≈15,000 RON per city) 
"reasonable" or "very reasonable," compared to the full 
model’s ≈50,000 RON.

Key feedback included requests for a "weather 
alert" feature (to automatically adjust routes during 
heavy rain) and integration with local parking apps—
both of which will be added in the next model update.

7.4 Scaling Strategy for Romanian SMSCs
Based on the pilot results, a three-phase scaling 

strategy is proposed to deploy the lightweight model to 
all 18 Romanian SMSCs by 2026:

7.4.1 Phase 1: Priority Cities (2024)

Focus on 5 SMSCs with the highest traffic 
challenges and existing basic infrastructure: Timișoara, 
Brașov, Constanța, Craiova, and Galați. The strategy 
includes:

Sensor deployment: Provide 5 low-cost sensors 
per city (funded by EU cohesion funds via Romania’s 
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Ministry of European Funds).
Training :  2-day workshops for transport 

department staff, covering data collection, model use, 
and report generation.

Technical support: Monthly check-ins with the 
research team (via Zoom) to address issues and collect 
feedback.

7.4.2 Phase 2: Expansion Cities (2025)
Deploy to 7 additional SMSCs: Ploiești, Brăila, 

Oradea, Arad, Sibiu, Bacău, and Târgu Mureș. Key 
actions include:

Infrastructure sharing: Encourage adjacent 
cities (e.g., Arad and Timișoara) to share sensor data 
and model results, reducing costs by 30%.

Local partnerships: Collaborate with local 
universities (e.g., University of Sibiu) to train student 
interns as "model ambassadors," providing ongoing 
support to transport departments.

7.4.3 Phase 3: National Coverage (2026)

Complete deployment to the remaining 6 SMSCs: 
Drobeta-Turnu Severin, Focșani, Pitești, Râmnicu 
Vâlcea, Suceava, and Vaslui. This phase will include:

National data platform: Launch a centralized 
platform to aggregate data from all SMSCs, allowing 
for cross-city comparisons and national traffic trend 
analysis.

Policy integration: Work with Romania’s 
Ministry of Transport to include the lightweight model 
in the 2026–2030 National Urban Mobility Strategy, 
making it a standard tool for SMSCs.

This strategy, when implemented, will ensure that 
80% of Romania’s urban population benefits from data-
driven traffic optimization by 2026, aligning with the 
EU’s goal of sustainable urban mobility for all regions.

7.5 Conclusion of Extension Research
The lightweight optimization model addresses the 

unique challenges of Romanian SMSCs by simplifying 
data inputs, streamlining methods, and designing a 
user-friendly interface. Pilot results in Timișoara and 
Brașov demonstrate that the model reduces congestion 
by 18–21% and travel time by 16–22% at 70% lower 

cost than the full model. The three-phase scaling 
strategy will enable nationwide deployment by 2026, 
ensuring that SMSCs—long overlooked in traffic 
management research—can access the same data-driven 
tools as major cities. This extension not only enhances 
the model’s practical value but also contributes to a 
more equitable approach to urban mobility in Romania.
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