Mathematical Methods in Data Science | Volume 01 | Issue 01 | December 2025

@@% Mathematical Methods in Data Science
\§8y https://0js.bilpub.com/index.php/mmds

Japan Bilingual Publishing Co.

ARTICLE

Mathematical Optimization Methods for Urban Traffic Flow
Management in Romania: A Data-Driven Approach

Mihai Ionescu*

National Institute for Research and Development in Informatics (ICI), Bd. Mihail Eminescu 8-10, Romania

ABSTRACT

This paper explores the application of mathematical optimization methods (linear programming, genetic algorithms, and
graph-based routing) in urban traffic flow management, with a focus on solving congestion mitigation and route efficiency
issues in major Romanian cities. Using multi-source traffic data (2021-2023) from Bucharest, Cluj-Napoca, and lasi, we
construct a hybrid optimization model that integrates real-time traffic sensor data and historical travel time records. Em-
pirical results show the model reduces peak-hour congestion duration by 28% in Bucharest’s city center and cuts average
travel time by 19% on key arterial roads—outperforming traditional traffic management systems. The research provides a
scalable mathematical framework for sustainable urban mobility in Romania, addressing unique challenges such as aging
infrastructure and mixed traffic flows.

Keywords: Mathematical optimization; Urban traffic management; Linear programming; Genetic algorithms; Graph-

based routing; Romania; Traffic congestion; Data-driven mobility

*CORRESPONDING AUTHOR:

Mihai Ionescu, National Institute for Research and Development in Informatics (ICI); Email: mihai.ionescu@ici.ro

ARTICLE INFO

Received: 2 September 20252025 | Revised: 12 September 2025 2025 | Accepted: 20 September 2025 | Published Online: 29 September 2025
DOIL: https://doi.org/10.55121/mmds.v1il.822

CITATION

Mihai Tonescu. 2025. Mathematical Optimization Methods for Urban Traffic Flow Management in Romania: A Data-Driven Approach. Mathe-
matical Methods in Data Science, 1(1):56-68. DOL: https://doi.org/10.55121/mmds.v1i1.822

COPYRIGHT

Copyright © 2025 by the author(s). Published by Japan Bilingual Publishing Co. This is an open access article under the Creative Commons
Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/).

56



Mathematical Methods in Data Science | Volume 01 | Issue 01 | December 2025

1. Introduction

1.1 Research Background

Urban traffic congestion has become a critical
challenge for Romania’s major cities, with Bucharest,
Cluj-Napoca, and lasi ranking among the most
congested urban areas in Eastern Europe (European
Commission, 2022). According to the 2023 Romanian
Urban Mobility Report, Bucharest residents spend an
average of 98 hours annually in traffic delays—23%
more than the European Union average. This congestion
not only increases carbon emissions (contributing 31%
of Bucharest’s urban CO: output) but also imposes
economic costs equivalent to 2.1% of Romania’s GDP
(Romanian Ministry of Transport, 2023).

Traditional traffic management in Romania
relies on fixed traffic signal timings and manual route
guidance, which fail to adapt to dynamic conditions
such as rush-hour surges, construction zones, or special
events. With the deployment of smart traffic sensors
(e.g., loop detectors, camera-based analytics) in 12
Romanian cities since 2021, there is now access to
real-time, high-frequency traffic data—but a lack of
mathematical tools to translate this data into actionable
management strategies. Mathematical optimization
methods, which excel at solving complex, multi-
constraint problems, offer a solution to bridge this gap
by optimizing signal timings, routing, and resource

allocation.

1.2 Research Significance

Theoretical significance: This study advances the
application of mathematical optimization in Eastern
European urban contexts, where traffic systems face
distinct challenges (e.g., mixed flows of private
cars, public transport, and informal vehicles; limited
budget for infrastructure upgrades). By adapting linear
programming and genetic algorithms to Romania’s
unique traffic patterns, we expand the generalizability
of optimization models beyond Western European or
North American case studies.

Practical significance: The hybrid optimization

model proposed here can be directly integrated into

Romania’s existing smart traffic infrastructure. For
example, in Bucharest’s Sector 1—where 40% of daily
congestion occurs— the model can adjust traffic signal
timings in real time based on sensor data, reducing
delays for 120,000 daily commuters. Additionally,
the model’s route optimization feature can support
Romania’s ongoing expansion of public transport
(e.g., Bucharest’s new metro line 6) by improving

connections between bus, tram, and metro networks.
1.3 Research Status: Romania and Beyond

1.3.1 International Research

Global studies have demonstrated the value of
mathematical optimization in traffic management.
Smith et al. (2021) used linear programming to
optimize traffic signal timings in London, reducing
intersection delays by 22%. In a study of Seoul, Kim
and Park (2022) applied genetic algorithms to dynamic
route planning, cutting travel time variance by 27%.
However, these models often assume well-maintained
infrastructure and homogeneous traffic flows—
conditions not always met in Romania.
1.3.2 Romanian Research

Domestic research on traffic optimization remains
limited but growing. Popescu et al. (2021) tested a
basic linear programming model for Bucharest’s signal
timings, achieving a 10% reduction in delays—but the
model lacked real-time data integration. Marinescu and
Ionescu (2022) used graph theory to map Cluj-Napoca’s
traffic networks but did not incorporate optimization
to improve flows. A key gap exists in hybrid models
that combine multiple optimization methods to address

Romania’s mixed traffic and infrastructure constraints.
1.4 Research Content and Methods

1.4.1 Research Content

The study focuses on three core objectives: (1)
Develop a hybrid optimization model integrating linear
programming (for signal timing), genetic algorithms
(for route planning), and graph-based routing (for
network analysis); (2) Validate the model using traffic
data from three Romanian cities (Bucharest, Cluj-

Napoca, lasi) between 2021-2023; (3) Propose policy
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recommendations for scaling the model to other
Romanian urban areas.
1.4.2 Research Methods

Data collection: Gather real-time traffic data
(vehicle counts, speed, queue lengths) from 500 smart
sensors in target cities, supplemented by historical data
from the Romanian National Road Authority (CNAIR)
and public transport operator (STB Bucharest).

Model development: Use linear programming to
optimize signal cycle lengths (minimizing intersection
delays), genetic algorithms to generate dynamic routes
(prioritizing time efficiency), and graph theory to
model traffic networks (nodes = intersections, edges =
road segments).

Empirical testing: Compare the model’s
performance to traditional systems in a 6-month trial
(January—June 2023) in Bucharest’s Sector 1, Cluj-

Napoca’s city center, and lasi’s Unirii Square area.

2. Mathematical Optimization Methods
for Traffic Management

2.1 Linear Programming for Traffic Signal
Timing

Linear programming (LP) is used to optimize
traffic signal timings at intersections, a critical factor
in reducing congestion. The goal is to determine
green light durations for each direction (e.g., north-
south, east-west) that minimize total delay, subject
to constraints such as maximum cycle length and

pedestrian crossing time.

2.1.1 Core Principles

In LP, the objective function is defined as the
total delay across all traffic streams at an intersection.
Delays are calculated based on vehicle arrival rates
(from sensor data) and green light duration. Constraints
include:

Cycle length constraint: Total signal cycle (sum
of green, yellow, and red phases) cannot exceed 120
seconds (to avoid excessive waits for pedestrians).

Green time minimum: Each direction must

have at least 15 seconds of green light to clear queued
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vehicles.

Pedestrian constraint: Crosswalk signals require
a minimum 10-second green phase to ensure safe
crossing.
2.1.2 Application in Romanian Cities

For Bucharest’s Piata Unirii intersection—one of
the busiest in the city, with 8,000 vehicles/hour during
peak hours—the LP model was calibrated using 2022
sensor data. The model adjusted green light durations
from fixed 45-second intervals to dynamic ranges (30—
60 seconds) based on real-time vehicle counts. During
a 1-month trial, this reduced average intersection delay
from 72 seconds to 48 seconds—a 33% improvement.

In Iasi, where intersections often have mixed
traffic (cars, trams, and bicycles), the LP model
was modified to include a "tram priority" constraint
(minimum 20-second green light for tram lanes). This
reduced tram delays by 25%, aligning with lasi’s goal
of increasing public transport ridership by 15% by
2025.

2.2 Genetic Algorithms for Dynamic Route

Planning

Genetic algorithms (GAs)—inspired by biological
evolution—are ideal for dynamic route planning, as
they can adapt to real-time changes (e.g., accidents,
road closures) by generating and refining candidate
routes.

2.2.1 Core Principles

GAs operate through three key steps:

Initialization: Generate a set of candidate routes
between an origin and destination (e.g., 50 routes from
Bucharest’s Otopeni Airport to Sector 1).

Selection: Evaluate each route’s fitness (e.g.,
travel time, distance, congestion level) and select the
top-performing routes to "reproduce."”

Crossover and mutation: Combine segments
of top routes (crossover) and introduce small changes
(mutation, e.g., swapping a side street for a main road)
to generate new routes. This process repeats until an

optimal route emerges.
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2.2.2 Application in Romanian Cities

In Cluj-Napoca, a city with narrow, medieval-
era streets prone to sudden congestion, the GA model
was integrated into a mobile app for commuters. The
app uses real-time sensor data to update routes every
5 minutes. During a 3-month trial (March—-May 2023),
6,000 users reported an average travel time reduction
of 19% compared to using static GPS routes.

For commercial fleets (e.g., delivery vans in
Bucharest), the GA model was extended to minimize
total fleet travel time, not just individual routes. This
reduced fleet fuel consumption by 12%, a significant
benefit for Romanian logistics companies facing rising

fuel costs.

2.3 Graph-Based Routing for Network
Analysis

Graph theory models traffic networks as graphs,
where nodes represent intersections and edges represent
road segments (weighted by travel time, distance, or
congestion level). This helps identify bottlenecks and

optimize network-wide flow.

2.3.1 Core Principles

Key graph metrics used include:

Degree centrality: Nodes (intersections) with
high connectivity (many edges) are identified as
potential bottlenecks.

Betweenness centrality: Nodes that lie on the
most shortest paths are prioritized for congestion
mitigation (e.g., signal optimization).

Edge weight update: Road segment weights
(travel time) are updated in real time using sensor data,

ensuring the graph reflects current conditions.

2.3.2 Application in Romanian Cities

In Bucharest, the graph model identified 12
"critical nodes" (e.g., Piata Victoriei, Calea Victoriei)
that accounted for 45% of total city congestion. The
model recommended targeted interventions: expanding
sidewalks to reduce pedestrian-vehicle conflicts at Piata
Victoriei, and adding a dedicated bus lane on Calea
Victoriei. After implementation in late 2022, these

nodes saw a 28% reduction in congestion duration.

In Cluj-Napoca, the graph model was used to
plan a new bicycle lane network, connecting residential
areas to the city center. The model identified low-
betweenness edges (quiet streets) as ideal for bicycle
lanes, reducing conflicts with cars and increasing

bicycle ridership by 30% in the first year.

3. Hybrid Optimization Model
Construction

3.1 Model Framework

The hybrid model integrates linear programming
(LP), genetic algorithms (GA), and graph-based routing
into a single, cohesive system. The framework has
three layers, with data flowing sequentially between

them:

3.1.1 Data Input Layer

Collects multi-source traffic data:

Real-time data: Vehicle counts, speed, and
queue lengths from 500 smart sensors (deployed by
Romania’s Ministry of Transport) and 200 traffic
cameras (managed by local police).

Historical data: 3 years of travel time records
(2021-2023) from CNAIR, STB Bucharest, and ride-
hailing platforms (e.g., Bolt Romania).

Contextual data: Construction zones, special
events (e.g., Bucharest’s George Enescu Festival), and
public transport schedules (tram, bus, metro).

All data is preprocessed to remove outliers (e.g.,
sensor malfunctions) and standardized to a common

format (timestamp, location, vehicle type).

3.1.2 Optimization Layer

The core layer, where three methods work in
tandem:

Graph-based routing: First models the traffic
network as a graph, updating edge weights (travel
time) using real-time data. This identifies critical nodes
(bottlenecks) to prioritize for LP optimization.

Linear programming: Optimizes signal
timings at critical nodes, using vehicle arrival rates
from sensors to adjust green light durations. Results

(optimized timings) are fed back to the graph to update
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edge weights.

Genetic algorithms: Generates dynamic routes
for commuters and fleets, using the updated graph (with
optimized signal timings) to calculate route fitness.
Routes are updated every 5 minutes to reflect new

conditions.

3.1.3 Output Layer

Delivers actionable outputs to stakeholders:

For traffic managers: Real-time signal timing
adjustments (sent to traffic control centers in Bucharest,
Cluj-Napoca, and Iasi) and weekly congestion reports.

For commuters: Dynamic route
recommendations (via mobile apps, SMS alerts, and
road signs).

For policymakers: Long-term insights (e.g.,
bottleneck locations for infrastructure upgrades)
and environmental impact reports (CO: reduction

estimates).

3.2 Model Calibration for Romanian Traffic

Conditions

The model was calibrated to address unique
challenges of Romanian traffic:

Mixed traffic: The LP model includes a "vehicle
type" parameter, assigning higher priority to trams
and buses (to support public transport) and adjusting
green times for slower-moving vehicles (e.g., delivery
trucks).

Aging infrastructure: The graph model weights
road segments by pavement condition (from CNAIR’s
2022 infrastructure report), avoiding routes with
frequent potholes that cause slowdowns.

Seasonal variation: In winter (November—
February), when snow and ice increase travel times,
the GA model adds a "weather factor" to route fitness,
prioritizing main roads (which are plowed first) over

side streets.

4. Empirical Testing in Romanian
Cities

4.1 Test Design
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A 6-month trial (January—June 2023) was
conducted in three Romanian cities, with the hybrid
model tested against traditional traffic management
systems (fixed signal timings, static routes). Key test
areas included:

Bucharest: Sector 1 (25 intersections, 100
sensors) and the Otopeni Airport—Sector 1 corridor.

Cluj-Napoca: City center (18 intersections,
80 sensors) and the Cluj-Napoca Railway Station—
University area.

Iasi: Unirii Square (12 intersections, 60 sensors)
and the Iasi International Airport—City Center route.

Performance metrics included:

Congestion duration: Time spent in traffic
moving < 20 km/h.

Average travel time: Time to traverse key
corridors.

Public transport delay: Time lost by buses and
trams at intersections.

CO: emissions: Measured via sensor data and

vehicle count.

4.2 Test Results

4.2.1 Bucharest

Congestion duration: Reduced by 28% in Sector
1 (from 120 minutes/day to 86 minutes/day) and 22%
on the Otopeni Airport corridor.

Average travel time: Cut by 19% on the airport
corridor (from 45 minutes to 36 minutes).

Public transport delay: Bus delays decreased
by 31% at Sector 1 intersections, increasing on-time
performance from 62% to 83%.

CO: emissions: Reduced by 14% in Sector 1,

equivalent to 1,200 fewer tons of CO2 over 6 months.

4.2.2 Cluj-Napoca

Congestion duration: Decreased by 24% in the
city center (from 95 minutes/day to 72 minutes/day).

Average travel time: Reduced by 17% on the
railway station—university route (from 30 minutes to 25
minutes).

Bicycle ridership: Increased by 30% due to
optimized bicycle lane routes, aligning with Cluj-

Napoca’s "Green City" initiative.
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4.2.3 Iasi

Congestion duration: Fell by 21% around Unirii
Square (from 105 minutes/day to 83 minutes/day).

Tram delay: Tram delays decreased by 27% at
Unirii Square intersections, improving tram ridership
by 12%.

4.3 Comparison to Traditional Systems

Across all three cities, the hybrid model
outperformed traditional systems:

Congestion reduction: 2-3x more effective
than fixed signal timings (traditional systems reduced
congestion by only 8-12%).

Travel time savings: 1.5x greater than static GPS
routes (traditional routes cut travel time by 10—-13%)).

Public transport improvement: 2x more
effective at reducing bus/tram delays (traditional
systems improved on-time performance by only 10—
15%).

5. Limitations and Future Directions

5.1 Limitations

5.1.1 Data Coverage Constraints

The model relies heavily on data from smart
sensors, which are currently only deployed in 12 major
Romanian cities (e.g., Bucharest, Cluj-Napoca, lasi).
Smaller cities (e.g., Timisoara, Brasov) and rural-
urban fringe areas lack sufficient sensor infrastructure,
making it difficult to apply the model universally.
Additionally, sensor data in some older neighborhoods
of Bucharest (e.g., Sector 5) is incomplete due to
outdated equipment, leading to minor inaccuracies in
signal timing optimization.
5.1.2 Integration with Informal Traffic Elements

Romanian traffic often includes informal
elements such as street vendors, unregistered vehicles,
and pedestrian jaywalking—factors that are not fully
captured in the current model. For example, street
vendors in Cluj-Napoca’s historic center occasionally
block road segments, causing unexpected congestion
that the model cannot predict in real time, as these

events are not recorded in formal data sources.

5.1.3 Interoperability with Existing Systems

Romania’s traffic management infrastructure
is fragmented, with different cities using different
control systems (e.g., Bucharest uses Siemens
traffic controllers, while lasi uses local Romanian-
developed software). The hybrid model requires
custom integration with each system, increasing
deployment costs and complexity. In some cases, this
interoperability issue delayed the model’s trial in lasi
by 2 weeks.
5.1.4 Weather-Related Adaptability Gaps

While the model includes a basic "weather factor"
for winter conditions, it does not fully account for
extreme weather events such as heavy rain, fog, or
heatwaves—all of which significantly impact traffic
flow in Romania. For example, heavy rain in Bucharest
in May 2023 caused flooding on Calea Mosilor,
leading to a 40% increase in travel time that the model

underestimated by 15%.

5.2 Future Research Directions

To address the above limitations and expand the
model’s impact, future research will focus on four key

areas:

5.2.1 Expand Data Infrastructure for Smaller Cities

Collaborate with Romania’s Ministry of Transport
to deploy low-cost sensors (e.g., solar-powered
traffic counters) in 8 additional medium-sized cities
(Timisoara, Brasov, Constanta, etc.) by 2025. Develop
a "lightweight" version of the model that requires fewer
data inputs, using historical traffic patterns and satellite
imagery to supplement limited real-time data in rural-

urban areas.

5.2.2 Incorporate Informal Traffic Data

Integrate alternative data sources to capture
informal traffic elements, such as:

°Crowdsourced data from commuter apps (e.g.,
Waze, Bolt) to identify street vendor blockages or
unregistered vehicles;

°Camera-based computer vision (using existing
traffic cameras) to detect pedestrian jaywalking and

adjust signal timings accordingly.
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A pilot study in Bucharest’s Sector 5 will test this

integration, with initial results expected by late 2024.

5.2.3 Develop a Unified Integration Platform
Partner with Romanian tech firms (e.g.,
UiPath, Endava) to build a unified API (Application
Programming Interface) that connects the hybrid model
to all major traffic control systems used in Romania.
This platform will reduce deployment time by 50% and
lower integration costs by standardizing data formats

and communication protocols.

5.2.4. Enhance Weather and Extreme Event
Adaptability

Integrate real-time weather data from Romania’s
National Meteorological Administration (ANM)
into the model, with machine learning algorithms to
predict traffic flow changes during extreme weather.
For example, the model will learn to adjust route
recommendations 1-2 hours in advance of heavy rain,
prioritizing elevated roads (e.g., Bucharest’s Mihai

Bravu overpass) that are less prone to flooding.

6. Conclusions and Policy
Recommendations

6.1 Main Conclusions

This study develops and validates a hybrid
mathematical optimization model for urban traffic

management in Romania, with three key findings:

6.1.1 Mathematical Optimization Delivers Tangible
Traffic Improvements

The integration of linear programming (signal
timing), genetic algorithms (route planning), and
graph-based routing (network analysis) reduces peak-
hour congestion by 21-28% and cuts average travel
time by 17-19% across Bucharest, Cluj-Napoca, and
lasi. These results outperform traditional traffic systems
by 2-3x, demonstrating the value of data-driven
mathematical methods in addressing Romania’s unique

traffic challenges.
6.1.2 Model Calibration to Local Context is Critical

Adapting the model to Romania’s mixed traffic
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(cars, trams, bicycles), aging infrastructure, and
seasonal weather conditions is essential for success.
For example, adding a "tram priority" constraint in
lasi reduced public transport delays by 27%, while
weighting road segments by pavement condition in

Bucharest minimized slowdowns from potholes.

6.1.3 Scalability Requires Infrastructure and Policy
Support

While the model works effectively in major cities,
its expansion to smaller areas and full integration with
existing systems depends on investments in sensor
infrastructure and cross-city collaboration. Without
these, the model’s impact will remain limited to

Romania’s largest urban centers.

6.2 Policy Recommendations

To maximize the model’s benefits and advance
sustainable urban mobility in Romania, we propose
five policy actions for government agencies, local

authorities, and private stakeholders:

6.2.1 For Romania’s Ministry of Transport

Fund Sensor Infrastructure Expansion:
Allocate 15 million RON (=3 million EUR) in the
2024-2025 budget to deploy low-cost traffic sensors in
8 medium-sized cities (Timisoara, Bragov, Constanta,
Craiova, Galati, Ploiesti, Braila, Oradea). Prioritize
areas with high commuter traffic (e.g., Timisoara’s
E671 highway corridor) to ensure immediate impact.

Mandate Data Sharing Standards: Issue a
regulation requiring all city traffic control systems to
adopt the unified API (developed in Section 5.2.3) by
2026. This will eliminate interoperability barriers and
allow the model to be deployed nationwide at lower

cost.

6.2.2 For Local City Governments

Pilot the Model in High-Congestion Zones: For
cities without full sensor coverage (e.g., Brasov), start
with a 3-month pilot in high-congestion areas (e.g.,
Brasov’s Piata Sfatului) using existing camera data
and crowdsourced inputs. Use pilot results to secure
additional funding for sensor deployment.

Integrate with Public Transport Plans: Align
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the model’s route optimization with public transport
expansion projects, such as Bucharest’s metro line 6
(scheduled to open in 2026) and Cluj-Napoca’s new
tram network. For example, use the model to adjust bus
routes to connect with metro stations, increasing public
transport ridership by 10-15%.
6.2.3 For Private and Academic Stakeholders
Collaborate on Low-Cost Sensor Development:
Partner with Romanian universities (e.g., University
of Bucharest, Polytechnic University of Timisoara) to
develop affordable, locally produced traffic sensors
(costing <500 RON each) that are compatible with
the model. This will reduce reliance on imported
equipment and lower long-term maintenance costs.
Launch a Commuter Engagement Campaign:
Work with ride-hailing and navigation apps (Bolt,
Waze) to promote the model’s dynamic route
recommendations to users. For example, offer small
incentives (e.g., 5% discount on Bolt rides) for
commuters who follow the model’s routes, increasing

adoption and improving overall traffic flow.

6.3 Future Outlook
By 2027, the hybrid optimization model has the

potential to reduce national urban traffic congestion
by 20-25%, cut CO:2 emissions from road transport by
12—-15%, and save Romanian commuters an average
of 40—-50 hours annually in traffic delays. These
improvements will not only enhance quality of life for
residents but also support Romania’s broader goals
of reducing greenhouse gas emissions (per the EU’s
Green Deal) and improving economic productivity by
reducing time lost to congestion.

Ultimately, the model demonstrates how
mathematical optimization—tailored to local context—
can transform urban mobility in Eastern Europe,
offering a scalable blueprint for other countries facing
similar challenges of aging infrastructure, mixed traffic,

and limited resources.

7. Extension Research: Adaptation of
the Optimization Model to Small and

Medium-Sized Romanian Cities

While the hybrid optimization model has
demonstrated significant effectiveness in Romania’s
major cities (Bucharest, Cluj-Napoca, lasi), small
and medium-sized cities (SMSCs) such as Timisoara,
Bragov, and Constanta face distinct traffic challenges—
yet lack the sensor infrastructure and technical capacity
to adopt the full model. This chapter presents targeted
research on adapting the model to SMSCs, including
traffic characteristic analysis, lightweight model design,

and pilot validation, to promote nationwide scalability.

7.1 Traffic Characteristics of Romanian
SMSCs

Romanian SMSCs (defined by the National
Institute of Statistics as cities with populations
between 50,000 and 200,000) exhibit four key traffic
characteristics that differ from major cities, requiring

model adjustments:

7.1.1 Lower Traffic Volume but Higher Variability
SMSC traffic volumes are 30-50% lower than
in Bucharest (e.g., Timisoara’s peak-hour vehicle
count is 4,200 vehicles/hour, compared to 8,000 in
Bucharest’s Sector 1). However, variability is higher
due to irregular events: for example, Brasov’s annual
Oktoberfest attracts 50,000+ visitors, increasing traffic
volume by 200% over 3 days, while Constanta’s
summer tourism season (June—August) doubles coastal
road traffic. This variability makes static signal timings
(still used in 80% of SMSCs) ineffective, as they

cannot adapt to sudden surges.

7.1.2 Mixed Traffic Dominated by Private Vehicles
Unlike Bucharest (where public transport
accounts for 35% of daily trips), SMSCs rely heavily
on private vehicles (70-80% of trips), with limited
public transport options (e.g., Timisoara has only 2
tram lines, compared to Bucharest’s 14). Additionally,
informal vehicles (e.g., small delivery vans, agricultural
vehicles in rural-urban fringes) make up 15-20% of
traffic in SMSCs, causing frequent slowdowns due to
size mismatches with urban roads (e.g., narrow streets

in Brasov’s historic center).
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7.1.3 Limited Sensor and Technical Infrastructure
Only 3 of Romania’s 18 SMSCs (Timisoara,
Brasov, Constanta) have basic traffic sensors, and
none have dedicated traffic management centers.
Most SMSCs rely on manual traffic control (e.g.,
police officers at key intersections) and paper-based
traffic data records, leading to incomplete data for the
full model. Technical capacity is also limited: 60%
of SMSC transport departments have fewer than 2
staff with data analysis skills, compared to 810 in

Bucharest.

7.1.4 Strong Rural-Urban Linkages

SMSC traffic is heavily influenced by rural
commuters: for example, 40% of Timigoara’s morning
traffic comes from surrounding villages (e.g., Giarmata,
Sanmihaiu Roman), creating concentrated congestion
on rural-urban corridors (e.g., DN6 in Timigoara).
These corridors often lack sidewalks and bike lanes,
increasing conflicts between pedestrians, cyclists, and
vehicles—a factor not fully addressed in the original

model.

7.2 Design of a Lightweight Optimization
Model for SMSCs

To address these characteristics, a "lightweight"
version of the hybrid model was developed, with
three key modifications to reduce data and technical
requirements:

7.2.1 Simplified Data Inputs

The lightweight model replaces the full model’s
12 data inputs with 5 core, easily accessible inputs:

Daily traffic counts: Collected via low-cost,
solar-powered sensors (costing ~450 RON each)
deployed at 3-5 key intersections per city (e.g., Piata
Unirii in Timisoara, Piata Sfatului in Brasov). These
sensors require minimal maintenance and transmit data
via 4G to a cloud-based platform (accessible via a web
browser, no specialized software needed).

Historical event calendars: Provided by local
governments (e.g., Brasov’s Oktoberfest, Constanta’s
Sea Festival) to predict traffic surges 1-2 weeks in

advance.
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Road network maps: Open-source maps from
OpenStreetMap, pre-processed to highlight critical
corridors (e.g., rural-urban links) and narrow streets
(prone to informal vehicle congestion).

Public transport schedules: Shared by local
operators (e.g., Timisoara’s RATT) to prioritize bus/
tram routes in signal timing.

Weather forecasts: Integrated from ANM’s free
API to adjust for rain, fog, or snow—key for SMSCs
with limited snow-clearing capacity.

This simplification reduces data collection costs
by 70% compared to the full model, making it feasible
for SMSCs with limited budgets.

7.2.2 Streamlined Optimization Methods

The lightweight model retains the full model’s
three core methods but streamlines their complexity:

Graph-based routing: Uses a simplified graph
with only 20-30 nodes (intersections) per city (Vvs.
100+ in Bucharest), focusing on critical corridors. Edge
weights are updated daily (vs. hourly in the full model)
to reduce computational load.

Linear programming: Optimizes signal timings
for only 3-5 key intersections (vs. 25+ in Bucharest),
with fixed cycle lengths (90 seconds) to simplify
calculations. A "special event mode" is added to extend
green times for event-related traffic (e.g., festival
attendees in Brasov).

Genetic algorithms: Generates 10 candidate
routes (vs. 50 in the full model) for commuters, with
fitness based on travel time and road width (to avoid
narrow streets for large vehicles). Routes are updated
weekly (vs. every 5 minutes) via a simple mobile
app (available for Android/iOS, no technical training
required).

These adjustments reduce computational
requirements, allowing the model to run on standard
laptops (vs. dedicated servers for the full model)—

critical for SMSCs without technical infrastructure.
7.2.3 User-Friendly Interface
A web-based interface was developed for the

lightweight model, designed for users with limited

technical skills. The interface has three tabs:
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Data Upload: Allows users to input traffic counts
and event calendars via Excel spreadsheets (no coding
required).

Optimization Results: Displays signal timing
recommendations (e.g., "Green light for north-south
direction: 40 seconds") and route maps (visualized with
color-coded corridors).

Report Generator: Automatically generates
monthly PDF reports with key metrics (e.g.,
"Congestion reduced by 15% on DNG6 corridor") for
local government meetings.

User testing with Timisoara’s transport department
showed that staff could master the interface in 2 hours
of training—far less than the 8 hours needed for the full

model.

7.3 Pilot Validation in Timisoara and Brasov

A 4-month pilot (July—October 2023) was
conducted in Timisoara (medium-sized, population
319,000) and Brasov (small-sized, population 267,000)
to test the lightweight model. The pilot focused on two
key objectives: evaluating performance and assessing
usability.

7.3.1 Performance Results

In Timisoara, the model was deployed on the DN6
corridor (connecting the city center to rural areas) and
at Piata Unirii (a busy downtown intersection):

Congestion duration: Reduced by 21% on the
DNG6 corridor (from 75 minutes/day to 60 minutes/day)
during the summer tourism season.

Average travel time: Cut by 16% on the DN6
corridor (from 32 minutes to 27 minutes), with
particularly strong results during weekend tourism
surges (22% reduction).

Signal timing efficiency: Piata Unirii’s
intersection delay decreased by 24% (from 65 seconds
to 49 seconds), as the model’s "special event mode"
adapted to concerts at the nearby Banatul Philharmonic.

In Brasov, the model was tested on the Poarta
Schei corridor (historic center) and during Oktoberfest
(September 2023):

Congestion duration: Reduced by 18% on Poarta
Schei (from 68 minutes/day to 56 minutes/day), with a

25% reduction during Oktoberfest (when traffic volume
peaked at 8,500 vehicles/hour).

Informal vehicle conflicts: Decreased by 30%
on Poarta Schei, as the model’s route recommendations
avoided narrow streets for large delivery vans.

Public transport delay: Bus delays on the
corridor decreased by 19% (from 42 seconds to 34
seconds), improving on-time performance from 68% to
82%.

These results, while slightly lower than the full
model’s performance in major cities, are significant
for SMSCs—especially given the 70% lower
implementation cost.

7.3.2 Usability Assessment

A survey of 15 staff from Timisoara and Brasov’s
transport departments (conducted post-pilot) evaluated
the model’s usability:

Ease of use: 87% of respondents rated the web
interface as "easy" or "very easy" to use, with no
reported issues with data upload or result interpretation.

Technical capacity fit: 93% stated the model did
not require additional technical staff, and 80% reported
using the monthly reports in government meetings.

Cost satisfaction: 100% of respondents
considered the model’s cost (=15,000 RON per city)
"reasonable" or "very reasonable," compared to the full
model’s =50,000 RON.

Key feedback included requests for a "weather
alert" feature (to automatically adjust routes during
heavy rain) and integration with local parking apps—
both of which will be added in the next model update.

7.4 Scaling Strategy for Romanian SMSCs

Based on the pilot results, a three-phase scaling
strategy is proposed to deploy the lightweight model to
all 18 Romanian SMSCs by 2026:

7.4.1 Phase 1: Priority Cities (2024)

Focus on 5 SMSCs with the highest traffic
challenges and existing basic infrastructure: Timigoara,
Brasov, Constanta, Craiova, and Galati. The strategy
includes:

Sensor deployment: Provide 5 low-cost sensors

per city (funded by EU cohesion funds via Romania’s
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Ministry of European Funds).

Training: 2-day workshops for transport
department staff, covering data collection, model use,
and report generation.

Technical support: Monthly check-ins with the
research team (via Zoom) to address issues and collect
feedback.

7.4.2 Phase 2: Expansion Cities (2025)

Deploy to 7 additional SMSCs: Ploiesti, Braila,
Oradea, Arad, Sibiu, Bacau, and Targu Mures. Key
actions include:

Infrastructure sharing: Encourage adjacent
cities (e.g., Arad and Timisoara) to share sensor data
and model results, reducing costs by 30%.

Local partnerships: Collaborate with local
universities (e.g., University of Sibiu) to train student
interns as "model ambassadors," providing ongoing
support to transport departments.

7.4.3 Phase 3: National Coverage (2026)

Complete deployment to the remaining 6 SMSCs:
Drobeta-Turnu Severin, Focsani, Pitesti, Ramnicu
Vilcea, Suceava, and Vaslui. This phase will include:

National data platform: Launch a centralized
platform to aggregate data from all SMSCs, allowing
for cross-city comparisons and national traffic trend
analysis.

Policy integration: Work with Romania’s
Ministry of Transport to include the lightweight model
in the 2026-2030 National Urban Mobility Strategy,
making it a standard tool for SMSCs.

This strategy, when implemented, will ensure that
80% of Romania’s urban population benefits from data-
driven traffic optimization by 2026, aligning with the

EU’s goal of sustainable urban mobility for all regions.

7.5 Conclusion of Extension Research

The lightweight optimization model addresses the
unique challenges of Romanian SMSCs by simplifying
data inputs, streamlining methods, and designing a
user-friendly interface. Pilot results in Timisoara and
Brasov demonstrate that the model reduces congestion
by 18-21% and travel time by 16-22% at 70% lower
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cost than the full model. The three-phase scaling
strategy will enable nationwide deployment by 2026,
ensuring that SMSCs—Ilong overlooked in traffic
management research—can access the same data-driven
tools as major cities. This extension not only enhances
the model’s practical value but also contributes to a

more equitable approach to urban mobility in Romania.
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