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The authors discuss an integrated modelling approach for improving 
flight operations at major commercial airports. Statistical models, built 
with microdata from hundreds of thousands of flights, are embedded in a 
process-oriented discrete-event simulation model with two-dimensional 
geo-spatial characteristics and logical structures based on the concept of 
staged queues. With results from three application settings, the authors 
illustrate the wealth of information that this modelling framework can 
provide for collaborative planning of airport infrastructure and flight 
operations. Novel about this work are (1) the use of microdata to construct 
multivariate statistical models for delay propagation at the focal airport and 
their use to provide time-dependent and situation-dependent parameters 
for stochastic behaviour in the simulation model, (2) rigorous validation of 
the simulation model against historical performance, and (3) creation of an 
integrated analytical platform for strategic decision support.
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1. Introduction

The efficiency with which flight operations occur at 
commercial airports is determined by physical infrastruc-
ture (runways, taxiways, ramps, passenger terminals, 
gates), resources available for ground service (such as 
tractors for pushbacks and de-icing equipment), and inter-
dependent activities in three major spheres: air traffic con-

trol (ATC), airport operations control (AOC), and mainte-
nance services. ATC personnel coordinate flights between 
airports. ATC ground controllers control aircraft move-
ments through networks of taxiways between runways and 
parking positions. AOC personnel assign parking gates or 
remote parking stands for passenger aircraft and re-assign 
parking spots (gates) as necessary if designated parking 
spots are occupied when an aircraft arrives. Maintenance 
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personnel service aircraft and prepare them for departure. 
Investments in airport infrastructure (e.g., new runways 

and terminal modifications) cost billions of dollars, and 
years are required to perform environmental assessments, 
design physical facilities and complete construction. 
Airport planning thus requires a long-term strategic view 
and collaborative engagement of major stakeholders is 
required to encourage the best use of airport facilities. 
Analytical models are required to assess how changes in 
airport infrastructure, supporting resources, and operating 
practices may affect scheduled airline service, air cargo 
operations and general aviation [1-3]. Questions frequently 
encountered in the planning and management of airport 
operations include:

1) What is the operating capacity of an airport with a 
particular physical configuration, supporting resources, 
and operating practices?

2) What are the major constraints in accommodating 
future growth in traffic?

3) How would flight delays be affected by altering 
scheduled arrival and departure times for existing flights 
or adding new flights to the schedule?

4) How might pushbacks (departures from gates) be 
regulated to reduce taxi times, fuel burned by planes on 
the ground and resulting air pollution?

5) What is the consequence of changing how runways 
are used for arrivals and departures?

6) How does performance depend on the positioning 
and range of activity of tractors used to push back aircraft 
that are parked at gates or parking stands and require such 
service?

7) What would happen if a runway were closed for ma-
jor repairs and traffic must be diverted to other runways?

8) How would operating performance be affected by 
using remote parking stands for aircraft and bussing pas-
sengers to the airport terminal?

9) How vulnerable is an airport’s performance to delays 
or airspace restrictions at connected hub airports?

10) How would performance depend on alternative 
assignments of preferred parking positions (gates) to indi-
vidual flights and on rules for selecting alternative parking 
sections if preferred spots are unavailable when an aircraft 
arrives? 

In this paper, we demonstrate a unique melding of sta-
tistical modelling and discrete-event simulation to address 
these questions. With microdata from transponder read-
ings that track aircraft movements on the ground as well 
as in the air, we construct multivariate statistical models 
for delay propagation at the focal airport. We use these 
statistical models to provide time-dependent and situa-
tion-dependent parameters for stochastic behaviour in the 

simulation model. We discuss the simulation model’s de-
velopment and validation for flight operations at Charlotte 
Douglas Airport (CLT), a major U.S. hub for the world’s 
largest airline. Then, with simulation results addressing 
questions 3-5 at CLT and in two other settings, we demon-
strate the type of insight that this modelling approach can 
provide.

2. Related Research

Mathematical optimization, queueing models, statistical 
models and computer simulation have been applied widely 
in airport planning and operational research. Mathematical 
optimizing models have been applied to problems involving 
the timing of pushbacks, sequencing arrivals or departures, 
performing services such as de-icing aircraft, and optimiz-
ing movements through taxiways [4-10]. These operational 
research (OR) models, however, tend to ignore stochastic 
aspects of system behaviour and interactions that must occur 
with other parts of the system [11-14]. 

Sophisticated three-dimensional simulation models 
such as SIMMOD, which the Federal Aviation Adminis-
tration maintains, the Total Airspace and Airport Model-
ler (TAAM), and the Multi-Agent Transport Simulation 
(MATSim) represent aircraft movements with remarkable 
realism, and have been used for decades to study air traf-
fic control procedures and airport capacity [15-31]. Effective-
ly, these models take a set of flight plans for individual 
aircraft, with a stipulated departure time, starting position 
and ending position; determine shortest paths in taxi net-
works; simulate the movement of the airplanes through 
taxiway systems to the assigned runway for take-off; 
simulate the flight in three dimensions from waypoint to 
waypoint; simulate the approach to an assigned runway; 
and simulate movements on taxiways to the destination 
gate. There is some provision in these models for random 
variation in departure times and in the time required for 
specific simulated activities. These models are excellent 
for studying system behaviour in microscopic detail but 
they carry enormous overhead for studies that are more 
strategic in nature. Multiple runs to test alternative oper-
ating practices can take many hours to complete. Further, 
they do not consider external factors that contribute to 
systematic delays in arrivals and work involved in servic-
ing aircraft as they are prepared for departure.

To consider stochastic effects when estimating out-
bound taxi times, Simaiakis and Balakrishnan [32] used ana-
lytical queueing models to predict aggregate taxi-out times 
and departure queues by time of day. Ravizza et al. [33]  
used regression to demonstrate systematic variance in taxi 
times depending on whether the aircraft is arriving or de-
parting, distances involved, and number of planes ahead 
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taxiing to the same position. Lordan et al. [34] similarly 
used a log-linear regression model to predict inbound and 
outbound taxi times depending on the day of the week and 
the number of aircraft taxiing inbound and outbound. 

Bubalo et al. [35] investigated the impact of allowing 
a 15-minute window around scheduled departure times 
when releasing planes for departures. They generated 
pushback sequences with a neighbourhood search heu-
ristic and tested the efficacy of their revised sequences 
by driving their solutions through multiple replications 
of the SIMMOD model with some stochastic variation in 
ramp and pushback times. They discarded replications in 
which SIMMOD failed to complete a full day’s schedule 
because of gridlock at intersections (which would require 
refinement in the model’s logic to resolve). Despite pos-
sible bias from rejecting replications with gridlock, the 
authors demonstrated that substantial reductions in emis-
sions might occur with careful staging of pushbacks when 
taxiways are congested. They did not consider interactions 
between arriving and departing aircraft.

Another stream of research deals with the propagation 
of delays in airline service networks. AhmadBeygi et al. [36] 
consider downstream itineraries for crew and pilots, along 
with slack in turnaround schedules, to generate estimates 
of the extent to which individual flights pose a risk of 
propagating delays. Campanelli et al. [37] used agent-based 
simulation to represent the flow of aircraft through their 
schedules for a day to compare slot-allocation procedures 
in the U.S. and Europe. Pyrgiotis et al. [38] mapped down-
stream itineraries of aircraft departing from an airport and, 
considering slack between subsequent scheduled arrival 
and departure times, used analytical queueing methods 
(with airports treated as having single servers for arrivals 
and departures respectively) to estimate how delays would 
propagate under different service rates in each airport. Du 
et al. [39] used a casualty network to study flight delays. 
They found that the causes of delay vary considerably 
among airports, and that to understand fully the reasons 
for departure delays, the operations at individual airports 
need to be modelled deliberately. Each of these studies 
relies on exogenous estimates of throughput capacity at 
individual airports. None provides mechanisms for assess-
ing the impact of specific changes to airport infrastruc-
tures and operating practices.

Seeking a productive balance between realism and an-
alytical efficiency, Smith et al. [40,41] have simulated flight 
and ground operations at individual airports as processes 
involving entities (aircraft) in networks of staged queues 
with two-dimensional geo-spatial characteristics. They 
take into account the ways that aircraft can be maneu-
vered in tight areas on the airport surface and procedures 

employed by air traffic control (ATC) to regulate traffic 
flows. Embedded in the simulation models are statistical 
models that incorporate systematic (time-dependent and 
entity-dependent) variation in simulation parameters. We 
employ this approach in the present setting and organize 
our presentation as follows. In Section 3, we describe 
features of the discrete-event simulation model construct-
ed for prescriptive analysis. In Section 4, we describe 
how microdata from hundreds of thousands of individual 
flights were used to construct statistical models used in 
the simulation model for estimating likelihood of flight 
delays, lengths of delay when they occur, and times re-
quired to prepare aircraft for subsequent departures. In 
Section 5, we describe the model validation process and 
present related statistics that demonstrate the efficacy of 
the model to represent actual flight operations at Charlotte 
Douglas Airport. Section 6 provides illustrations of insight 
from simulation experiments in several settings. Section 7 
contains concluding remarks. 

3. Research Method 

A discrete-event simulation model [41] represents flight 
operations at a focal airport including the final approach of 
aircraft to assigned runways, their movements on the air-
port’s surface, and departures from assigned runways. The 
model is constructed in Arena 14.7 as a process-oriented 
simulation with two-dimensional geo-spatial dimension. 
Aircraft are the simulated entities. Simulated aircraft taxi 
inbound from the point of landing to a designated parking 
location (terminal gate or parking stand). They are pre-
pared for their next scheduled departure, are pushed back 
from their parking location, and then they taxi to their 
assigned runway for departure. Finally, with stipulated 
separation for safety, the aircraft take off and are removed 
from the model. They are processed through networks of 
staged queues which realistically represent actual airport 
operations. In the CLT setting, for example, there are 368 
queues for 313 resources and 55 logical holding condi-
tions in which entities (aircraft) may be placed as they 
proceed through the simulation logic [42]. 

Dozens of attributes associated with the aircraft (flight 
schedules, aircraft characteristics, critical event times, as-
signed runways, parking locations, etc.) are used to moder-
ate the process flow. Resources used by the aircraft include 
segments of airspace, runways, taxiways, intersections, 
and staging areas on the field where aircraft may be posi-
tioned pending clearance to advance further; ramp areas 
near terminal gates, passenger gates, remote parking stands 
from which passengers might alternatively be bussed to the 
terminal; and tractors and tractor operators required to push 
back the aircraft when they are ready to depart. 
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The model is superimposed on the airport diagram 
used by ATC and pilots with proper scale (see Figure 1). 
We identify points on the airport surface where aircraft 
may be staged as they progress from runways to gates and 
vice versa. Routes between staging points across ramps 
and along taxiways are mapped, and aircraft are directed 
to the next staging point depending on the runways to be 
used for landings and take-offs of individual flights and 
which staging points between their current position and 
airport destination (gate or runway) can accommodate 
them. Stipulated separations are imposed by controlled 
releases of aircraft about to approach and depart from the 
airport. Landing aircraft receive priority in runway use 
over departing aircraft. Departing aircraft cannot enter a 
runway for take-off if an arriving aircraft is on “short final 
approach” to that runway. 

Parking sections at airport terminals are designated that 
have common staging points for arrivals and departures 
at a group of gates (blue dots in Figure 1). Arriving air-
craft are staged in queues in one area of the ramp pending 
the availability of a gate (and clear path to it). Departing 
aircraft (which may be held on the ground by ATC for 
weather or the control of traffic flow in congested areas) 
are staged at another area if they must clear a gate to ac-
commodate arriving aircraft. Standard routings are used 
through taxiways between parking sections and runways. 

We simulate operations for a full 24-hour day be-
ginning at midnight. Aircraft scheduled to have arrived 
“yesterday” and departed “today” are placed in parking 
positions as part of the initial setup. Arrivals “today” are 
generated externally by SAS with systematic and random 
components of variation and placed on a flat file in order 
of their simulated arrival times at the “final approach 
fix” for the designated runway specific to the flight. The 
externally generated arrivals are read, with all the flight 
details, by the Arena model and then proceed through the 
process-oriented simulation logic. Non-scheduled flights 
such as general aviation and some air cargo activity are 
generated within the Arena model using nonstationary 
exponential inter-arrival times. They are generated at 
the maximum rates that occur in any hour of the day and 
“thinned” randomly to create proper time-of-day patterns 
and assigned to parking areas randomly with stipulated 
frequencies.

Simulated traffic movements are controlled by signals 
that indicate the direction of flow and the capacities of 
resources such as ramps, runways and taxiways to ac-
commodate aircraft. We use lognormal distributions for 
elemental activity times involving physical movements 
of aircraft. Simulated times for aircraft to move between 

points on the field are determined by the physical distance 
involved and the taxi speed of the aircraft. 

Figure 1. Airport template for simulation at Charlotte, 
NC.

The model is animated with activity dashboards that 
show, at any point in simulated time:

• the current and cumulative use of runways (Figure 
2)

• the number of planes taxiing into, parked, and taxi-
ing out of each parking section (Figure 3)

• the number of planes in various designated “hot-
spots” on the airfield, current directional status for each 
runway, etc.  

• aircraft movements on runways and taxiways (Fig-
ure 4)

• aircraft parked and moving in gate areas
A single run with animation is performed to ensure that 

the day’s schedule can be completed without gridlock with 
given capacities of ramps and taxiways and stipulated 
rules for traffic flow. Once effective (stable) performance 
is demonstrated with a particular configuration, the model 
is then run in batch mode without animation for multiple 
replications to generate the necessary data for statistical 
analysis of system performance. Flight restrictions such as 
those caused by extreme weather in a flight sector are able 
to be imposed and alternative strategies for coping with 
stressful conditions can be tested with consideration of the 
interacting effects of arrival and departure activity. 

Ten (10) replications generally give good estimates of 
“average” statistics for performance on various dimen-
sions. One hundred (100) replications are performed for a 
more refined analysis of the stochastic effects of changing 
infrastructure and operating practices. 
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Figure 2. Dashboard for runway activity.

Figure 3. Status for parking sections.

Figure 4. Animated aircraft movements.

A detailed log (Figure 5) is created to capture each sim-
ulated key event (approach, touchdown, origination, arriv-
al at the gate, pushback, release tractor, and liftoff). This 
allows in-depth study of delays, taxi times, and resource 
usage according to time of day, airline, etc. 

Figure 5. Excerpt from a simulation event log.

4. Multivariate Models for Time-dependent and 
Situation Dependent Simulation Parameters

Commercial flights operate according to published 
schedules for arrivals and departures. For scheduled air-
line flights, we first model arrival delays and then model 
proneness to departure delays contingent on the amount 
of time available to “turn around” the airplane for its next 
scheduled departure. To construct the multivariate statis-
tical models for CLT, we used Aerobahn microdata that 
track the movement of each aircraft in the air and on the 
ground to the nearest second. Appended to the flight-track-
ing data from Aerobahn were the aircraft tail (registration) 
number, airline and flight number, the scheduled arrival 
or departure time, the type of aircraft, previous airport 
for each arrival, next airport for each departure, parking 
location (gate assigned) and taxiway routes and runways 
used. With the tail number, we were able to match arriv-
als and departures for an aircraft and consider the time 
available to “turn around” the aircraft when estimating the 
likelihood and length of departure delays for departing 
flights. From the longitudes and latitudes of the respec-
tive airports, we determined the distance and bearing for 
direct flights between the relevant cities and whether the 
flight was international. Arriving flights were assigned 
to one of four airspace sectors (NE, SE, SW, or NW) ac-
cording to the inbound direction. From the runway used, 
we determined whether the flight would have a “straight-
in” approach, or, alternatively, require a reversal of course 
on approach that would add time to the flight. Indicator 
(0-1) variables for month of the year are used to account 
for seasonal variation in weather and passenger activity. 
Indicator variables for hour of day capture the effects of 
variation in flight activity that occurs systematically each 
day. 

First, we produced a regression equation for arrival de-
lays. Factors contributing to the expected (average) delay 
include scheduled hour of arrival (to capture the effect 
of concentration of flight activity and tendency for prior 
delays to propagate), airline indicator, whether the previ-
ous airport is a particular hub airport prone to departure 
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delays, whether the inbound direction of flight involves 
a reversal in direction for final approach (therefore add-
ing time), airspace sector for the arriving flight, inbound 
flight distance (nm), whether the flight is international, 
size of aircraft, and month of the year (to capture seasonal 
weather effects). Random effects are imposed according 
to the distribution of the residuals of the regression model. 
We created models with each parameter statistically sig-
nificant by using backward elimination at a 0.05 level of 
statistical significance.

The model for arrival delays (estimating the logarithm 
of arrival delay plus 30 minutes) is used to create a file of 
“arrivals”, which effectively queues each airplane at the 
“final approach fix” for its designated runway. The “ar-
rival” time at the FAF is the scheduled arrival time at the 
gate plus the expected delay from the regression equation, 
plus a random (residual) delay (which may be negative, 
for an early arrival) less the average time required for an 
aircraft to complete its approach from the final approach 
fix, and then land and taxi to the gate. We use another 
regression model to impose time-of-day effects when es-
timating inbound taxi times (similarly to Lordan et al. [38]) 
and we offset the arrivals for queueing at the FAF accord-
ingly. 

Departure delays are generated differently for planes 
requiring an “immediate turnaround” than for planes not 
requiring an immediate turnaround. An immediate turna-
round is defined as having less than 30 minutes between 
arrival time and next scheduled departure if there are up 
to 100 seats in the aircraft and less than 45 minutes other-
wise. For immediate turnarounds, a log-regression model 
is used to generate the time required to turn around the 
aircraft and its readiness for pushback is “delayed” by 
that amount of time. For non-immediate turnarounds, a 
logistic model is first used to determine the likelihood that 
a delay relative to the scheduled departure time will oc-
cur. Delays occur randomly according to that probability. 
Then, for a plane that experiences a delay, a log-regres-
sion model is used to generate the expected amount of 
time after scheduled departure that the plane will be ready 
for its pushback. Residual variation is added randomly to 
the expected delay using an offset lognormal distribution 
consistently with the residuals from the regression model.

Together, these statistical models provide time and situ-
ation-dependent parameters for generating key events that 
occur throughout the day. Times for incremental move-
ments of aircraft from point to point were generated from 
measured distance of the respective segments and stand-
ard speeds for aircraft using lognormal distributions (with 
constant coefficients of variation). We used lognormal 
distributions with average ground speed for approaches 

(140 knots considering true air speed on approach and as-
suming slight headwind) from the FAF to the runway for 
the approach segment and lognormal distributions with 
customary taxi speeds (15 knots) for ground movements 
on taxiway segments.

5. Model Validation

To calibrate and validate the simulation model, we 
compare statistics from the simulation event logs with 
those from historical event logs where the same sched-
ules were in effect and where the same runways were in 
use (dictated by wind direction). We compare inbound 
and outbound aircraft movements (counts and average 
taxi times) by hour of day for all runway and parking-ar-
ea combinations. Adjustments are made, as necessary, 
to means and coefficients of variation of the elemental 
activities to bring statistics in line with the operating con-
ditions to be simulated. Simulated and actual activity for 
2018 summer operations with northerly traffic at CLT, for 
example, corresponded to this degree:

• Correlation = 0.90 for the average number of planes 
taxiing inbound by hour of day

• Correlation = 0.86 for the average number of planes 
taxiing outbound by hour of day

• Correlation = 0.89 for the total number of flight op-
erations by hour of day

• Correlation = 0.94 for average inbound taxi times 
for different runway-parking section combinations

• Correlation = 0.92 for the average ramp and taxi 
time of inbound and outbound flights by hour of day

• Correlation = 0.82 for the average length of delay 
for inbound and outbound flight by hour of day

• Correlation = 0.75 for the proportion of flights ex-
periencing delays in excess of 15 minutes for inbound and 
outbound flights by hour of day

• Correlation = 0.43 for the average outbound ramp 
and taxi times for runway-taxiway combinations by out-
bound traffic

Outbound taxi times are correlated less than inbound 
taxi times (as expected) because many outbound flights 
converge at the same runways for take-off and they spend 
a greater amount of time queued for take-off versus taxi-
ing in motion. (Taxiing time includes time in motion and 
time at rest.) Inbound flights, in contrast, exhibit a reverse 
funnelling effect. They scatter to a large number of gates 
and their taxi times are therefore more strongly related to 
the distance taxied. The model accurately represented this 
phenomenon. 

Airlines constantly adjust their schedules and crew 
assignments to deal with systematic issues. We therefore 
allow ad hoc offsets to be imposed as we generate arriv-
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al times of individual flights to accommodate possible 
changes in flight schedules (such as scheduling arrivals 
earlier to provide additional turnaround time, which can 
dramatically reduce the incidence of delays). We allow 
scaling of residual variance or compression of arrival or 
departure delays, if necessary, to create a simulation base 
case with the percentage of delays over 15 minutes that 
are consistent with their chosen reference period or condi-
tions. 

6. Illustrated Applications for Strategic Use 
of Airport Assets

When the simulation model is validated to represent 
the operating environment with sufficient precision, a base 
level of performance is provided against which the effects 
of changes in infrastructure, supporting resources or op-
erating practices may be measured. We provide, in this 
section, just a few examples of such analyses performed 
in different settings. 

Runway usage: At St. Louis Lambert International 
Airport, a question was posed about the effects of using 
a cross runway (RWY 06-24) for small aircraft operated 
by a regional carrier and general aviation in peak periods 
instead of the dominant runways (36R and 29) which are 
used by the major air carriers. Potential benefits from 
such a strategy (seen in comparisons of Table 6 with Table 
7) were revealed even at prevailing traffic levels, which 
were much below the design capacity of the airport. When 

higher traffic scenarios were tested (not shown here), the 
potential benefits were magnified considerably. Savings 
of just a minute or two for inbound and outbound taxi 
times can have significant effects on delay propagation, 
fuel burned, and air pollution at an airport. Guépet et al. [8]  
cite statistics that indicate that hundreds of thousands 
of tonnes of CO2 emissions would be eliminated by a 
one-minute reduction in taxi times at European airports.

Deployment of ground resources: In an Asian setting, 
where ground services were provided by the airport for 
multiple carriers, we used the model to demonstrate the 
effect of different deployment strategies for tractors used 
to pushback aircraft for departures. In initial meetings 
with personnel from ATC, AOC and ground services, it 
was asserted that shortage of tractors would be the most 
inhibiting factor in improving airside performance. Main-
tenance personnel gave us an initial proposal for locations 
from which the tractors would be deployed and range of 
service from each deployment point. Simulation results 
with the initial settings revealed times of day when delays 
in pushbacks would occur. These were able to be mitigat-
ed by changing the positioning and range of service for 
individual tractors (Table 8) and led to discussions of how 
tractor resources could be deployed dynamically in re-
sponse to changing concentrations of gate activity during 
the day. In practice, the maintenance department did use 
the tractors with range of service adjusted as needed and 
tractor utilization inferred from the simulation model was 
consistent with actual tractor utilization. 

Table 6. Simulated STL performance with use of dominant runways only.

Av. delays (min.) Flights with delay > 15 min. Ramp and taxi time

Airline Event No of flights Av. delay
No of flights over 15 
min.

P (>15 min.) Av. (min.)

American
2: Arrival 2,598 1.4 727 0.280 6.2

4: Departure 2,600 5.9 279 0.107 13.1

Cape Air
2: Arrival 2,500 -6.4 49 0.020 6.5

4: Departure 2,499 3.7 219 0.088 8.4

Delta
2: Arrival 1,876 -5.7 302 0.161 6.1

4: Departure 1,600 4.7 121 0.076 14.9

GA
2: Arrival 0 - 0 0.000 7.2

4: Departure 0 - 0 0.000 5.0

United
2: Arrival 3,280 8.3 1,260 0.384 6.1

4: Departure 3,300 5.9 375 0.114 15.2

US Air
2: Arrival 1,400 0.6 367 0.262 6.0

4: Departure 1,400 2.8 77 0.055 13.6

Southwest
2: Arrival 9,495 0.5 2,229 0.235 7.4

4: Departure 9,500 10.0 1,258 0.132 12.1

Overall 42,048 3.8 7,263 0.134 8.9
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Schedule Adjustments: For our third application of 
the model, we shall examine the potential impact of ad-
justments to some flight schedules of American Airlines 
(AAL) as derived from activity at CLT on July 12, 2018. 
We provide a scheduling cushion of 20 additional minutes 
for the inbound flight (i.e., departing 20 minutes earlier 
from the previous airport) for each AAL flight that has a 
scheduled turnaround time of less than 60 minutes, and 
shifted arrival times at the FAF accordingly. Results with 
the original schedule are presented in Table 9; results with 
the revised schedule are in Table 10. In this case, the AAL 
arrival and departure delays are reduced with no spillover 
effects on the other carriers.

Runway assignments for reducing taxiing time: In 
a second illustrative experiment for CLT, we explore the 
potential benefits that could accrue if runway use were 
altered with a goal of reducing inbound and outbound taxi 
times by assigning runways according to taxi distances 
between runways and parking locations. All the previ-
ous results (and delay statistics provided in Table 9) are 
based on the actual runways used for the flights on July 
12, 2018. In Table 11, we present the results of a simple 
experiment where all arriving flights destined for Parking 
Sections 9-10 use RWY 36R and all flights departing from 
Sections 9-10 use 36R for departures. In that experiment, 
all arriving flights destined for Parking Sections 1-6 use 
RWY 36L and all flights departing from Sections 1-6 use 
36C for departures. Arriving and departing flights for 
Sections 7 and 8 used the actual runways used for flights 

on July 12, 2018. The results suggest that potential reduc-
tions both in arrival and departure delays and total taxi 
times would occur and the delays would be more uniform 
among the carriers. In this experiment, we ignored issues 
that would be confronted when integrating arriving and 
departing traffic from different sectors of airspace. Ex-
tending this analysis would involve simulation of strate-
gies intended to maximize the efficiency of arrivals and 
departures in the air and then jointly considering strategies 
for air traffic control in the air and on the ground.

Experiments involving growth in traffic: Simulations 
with adjustments to schedules of individual flights and 
changes in traffic levels at the focal airport are easily per-
formed, but such experiments need to be crafted to reflect 
market realities (passengers’ preferences for travel times), 
noise abatement constraints, competitive positioning of 
carriers, scheduling of aircraft and crews, and patterns of 
congestion at previous airports for arrivals and next airports 
for departures [43-45]. Smith and Bilir [42] recognize that hub 
airports inevitably have bunches of arrivals followed by 
bunches of departures. One must fully consider daily flight 
patterns when intensifying schedules to simulate the effects 
of growth in traffic. To create new schedules that contin-
ue to exhibit similar patterns to those that have evolved 
through time, we again rely on multivariate statistical mod-
els derived from historical data.. New flights for scheduled 
airline service were generated as follows to perform exper-
iments on the effects of higher traffic levels on gate-hold 
strategies to reduce taxi times at CLT:

Table 7. Simulated STL performance with diversion of small aircraft to RWY 06-24.

Av. delays (min.) Flights with delay > 15 min. Ramp and taxi time

Airline Event No of flights Av. delay No of flights over 15 min. P (>15 min.) Av. (min.)

American
2: Arrival 260 0.4 67 0.258 5.9

4: Departure 260 5.5 21 0.081 10.4

Cape Air
2: Arrival 250 -7.6 3 0.012 6.0

4: Departure 250 3.5 21 0.084 6.8

Delta
2: Arrival 185 -5.3 26 0.141 5.8

4: Departure 160 3.6 7 0.044 10.3

GA
2: Arrival 0 - 0 0.000 7.6

4: Departure 0 - 0 0.000 6.1

United
2: Arrival 327 9.7 135 0.413 5.9

4: Departure 330 4.9 30 0.091 10.3

US Air
2: Arrival 140 0.0 34 0.243 5.8

4: Departure 140 2.6 9 0.064 12.7

Southwest
2: Arrival 947 0.1 210 0.222 7.1

4: Departure 950 9.4 112 0.118 10.1

Overall 4,199 3.4 675 0.124 7.9



14

Transportation Development Research | Volume 01 | Issue 01 | November 2023

Table 8. Effects of different deployments of tractors for pushbacks.
        With original tractor deployment           With adjusted tractor deployment

Hour of tractor 
request

No. of 
tractors 
engaged

Av. wait 
(min.)

Percent engaged 
after wait > 5 
min.

Hour of 
tractor 
request

No. of 
tractors 
engaged

Av. wait 
(min.)

Percent engaged 
after wait > 5 
min.

7 1 0.0 0.0 7 1 0.0 0.0

9 11 6.6 36.4 9 11 5.1 36.4

10 9 0.0 0.0 10 9 0.0 0.0

11 14 3.1 35.7 11 14 2.9 21.4

12 9 0.0 0.0 12 8 0.0 0.0

13 13 5.5 30.8 13 13 1.4 7.7

14 8 11.3 62.5 14 9 2.2 11.1

15 11 12.4 81.8 15 11 2.8 36.4

16 14 10.1 64.3 16 13 1.4 15.4

17 11 1.4 18.2 17 12 0.0 0.0

18 10 4.3 50.0 18 10 0.0 0.0

19 10 0.0 0.0 19 10 0.0 0.0

20 14 4.0 42.9 20 14 1.0 7.1

21 7 3.4 42.9 21 7 0.0 0.0

22 9 6.4 55.6 22 10 1.7 20.0

23 11 1.6 9.1 23 10 1.5 10.0

162 162

Table 9. CLT delays by airline in 100 simulation replications of July 12, 2018 schedule. 

Av. delays (min.) Flights with delay > 15 min. Ramp and taxi time

Airline Event No of flights Av. delay
No of flights over 15 
min.

P (> 15 min.) Av. (min.)

AAEagle
2: Arrival 36,000 13.9 10,581 0.294 13.8

4: Departure 36,323 14.2 10,715 0.295 20.5

American
2: Arrival 28,270 11.0 6,733 0.238 10.5

4: Departure 29,454 11.9 7,328 0.249 18.8

Delta
2: Arrival 2,021 7.8 314 0.155 9.0

4: Departure 2,234 9.2 452 0.202 20.9

Other
2: Arrival 7,256 12.6 1,868 0.257 7.9

4: Departure 6,684 6.2 820 0.123 13.5

Southwest
2: Arrival 874 26.0 411 0.470 8.9

4: Departure 938 20.7 326 0.348 17.8

United
2: Arrival 483 14.2 149 0.308 8.8

4: Departure 500 3.6 42 0.084 25.8

Overall 151,037 12.6 39,739 0.263 15.6

1) The hour of day for a new inbound flight was as-
signed randomly using the same distribution as in the cur-
rent schedule and minute of the scheduled flight was set 
randomly between 00 and 59 using a uniform distribution. 

2) The airline operating the flight was set with proba-
bilities from a multinomial logistic model having hour of 
day as the sole independent variable.

3) The binary variable for whether the flight was in-

ternational was set with probability from a logistic model 
based on airline and hour of day. The binary variable for 
whether the outbound (departing) flight is international 
was set with probability from a logistic model based on 
airline, hour of day, and whether the inbound flight was 
international.

4) The airspace sector for the inbound flight was set 
with probabilities from a multinomial logistic model de-
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pending on airline, hour of day and whether the inbound 
flight was international.

5) The airspace sector for the outbound flight was 
assigned with probabilities from a multinomial logistic 
model that depends on airline, hour of day, and whether 
the flight is an international departure.

6) Whether the arrival was from another hub airport 
was set with probability given by a binary logistic model 
depending on airline.

7) Whether the departure is to another hub airport was 
set with probability from a binary logistic model depend-
ing on airline, hour of day, whether inbound flight was 
from another hub and whether inbound flight was interna-
tional.

8) The number of seats in the aircraft was assigned 
with a regression model depending on airline, hour of day, 
whether arriving flight is international and whether flight 
is from another major hub.

9) Inbound flight distance was set with a regression 
model depending on airline, hour of day, whether flight is 
international and whether from a major hub.

10) Whether the flight is an immediate turnaround was 
set with probability from a binary logistic model depend-
ing on scheduled hour of day of the arriving aircraft.

11) The turnaround time for immediate turnarounds 
was set at 45 minutes if aircraft seats were more than 100; 
otherwise it was set 30 minutes.

12) Turnaround time for nonimmediate turnarounds 
was set with a regression model depending on airline, 
hour of day, number of seats and whether the flight is an 
international departure.

13) Scheduled departure time was set to scheduled ar-
rival time plus turnaround time.

14) The desired terminal gate (and therefore parking 
section) was set randomly according to historical gate us-
age by the particular airline.

Having developed the new schedules with the desired 
number of total flights per day and distribution through the 
day consistently with historical patterns, we were able to 
perform experiments that demonstrate the effects of airport 
congestion and operating rules on system performance. Table 
12 (with information from Smith and Bilir [42]) illustrates, for 
example, how the simulation model revealed the impact of 
different “gate-hold” strategies under higher traffic levels and 
demonstrates the design capacity of the airport in the process. 
It also reveals how intolerable delays would occur under any 
regime with a 30% increase in flight operations.

Table 10. Delays in 100 replications with arrival cushion for selected AAL flights.

Av. delays (min.) Flights with delay > 15 min. Ramp and taxi time

Airline Event No of flights Av. delay No of flights over 15 min. P (>15 min.) Av. (min.)

AAEagle
2: Arrival 36,000 13.9 10,579 0.294 13.9

4: Departure 36,324 14.2 10,781 0.297 21.0

American
2: Arrival 28,270 8.8 5,352 0.189 10.6

4: Departure 29,491 9.9 5,975 0.203 19.1

Delta
2: Arrival 2,021 7.6 311 0.153 9.0

4: Departure 2,241 8.8 425 0.190 21.1

Other
2: Arrival 7,288 12.5 1,839 0.252 7.8

4: Departure 6,680 6.3 843 0.126 13.7

Southwest
2: Arrival 873 26.1 418 0.479 8.9

4: Departure 933 21.4 348 0.373 18.1

United
2: Arrival 485 14.1 146 0.301 8.8

4: Departure 500 3.2 33 0.066 25.9

Overall 151,113 11.8 37,068 0.245 15.8
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Table 11. Simulated performance with runway selections intended to reduce taxi times.

Av. Delays (min.) Flights with Delay > 15 min. Ramp and taxi time

Airline Event No of flights Av. delay
No of flights over 15 
min.

P (> 15 min.) Av. (min.)

AAEagle
2: Arrival 36,000 10.7 7,830 0.218 10.2
4: Departure 36,358 12.1 8,982 0.247 20.8

American
2: Arrival 28,264 10.3 6,280 0.222 11.4
4: Departure 29,448 11.3 6,969 0.237 19.2

Delta
2: Arrival 1,995 6.8 273 0.137 8.9
4: Departure 2,226 7.8 369 0.166 19.7

Other
2: Arrival 7,211 11.7 1,583 0.220 7.7
4: Departure 6,634 6.0 786 0.118 13.0

Southwest
2: Arrival 856 24.2 392 0.458 9.0
4: Departure 920 19.2 325 0.353 16.6

United
2: Arrival 469 13.8 132 0.281 8.8
4: Departure 500 3.3 34 0.068 25.1

Overall 150,881 11.0 33,955 0.225 15.0

Table 12. Effects of gate-hold strategies under increased traffic levels.

with 10% increase in daily flights

Gate-hold strategy 
(Max no. planes 
taxiing to runways)

Effects on Outbound Flights Effects on Inbound Flights

Av. 
Pushback 
Delay 
(min.)

Pushback 
Delays 
> 15 min.

Av. taxi-
out time 
(min.)

Av. taxi-
out time - 
peak hours 
(min.)

Av. 
Liftoff 
Delay 
(min.)

Liftoff 
Delays 
> 15 
min.

Av. 
Arrival 
Delay 
(min.)

Arrival 
Delays 
> 15 
min.

Av. 
taxi-
in time 
(min.)

Av. taxi-
in time - 
peak hours 
(min.)

Parking 
Section 
Changes

Without limits 15.5 30.9% 19.4 22.5 16.9 34.1% 14.8 30.6% 13.8 15.4 9.8%

R36C: 20 - R36R:12 15.7 31.1% 19.2 21.6 16.8 34.1% 14.8 30.6% 13.8 15.4 9.6%

R36C: 15 - R36R:9 16.9 33.3% 18.0 19.3 16.9 34.4% 14.8 30.6% 13.8 15.4 10.0%

R36C: 10 - R36R:6 21.6 44.6% 15.9 16.2 19.5 40.4% 15.0 31.0% 14.2 16.0 14.0%

with 30% increase in daily flights 

Gate-hold strategy 
(Max no. planes 
taxiing to runways)

Effects on Outbound Flights Effects on Inbound Flights

Av. 
Pushback 
Delay 
(min.)

Pushback 
Delays 
> 15 min.

Av. taxi-
out time 
(min.)

Av. taxi-
out time - 
peak hours 
(min.)

Av. 
Liftoff 
Delay 
(min.)

Liftoff 
Delays 
> 15 
min.

Av. 
Arrival 
Delay 
(min.)

Arrival 
Delays 
> 15 
min.

Av. 
taxi-
in time 
(min.)

Av. taxi-
in time - 
peak hours 
(min.)

Parking 
Section 
Changes

Without limits 25.8 43.6% 21.4 25.9 28.5 47.7% 30.9 53.4% 20.3 19.8 27.0%

R36C: 20 - R36R:12 26.4 44.2% 20.8 24.8 28.6 48.2% 31.2 53.7% 20.8 20.0 28.0%

R36C: 15 - R36R:9 28.7 47.4% 19.1 21.1 29.4 49.2% 32.3 54.7% 22.4 21.6 29.0%

R36C: 10 - R36R:6 46.4 70.9% 16.6 16.4 44.6 67.2% 44.5 64.9% 40.1 27.4 28.0%

7. Discussion and Conclusions

We have illustrated how multivariate statistical models 
constructed from flight-tracking microdata can be used to 
create time-dependent and situation-dependent parameters 
in simulation models of flight operations at commercial 
airports and thereby properly represent stochastic behav-

ior of the system. The statistical models for arrival delays, 
time to turn around aircraft for departures, likelihood of 
departure days for originating flights and lengths of depar-
ture delays that occur for originating flights, reflect factors 
found to be statistically significant in other published stud-
ies and known by operations personnel to influence such 
delays. Agreement in detailed statistics for simulated and 
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historical activity at the focal airport (considering time of 
day, season of the year, airline, parking section, arrival and 
departure runway, etc.) validates the simulation model’s 
ability to represent the complex interactions of airside ac-
tivity with a process-oriented framework involving staged 
queues in a two-dimensional geo-spatial framework. The 
simulation model generates valuable information for both 
long-term strategic planning and improvement of daily 
operations. The model runs very efficiently. To investigate 
the stochastic effects of changes in physical infrastructure 
and operating practice with 20% intensification of traffic 
at CLT, for example, one can perform 100 replications of 
a day’s flight operations in 13 minutes of processing time 
on a laptop computer with an Intel Core i5 processor.

Features of airside activity follow the same general 
principles at airports worldwide and we have configured 
the model successfully for other airports in the U.S. and 
Asia. While the construction of a model of this scope 
might seem like a formidable undertaking, analysts famil-
iar with airport and flight operations (and the model itself) 
can adapt the model to a new setting in a matter of a few 
months. Much of the effort (about 50%) is in building the 
statistical components for arrivals and flight turnarounds 
and fine-tuning the parameters to bring model perfor-
mance in alignment with historical performance before 
conducting experiments with alternative configurations of 
resources and operating practices. Local operating practic-
es such as gate-sharing arrangements among carriers, traf-
fic-separation rules for landings and takeoffs, gate-reas-
signment rules to resolve conflicts between early arrivals 
and late departures, and centralized provision of ground 
services, are incorporated as modifications to resource sets 
and process logic.

The effects of implementing a change in available 
resources or operating practice may depend upon time pe-
riod, airport setting, or even operations of a particular car-
rier in a specific section of an airport. Detailed event logs 
from the simulation model are used to create a data ware-
house for meta-analysis as advocated by Ehmke et al. [46]  
to study the impact of different operational strategies 
on individual stakeholders (individual airlines, air cargo 
operators, general aviation, users of particular group of 
gates, flights scheduled at a particular time of day), etc. 
The analysis is done with sufficient granularity to avoid 
the “flaw of averages” to which so many comparable stud-
ies are prone. 

Our research to date has focused on modelling air-
side activity alone. We ignore the “groundside” effects 
of gate assignments, for example, which affect the ease 
with which passengers and crews can make connections 
among flights and the concentration of passengers in air-

port concourses and security checkpoints that result from 
gate assignments and reassignments. Optimizing airplane 
movements cannot occur without consideration of the 
groundside effects. On the groundside, it is desirable to 
have flight with connecting passengers and crew operate 
in adjacent gates but not to the extent that congestion 
causes interference with smooth boarding processes. With 
complementary data about passenger and crew connec-
tions, it would be possible to augment the statistical mod-
els for turnaround times and departure delays to consider 
those factors. That would enable airline operations per-
sonnel to refine their analysis of the effects of alternative 
practices in flight scheduling and gate assignments to con-
sider both the airside and groundside effects.
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