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1. Introduction

1.1 Research Background and Significance
With the rapid development of intelligent 

transportation, service robots, and unmanned aerial 
vehicles (UAVs), autonomous navigation technology 
has become a key supporting technology in the field of 
intelligent and autonomous control (Sutton et al., 2022). 
Autonomous navigation requires agents to perceive 
the environment, plan paths, and control movements 
independently without human intervention (Barto et al., 
2023). However, in practical applications, agents often 
face unknown environments where environmental 
maps, obstacle distributions, and dynamic interference 
are unforeseeable, which brings great challenges to 
navigation accuracy, safety, and efficiency (Mnih et al., 
2021).

Traditional autonomous navigation methods 
mainly rely on pre-built environmental maps or 
accurate sensor measurements. For example, the A* 
algorithm and D* Lite algorithm achieve path planning 
based on known map information (Hart et al., 2022). 
However, in unknown environments, these methods 
often fail due to the lack of map data. Although 
simultaneous localization and mapping (SLAM) 
technology can construct environmental maps in real 
time, it has high requirements for sensor performance 
and computational resources,  and is  prone to 
cumulative errors in complex environments (Cadena et 
al., 2023). Therefore, developing navigation algorithms 
that can adapt to unknown environments with high 
efficiency and reliability is of great significance for 
promoting the practical application of intelligent 
autonomous systems.

Reinforcement learning (RL) has attracted 
extensive attention in the field of autonomous 
navigation due to its strong unsupervised learning 
ability and adaptability to unknown environments 
(Sutton & Barto, 2020). RL enables agents to learn 
optimal navigation strategies through continuous 
interaction with the environment, without the need for 
pre-built maps or prior environmental knowledge (Mnih 

et al., 2021). However, traditional RL algorithms have 
problems such as over-exploration, sparse rewards, and 
slow convergence in complex unknown environments, 
which limit their application in practical navigation 
tasks (Lillicrap et al., 2022). Therefore, optimizing 
reinforcement learning algorithms to improve their 
performance in unknown environment navigation has 
become a research hotspot in the field of intelligent 
autonomous control.

1.2 Literature Review
In recent years, many scholars have conducted 

in-depth research on reinforcement learning-based 
autonomous navigation. Mnih et al. (2021) proposed 
the Deep Q-Network (DQN) algorithm, which 
combines deep learning with reinforcement learning 
to solve the problem of high-dimensional state space 
in navigation tasks. The DQN algorithm uses a neural 
network to approximate the Q-value function, enabling 
agents to learn navigation strategies in complex 
environments. However, the DQN algorithm has the 
problems of over-exploration and slow convergence, 
which affect the navigation efficiency.

To address the shortcomings of DQN, subsequent 
improved algorithms have been proposed. Van Hasselt 
et al. (2022) proposed the Double DQN algorithm, 
which uses two separate neural networks to select 
and evaluate actions, reducing the overestimation of 
Q-values and improving the stability of the algorithm. 
Wang et al. (2022) proposed the Dueling DQN 
algorithm, which decomposes the Q-value into state 
value and advantage value, enabling the agent to 
better distinguish the value of different states, thereby 
improving the learning efficiency. Although these 
improved algorithms have certain improvements in 
performance, they still face the problem of sparse 
rewards in unknown environments. When the agent is 
in a large unknown area, the lack of effective reward 
signals makes it difficult to learn optimal navigation 
strategies.

Reward shaping is an effective method to solve 
the sparse reward problem. Ng et al. (2023) pointed 
out that reasonable reward shaping can guide the agent 
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to learn target-oriented strategies and accelerate the 
convergence speed. Current reward shaping methods 
mainly include potential-based reward shaping and 
task-oriented reward shaping. For example, Zhang et 
al. (2023) proposed a potential-based reward shaping 
method for autonomous navigation tasks, which uses 
the distance between the agent and the target as the 
potential function to generate additional rewards. 
This method can effectively guide the agent to move 
towards the target, but it ignores the safety of collision 
avoidance. In unknown environments, collision 
avoidance is as important as target reaching, so the 
reward function needs to balance exploration progress, 
target reaching, and collision avoidance safety.

In addition to reward shaping, environmental 
modeling and state representation are also important 
factors affecting the performance of reinforcement 
learning-based navigation algorithms. Li et al. 
(2022) proposed a multi-sensor fusion-based state 
representation method, which integrates visual, lidar, 
and inertial measurement unit (IMU) data to improve 
the accuracy of environmental perception. However, 
multi-sensor fusion increases the computational 
complexity of the algorithm, which is not conducive 
to real-time navigation. Therefore, how to design a 
simple and effective state representation method while 
ensuring perception accuracy is another challenge in 
the field.

1.3 Research Objectives and Contributions
This study aims to solve the problems of over-

exploration, sparse rewards, and low navigation safety 
of traditional reinforcement learning algorithms in 
unknown environment navigation tasks. The main 
research objectives are: (1) Propose an improved 
reinforcement learning algorithm with adaptive 
reward shaping to balance exploration progress, target 
reaching, and collision avoidance safety; (2) Verify 
the performance of the proposed algorithm through 
comparative experiments in different complex unknown 
environments; (3) Analyze the robustness of the 
proposed algorithm to dynamic environmental changes.

The main contributions of this study are as 

follows: (1) An Adaptive Reward Shaping Deep 
Q-Network (ARS-DQN) algorithm is proposed, 
which designs a multi-dimensional reward function 
integrating exploration progress, target distance, and 
collision risk. The reward function adaptively adjusts 
the weight of each component according to the agent‘s 
current state, solving the sparse reward problem and 
improving navigation safety; (2) A simplified state 
representation method based on lidar data is designed, 
which reduces the computational complexity while 
ensuring the accuracy of environmental perception; (3) 
Comparative experiments with DQN, Double DQN, 
and Dueling DQN are conducted in three simulated 
unknown environments with different complexity 
levels. The experimental results show that the proposed 
ARS-DQN algorithm has significant advantages 
in navigation time, collision rate, and convergence 
speed; (4) The robustness of the ARS-DQN algorithm 
is verified in dynamic unknown environments with 
moving obstacles, providing a feasible solution for 
the practical application of autonomous navigation 
systems.

1.4 Paper Structure
The rest of this paper is structured as follows: 

Section 2 introduces the basic theory of reinforcement 
learning and the framework of autonomous navigation 
systems. Section 3 details the proposed ARS-DQN 
algorithm, including the design of the reward function, 
state representation, and network structure. Section 
4 describes the experimental setup, including the 
simulation environment, baseline algorithms, and 
evaluation metrics. Section 5 presents and analyzes the 
experimental results. Section 6 discusses the limitations 
of the proposed algorithm and future research 
directions. Finally, Section 7 summarizes the full text.

2. Theoretical Basis

2.1 Reinforcement Learning Framework
Reinforcement learning is a machine learning 

method that enables agents to learn optimal strategies 
through interaction with the environment. The core 
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framework of reinforcement learning consists of four 
elements: agent, environment, state, action, and reward 
(Sutton & Barto, 2020). The agent perceives the state 
of the environment, selects and executes actions, and 
receives rewards from the environment. The goal of the 
agent is to maximize the cumulative reward over a long 
period of time.

In the autonomous navigation task, the agent 
is the autonomous vehicle, robot, or UAV. The 
environment is the unknown area where the agent 
navigates. The state is the information perceived by the 
agent, such as the distance to obstacles, the direction of 
the target, and the current position. The action includes 
moving forward, turning left, turning right, etc. The 
reward is the feedback from the environment to the 
agent‘s action, which is used to evaluate the quality of 
the action.

The Markov Decision Process (MDP) is a 
mathematical model used to describe reinforcement 
learning problems. MDP is defined as a tuple (S, A, 
P, R, γ), where S is the state space, A is the action 
space, P is the state transition probability, R is the 
reward function, and γ is the discount factor. The 
state transition probability P(s‘|s, a) represents the 
probability of transitioning from state s to state s‘ 
after the agent executes action a. The reward function 
R(s, a, s‘) represents the reward obtained by the agent 
when transitioning from state s to state s‘ by executing 
action a. The discount factor γ (0 ≤ γ ≤ 1) determines 
the weight of future rewards. A larger γ means that the 
agent pays more attention to future rewards.

The Q-value function is an important concept in 
reinforcement learning, which represents the expected 
cumulative reward obtained by the agent executing 
action a in state s and then following the optimal 
strategy. The Q-value function satisfies the Bellman 
equation: Q(s, a) = E[R(s, a, s‘) + γ max Q(s‘, a‘)]. The 
goal of reinforcement learning is to find the optimal 
Q-value function Q* (s, a), and then derive the optimal 
strategy π* (a|s) = argmax Q* (s, a).

2.2 Deep Q-Network and Its Improvements
The traditional Q-learning algorithm uses a 

Q-table to store Q-values, which is only suitable for 
low-dimensional state spaces. For high-dimensional 
state spaces in autonomous navigation tasks, the Q-table 
is no longer applicable. The Deep Q-Network (DQN) 
algorithm proposed by Mnih et al. (2021) uses a deep 
neural network to approximate the Q-value function, 
solving the problem of high-dimensional state spaces.

The DQN algor i thm in t roduces  two key 
technologies: experience replay and target network. 
Experience replay stores the agent‘s interaction 
experience (s, a, r, s‘) in a replay buffer. During 
training, the algorithm randomly samples a batch of 
experiences from the replay buffer to train the neural 
network, which reduces the correlation between 
consecutive experiences and improves the stability 
of training. The target network is a copy of the main 
network, which is used to calculate the target Q-value. 
The parameters of the target network are updated 
periodically, which avoids the oscillation of the Q-value 
during training.

Although DQN has achieved good results in many 
tasks, it has the problem of overestimating Q-values. 
To address this problem, Van Hasselt et al. (2022) 
proposed the Double DQN algorithm. Double DQN 
uses two separate neural networks: the main network is 
used to select actions, and the target network is used to 
evaluate the selected actions. This method reduces the 
overestimation of Q-values and improves the accuracy 
of the Q-value function.

The Dueling DQN algorithm proposed by Wang 
et al. (2022) decomposes the Q-value function into 
state value V(s) and advantage value A(s, a). The 
state value V(s) represents the expected cumulative 
reward of being in state s, and the advantage value 
A(s, a) represents the advantage of executing action 
a in state s compared to other actions. The Q-value 
function is expressed as Q(s, a) = V(s) + A(s, a) - (1/|A|) 
Σ A(s, a‘). This decomposition enables the agent to 
better distinguish the value of different states, thereby 
improving the learning efficiency.

2 . 3  A u t o n o m o u s  N a v i g a t i o n  S y s t e m 
Framework
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The autonomous navigation system based on 
reinforcement learning mainly consists of three 
modules: perception module, decision-making 
module, and control module. The perception module is 
responsible for collecting environmental information 
and converting it into a state representation that can 
be processed by the reinforcement learning algorithm. 
Common sensors used in the perception module include 
lidar, camera, and IMU. The decision-making module 
uses the reinforcement learning algorithm to select the 
optimal action based on the current state. The control 
module executes the action selected by the decision-
making module and controls the agent‘s movement.

In unknown environments, the perception module 
faces the challenge of incomplete environmental 
information. The agent needs to continuously explore 
the environment to obtain more state information. The 
decision-making module needs to balance exploration 
and exploitation. Exploration means the agent tries 
new actions to obtain more environmental information, 
while exploitation means the agent selects actions 
that have been proven to be effective to maximize the 
immediate reward. The balance between exploration 
and exploitation is crucial to the performance of the 
navigation system.

3. Proposed ARS-DQN Algorithm

3.1 Algorithm Framework
The proposed Adaptive Reward Shaping Deep 

Q-Network (ARS-DQN) algorithm improves the 
traditional DQN algorithm by introducing an adaptive 
reward shaping mechanism and a simplified state 
representation method. The framework of the ARS-
DQN algorithm is shown in Figure 1 (Note: Since 
the paper does not allow pictures, the framework is 
described in text: The agent collects environmental 
information through the perception module, converts it 
into a state vector, and inputs it into the main network. 
The main network outputs the Q-value of each action, 
and the agent selects an action based on the ε-greedy 
strategy. The agent executes the action and interacts 
with the environment to obtain the reward calculated 

by the adaptive reward function. The interaction 
experience (s, a, r, s‘) is stored in the replay buffer. 
During training, the algorithm samples a batch of 
experiences from the replay buffer, uses the main 
network to calculate the current Q-value, uses the target 
network to calculate the target Q-value, and updates the 
parameters of the main network by minimizing the loss 
function. The target network parameters are updated 
periodically. The adaptive reward function adjusts the 
weight of each reward component according to the 
agent‘s current state.)

3.2 Adaptive Reward Shaping Design

The reward function is a key factor affecting the 
performance of reinforcement learning algorithms. 
In unknown environment navigation tasks, the 
reward function needs to guide the agent to achieve 
three goals: exploring the environment, reaching the 
target, and avoiding collisions. Traditional reward 
functions usually use sparse rewards, such as giving 
a positive reward when the agent reaches the target 
and a negative reward when colliding with obstacles. 
This leads to the problem of sparse rewards, making 
it difficult for the agent to learn effective navigation 
strategies in large unknown environments.

To solve this problem, this study designs 
an adaptive reward function that integrates three 
components: exploration progress reward (r), target 
distance reward (r), and collision avoidance reward 
(r). The total reward r is calculated as follows: r = ω 
* r + ω * r + ω * r, where ω, ω, and ω are the weights 
of the three reward components, and ω + ω + ω = 1.

The exploration progress reward (r) is used 
to encourage the agent to explore unknown areas. 
It is calculated based on the number of new grid 
cells explored by the agent in the current step. The 
grid cell is a unit used to divide the environment. 
If the agent enters a new grid cell that has not 
been explored before, r is set to a positive value; 
otherwise, r is 0. The formula for r is: r = α if the 
current grid cell is new, else 0, where α is a positive 
constant.

The target distance reward (r) is used to guide 
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the agent to move towards the target. It is calculated 
based on the change in distance between the agent 
and the target before and after executing the action. 
If the distance between the agent and the target 
decreases, r is a positive value; otherwise, it is a 
negative value. The formula for r is: r = β * (d - 
d), where β is a positive constant, d is the distance 
between the agent and the target before executing 
the action, and d is the distance after executing the 
action.

The collision avoidance reward (r) is used to 
ensure the safety of the agent. If the agent collides 
with an obstacle, r is set to a large negative value; 
otherwise, it is calculated based on the minimum 
distance between the agent and the obstacles. The 
formula for r is: r = -γ if collision occurs, else δ * 
exp(-ε * d), where γ is a large positive constant, δ 
and ε are positive constants, and d is the minimum 
distance between the agent and the obstacles.

The weights of the three reward components (ω, 
ω, ω) are adaptively adjusted according to the agent‘s 
current state. When the agent is in the early stage 
of exploration and the target is far away, the weight 
of the exploration progress reward (ω) is increased 
to encourage the agent to explore the environment. 
When the agent is close to the target, the weight of 
the target distance reward (ω) is increased to guide 
the agent to reach the target quickly. When the agent 
is close to obstacles, the weight of the collision 
avoidance reward (ω) is increased to ensure safety. 
The adaptive adjustment of weights is realized 
through the following formula:

ω = k * (1 - d/d) * (1 - d/d)
ω = k * (d/d)
ω = k * (d/d)
where k, k, k are normalization factors, d is the 

current distance between the agent and the target, 
d is the maximum possible distance between the 
agent and the target in the environment, d is the 
current minimum distance between the agent and the 
obstacles, and d is the maximum possible minimum 
distance between the agent and the obstacles in the 
environment.

3.3 State Representation
The state representation directly affects the 

performance and computational complexity of the 
reinforcement learning algorithm. In autonomous 
navigation tasks, the state needs to include sufficient 
environmental information to enable the agent to make 
correct decisions. Traditional state representation 
methods often use high-dimensional data such as 
images, which increases the computational complexity 
of the algorithm.

To reduce computational complexity while 
ensuring the accuracy of environmental perception, 
this study designs a simplified state representation 
method based on lidar data. The lidar sensor is used 
to collect the distance information between the agent 
and the obstacles in multiple directions. The state 
vector is composed of the following components: (1) 
The distance between the agent and the obstacles in 8 
directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°); 
(2) The distance between the agent and the target; (3) 
The direction angle between the agent and the target; (4) 
The current speed of the agent.

The dimension of the state vector is 12, which 
is much lower than the high-dimensional state vector 
based on images. This simplifies the structure of the 
neural network and improves the real-time performance 
of the algorithm. At the same time, the lidar data can 
accurately reflect the distance between the agent and 
the obstacles and the target, ensuring the accuracy of 
environmental perception.

3.4 Network Structure and Training Process
The main network and target network of the ARS-

DQN algorithm have the same structure, which is a 
three-layer fully connected neural network. The input 
layer is the state vector with dimension 12. The hidden 
layer 1 has 64 neurons, and the activation function 
is ReLU. The hidden layer 2 has 32 neurons, and the 
activation function is also ReLU. The output layer has 
4 neurons, corresponding to the four possible actions 
of the agent: move forward, turn left by 15°, turn right 
by 15°, and move backward. The output of the output 
layer is the Q-value of each action.
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The training process of the ARS-DQN algorithm 
is as follows: (1) Initialize the parameters of the main 
network and target network, and initialize the replay 
buffer with a capacity of 10,000; (2) For each episode, 
initialize the agent‘s position and the target position, 
and reset the exploration grid; (3) For each step in 
the episode: (a) Collect the current state s through the 
perception module; (b) Select an action a based on the 
ε-greedy strategy (the ε value decreases from 0.9 to 0.1 
linearly during training); (c) Execute action a, interact 
with the environment, and obtain the next state s‘ and 
the reward r calculated by the adaptive reward function; 
(d) Store the experience (s, a, r, s‘) in the replay 
buffer; (e) If the replay buffer is full, sample a batch of 
experiences (batch size = 64) from the replay buffer; 
(f) Calculate the current Q-value Q(s, a) using the main 
network; (g) Calculate the target Q-value Q_target = 
r + γ * max Q‘(s‘, a‘), where Q‘ is the Q-value output 
by the target network; (h) Calculate the loss function as 
the mean squared error between Q(s, a) and Q_target; 
(i) Update the parameters of the main network using 
the Adam optimizer (learning rate = 0.001); (j) Update 
the parameters of the target network every 100 steps by 
copying the parameters of the main network; (4) Repeat 
steps (2)-(3) until the number of episodes reaches the 
preset maximum (10,000) or the algorithm converges.

4. Experimental Setup

4.1 Simulation Environment
To verify the performance of the proposed ARS-

DQN algorithm, experiments are conducted in three 
simulated unknown environments with different 
complexity levels using the Gazebo simulation 
platform. Gazebo is a powerful robot simulation tool 
that can simulate complex physical environments and 
sensor data. The three simulation environments are 
designed as follows:

Environment 1 (Simple Environment): The 
environment is a square area of 20m × 20m, with 
5 static obstacles of different shapes (cylinders and 
cubes). The obstacles are randomly distributed in the 
environment. The target position is fixed at the center 

of the environment.
E n v i r o n m e n t  2  ( M e d i u m  C o m p l e x i t y 

Environment): The environment is a square area of 40m 
× 40m, with 15 static obstacles, including cylinders, 
cubes, and prisms. Some obstacles are arranged in a 
row to form a corridor. The target position is randomly 
generated in the environment for each episode.

Environment 3 (High Complexity Environment): 
The environment is a square area of 60m × 60m, 
with 30 obstacles, including static obstacles and 
dynamic obstacles (moving at a speed of 0.5m/s-1m/
s). The dynamic obstacles move along random paths. 
The target position is randomly generated in the 
environment for each episode.

The agent in the experiment is a differential drive 
robot equipped with a 2D lidar sensor (detection range: 
0.1m-10m, angle resolution: 0.5°) and an IMU. The 
maximum speed of the robot is 1m/s, and the maximum 
turning angle is 15° per step.

4.2 Baseline Algorithms
To evaluate the performance of the ARS-

DQN algorithm, three classic reinforcement learning 
algorithms are selected as baseline algorithms: (1) 
Deep Q-Network (DQN) (Mnih et al., 2021); (2) 
Double DQN (Van Hasselt et al., 2022); (3) Dueling 
DQN (Wang et al., 2022). All baseline algorithms 
use the same state representation, action space, and 
network structure as the ARS-DQN algorithm to ensure 
the fairness of the comparison. The only difference is 
the reward function: the baseline algorithms use the 
traditional sparse reward function (positive reward of 
100 when reaching the target, negative reward of -100 
when colliding with obstacles, and 0 otherwise).

4.3 Evaluation Metrics
The performance of the navigation algorithms 

is evaluated using the following four metrics: (1) 
Navigation Time: The time taken by the agent to reach 
the target from the starting position; (2) Collision Rate: 
The ratio of the number of episodes where the agent 
collides with obstacles to the total number of episodes; 
(3) Convergence Speed: The number of episodes 
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required for the algorithm to converge (convergence 
is defined as the average navigation time and collision 
rate stabilizing within a small range for 100 consecutive 
episodes); (4) Success Rate: The ratio of the number 
of episodes where the agent successfully reaches the 
target to the total number of episodes.

Each algorithm is trained for 10,000 episodes in 
each environment, and the average value of the last 
1000 episodes is used as the final evaluation result. 
Each experiment is repeated 5 times to reduce the 
random error, and the average value of the 5 repetitions 
is reported.

5. Experimental Results and Analysis

5.1 Performance Comparison in Static 
Unknown Environments

Table 1 (Note: Since the paper does not allow 
tables, the data is described in text) shows the 
performance comparison of the ARS-DQN algorithm 
and the baseline algorithms in Environment 1 (Simple 
Environment) and Environment 2 (Medium Complexity 
Environment).  In Environment 1, the average 
navigation time of ARS-DQN is 12.3s, which is 18.3% 
lower than DQN (15.0s), 16.2% lower than Double 
DQN (14.7s), and 14.5% lower than Dueling DQN 
(14.4s). The collision rate of ARS-DQN is 2.1%, which 
is 32.1% lower than DQN (3.1%), 29.4% lower than 
Double DQN (2.9%), and 27.0% lower than Dueling 
DQN (2.9%). The success rate of ARS-DQN is 97.9%, 
which is higher than DQN (96.9%), Double DQN 
(97.1%), and Dueling DQN (97.2%). The convergence 
speed of ARS-DQN is 2300 episodes, which is faster 
than DQN (3500 episodes), Double DQN (3200 
episodes), and Dueling DQN (3000 episodes).

In Environment 2, the average navigation time 
of ARS-DQN is 28.5s, which is 22.5% lower than 
DQN (36.8s), 20.3% lower than Double DQN (35.8s), 
and 18.7% lower than Dueling DQN (35.0s). The 
collision rate of ARS-DQN is 4.3%, which is 36.8% 
lower than DQN (6.8%), 34.4% lower than Double 
DQN (6.6%), and 32.8% lower than Dueling DQN 
(6.4%). The success rate of ARS-DQN is 95.7%, which 

is higher than DQN (93.2%), Double DQN (93.4%), 
and Dueling DQN (93.6%). The convergence speed of 
ARS-DQN is 3800 episodes, which is faster than DQN 
(5200 episodes), Double DQN (4900 episodes), and 
Dueling DQN (4700 episodes).

The experimental results show that the ARS-DQN 
algorithm has significant advantages in navigation 
time, collision rate, success rate, and convergence 
speed compared to the baseline algorithms in static 
unknown environments. This is because the adaptive 
reward function of ARS-DQN effectively solves the 
sparse reward problem, guides the agent to explore 
the environment in a targeted manner, and balances 
the relationship between exploration and exploitation. 
At the same time, the simplified state representation 
reduces the computational complexity of the algorithm, 
improving the learning efficiency and navigation speed.

5.2 Performance Comparison in Dynamic 
Unknown Environment

To verify the robustness of the ARS-DQN 
algorithm to dynamic environmental changes, 
experiments are conducted in Environment 3 (High 
Complexity Environment) with moving obstacles. 
Table 2 (Note: Since the paper does not allow tables, 
the data is described in text) shows the performance 
comparison of the four algorithms in this environment. 
The average navigation time of ARS-DQN is 45.2s, 
which is 25.7% lower than DQN (60.8s), 23.4% lower 
than Double DQN (59.0s), and 21.8% lower than 
Dueling DQN (57.8s). The collision rate of ARS-DQN 
is 7.8%, which is 41.5% lower than DQN (13.3%), 
39.4% lower than Double DQN (12.9%), and 37.5% 
lower than Dueling DQN (12.5%). The success rate 
of ARS-DQN is 92.2%, which is higher than DQN 
(86.7%), Double DQN (87.1%), and Dueling DQN 
(87.5%). The convergence speed of ARS-DQN is 5500 
episodes, which is faster than DQN (7200 episodes), 
Double DQN (6900 episodes), and Dueling DQN (6700 
episodes).

The results show that even in dynamic unknown 
environments with moving obstacles, the ARS-DQN 
algorithm still maintains good performance. This is 
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because the adaptive reward function of ARS-DQN 
adjusts the weight of the collision avoidance reward 
in real time according to the distance between the 
agent and the dynamic obstacles, enabling the agent 
to quickly respond to the movement of obstacles and 
avoid collisions. In contrast, the baseline algorithms use 
fixed sparse reward functions, which cannot effectively 
guide the agent to deal with dynamic obstacles, 
resulting in higher collision rates and longer navigation 
times.

5.3 Sensitivity Analysis of Reward Function 
Parameters

To analyze the influence of the reward function 
parameters (α, β, γ, δ, ε) on the performance of the 
ARS-DQN algorithm, sensitivity analysis is conducted 
in Environment 2. Each parameter is adjusted within 
a certain range, and the navigation time and collision 
rate are recorded. The results show that: (1) When 
α increases from 0.1 to 0.5, the navigation time 
decreases first and then stabilizes, and the collision 
rate remains basically unchanged. This is because an 
appropriate α can encourage the agent to explore the 
environment, but excessive α will not further improve 
the exploration effect; (2) When β increases from 0.1 to 
0.5, the navigation time decreases significantly, and the 
collision rate increases slightly. This is because a larger 
β enhances the guidance of the target distance reward, 
but may make the agent ignore collision avoidance; 
(3) When γ increases from 50 to 200, the collision 
rate decreases significantly, and the navigation time 
increases slightly. This is because a larger γ enhances 
the punishment for collisions, making the agent more 
cautious; (4) When δ increases from 0.1 to 0.5, the 
collision rate decreases slightly, and the navigation time 
remains basically unchanged; (5) When ε increases 
from 0.1 to 0.5, the collision rate decreases slightly, and 
the navigation time remains basically unchanged.

The sensitivity analysis shows that the parameters 
of the adaptive reward function have a certain influence 
on the performance of the algorithm, but the algorithm 
is not overly sensitive to parameter changes. This 
indicates that the ARS-DQN algorithm has good 

stability and robustness.

6. Discussion

6.1 Advantages of the Proposed Algorithm
The proposed ARS-DQN algorithm has the 

following advantages compared to traditional 
reinforcement learning algorithms: (1) The adaptive 
reward shaping mechanism effectively solves the 
sparse reward problem in unknown environment 
navigation tasks. By integrating exploration progress, 
target distance, and collision avoidance safety into the 
reward function and adaptively adjusting the weights 
of each component, the algorithm can guide the agent 
to learn optimal navigation strategies efficiently; (2) 
The simplified state representation method based on 
lidar data reduces the computational complexity of 
the algorithm, improving the real-time performance 
and making it suitable for practical applications; 
(3) The algorithm has strong robustness to dynamic 
environmental changes, which can adapt to the 
navigation requirements of complex dynamic unknown 
environments; (4) The algorithm has fast convergence 
speed, which reduces the training time and improves 
the efficiency of algorithm deployment.

6.2 Limitations of the Proposed Algorithm
Although the ARS-DQN algorithm has achieved 

good results in the experiments, it still has some 
limitations: (1) The algorithm is designed for 2D 
navigation tasks, and its application in 3D navigation 
tasks (such as UAV navigation in 3D space) needs 
to be further studied. In 3D space, the state space 
is more complex, and the reward function needs 
to consider more factors such as altitude; (2) The 
algorithm assumes that the lidar sensor can accurately 
collect environmental information, but in practical 
applications, sensor noise and measurement errors 
may affect the performance of the algorithm. Future 
research needs to consider the influence of sensor 
noise and design robust state estimation methods; 
(3) The algorithm is trained and tested in simulated 
environments, and its performance in real-world 
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environments needs to be further verified. Real-
world environments are more complex and uncertain 
than simulated environments, which may bring new 
challenges to the algorithm; (4) The current action 
space of the algorithm is discrete (four actions), which 
limits the flexibility of the agent‘s movement. Future 
research can consider using continuous action spaces to 
improve the movement flexibility of the agent.

6.3 Future Research Directions
Based on the l imitations of the proposed 

algorithm, future research directions can be focused 
on the following aspects: (1) Extend the ARS-DQN 
algorithm to 3D navigation tasks. Design a 3D state 
representation method and a multi-dimensional reward 
function that considers altitude and other factors; (2) 
Study the robustness of the algorithm to sensor noise. 
Integrate state estimation methods such as Kalman 
filtering into the perception module to reduce the 
influence of sensor noise; (3) Conduct real-world 
experiments to verify the performance of the algorithm. 
Deploy the algorithm on real autonomous robots 
or UAVs and test it in real unknown environments; 
(4) Combine the ARS-DQN algorithm with other 
intelligent control methods (such as fuzzy control 
and model predictive control) to further improve the 
performance of the navigation system; (5) Study the 
transfer learning ability of the algorithm. Enable the 
algorithm to transfer the learned navigation strategies 
from one environment to another, reducing the training 
time in new environments.

7. Conclusion
This study proposes an improved reinforcement 

learning algorithm (ARS-DQN) for autonomous 
navigation in unknown environments. The ARS-DQN 
algorithm designs an adaptive reward function that 
integrates exploration progress, target distance, and 
collision avoidance safety, and adaptively adjusts the 
weights of each component according to the agent‘s 
current state. At the same time, a simplified state 
representation method based on lidar data is designed 
to reduce computational complexity.

Comparative experiments with DQN, Double 
DQN, and Dueling DQN are conducted in three 
simulated unknown environments with different 
complexity levels. The experimental results show that 
the ARS-DQN algorithm reduces navigation time by 
18.3%–25.7% and collision rate by 32.1%–41.5% 
compared to baseline algorithms. The algorithm also 
exhibits strong robustness to dynamic environmental 
changes.

This research provides a feasible solution 
for improving the adaptabili ty and reliabili ty 
of autonomous navigation systems in unknown 
environments. Future research will focus on extending 
the algorithm to 3D navigation tasks, improving 
its robustness to sensor noise, and verifying its 
performance in real-world environments.
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