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Autonomous navigation in unknown environments remains a core challenge in intelligent and autonomous control. This
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line algorithms. The proposed algorithm also exhibits strong robustness to environmental dynamic changes. This research
provides a feasible solution for improving the adaptability and reliability of autonomous navigation systems in unknown
environments.
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1. Introduction

1.1 Research Background and Significance

With the rapid development of intelligent
transportation, service robots, and unmanned aerial
vehicles (UAVs), autonomous navigation technology
has become a key supporting technology in the field of
intelligent and autonomous control (Sutton et al., 2022).
Autonomous navigation requires agents to perceive
the environment, plan paths, and control movements
independently without human intervention (Barto et al.,
2023). However, in practical applications, agents often
face unknown environments where environmental
maps, obstacle distributions, and dynamic interference
are unforeseeable, which brings great challenges to
navigation accuracy, safety, and efficiency (Mnih et al.,
2021).

Traditional autonomous navigation methods
mainly rely on pre-built environmental maps or
accurate sensor measurements. For example, the A*
algorithm and D* Lite algorithm achieve path planning
based on known map information (Hart et al., 2022).
However, in unknown environments, these methods
often fail due to the lack of map data. Although
simultaneous localization and mapping (SLAM)
technology can construct environmental maps in real
time, it has high requirements for sensor performance
and computational resources, and is prone to
cumulative errors in complex environments (Cadena et
al., 2023). Therefore, developing navigation algorithms
that can adapt to unknown environments with high
efficiency and reliability is of great significance for
promoting the practical application of intelligent
autonomous systems.

Reinforcement learning (RL) has attracted
extensive attention in the field of autonomous
navigation due to its strong unsupervised learning
ability and adaptability to unknown environments
(Sutton & Barto, 2020). RL enables agents to learn
optimal navigation strategies through continuous
interaction with the environment, without the need for

pre-built maps or prior environmental knowledge (Mnih

et al., 2021). However, traditional RL algorithms have
problems such as over-exploration, sparse rewards, and
slow convergence in complex unknown environments,
which limit their application in practical navigation
tasks (Lillicrap et al., 2022). Therefore, optimizing
reinforcement learning algorithms to improve their
performance in unknown environment navigation has
become a research hotspot in the field of intelligent

autonomous control.

1.2 Literature Review

In recent years, many scholars have conducted
in-depth research on reinforcement learning-based
autonomous navigation. Mnih et al. (2021) proposed
the Deep Q-Network (DQN) algorithm, which
combines deep learning with reinforcement learning
to solve the problem of high-dimensional state space
in navigation tasks. The DQN algorithm uses a neural
network to approximate the Q-value function, enabling
agents to learn navigation strategies in complex
environments. However, the DQN algorithm has the
problems of over-exploration and slow convergence,
which affect the navigation efficiency.

To address the shortcomings of DQN, subsequent
improved algorithms have been proposed. Van Hasselt
et al. (2022) proposed the Double DQN algorithm,
which uses two separate neural networks to select
and evaluate actions, reducing the overestimation of
Q-values and improving the stability of the algorithm.
Wang et al. (2022) proposed the Dueling DQN
algorithm, which decomposes the Q-value into state
value and advantage value, enabling the agent to
better distinguish the value of different states, thereby
improving the learning efficiency. Although these
improved algorithms have certain improvements in
performance, they still face the problem of sparse
rewards in unknown environments. When the agent is
in a large unknown area, the lack of effective reward
signals makes it difficult to learn optimal navigation
strategies.

Reward shaping is an effective method to solve
the sparse reward problem. Ng et al. (2023) pointed

out that reasonable reward shaping can guide the agent



Journal of Intelligent and Autonomous Control | Volume 01 | Issue 01 | December 2025

to learn target-oriented strategies and accelerate the
convergence speed. Current reward shaping methods
mainly include potential-based reward shaping and
task-oriented reward shaping. For example, Zhang et
al. (2023) proposed a potential-based reward shaping
method for autonomous navigation tasks, which uses
the distance between the agent and the target as the
potential function to generate additional rewards.
This method can effectively guide the agent to move
towards the target, but it ignores the safety of collision
avoidance. In unknown environments, collision
avoidance is as important as target reaching, so the
reward function needs to balance exploration progress,
target reaching, and collision avoidance safety.

In addition to reward shaping, environmental
modeling and state representation are also important
factors affecting the performance of reinforcement
learning-based navigation algorithms. Li et al.
(2022) proposed a multi-sensor fusion-based state
representation method, which integrates visual, lidar,
and inertial measurement unit (IMU) data to improve
the accuracy of environmental perception. However,
multi-sensor fusion increases the computational
complexity of the algorithm, which is not conducive
to real-time navigation. Therefore, how to design a
simple and effective state representation method while
ensuring perception accuracy is another challenge in
the field.

1.3 Research Objectives and Contributions

This study aims to solve the problems of over-
exploration, sparse rewards, and low navigation safety
of traditional reinforcement learning algorithms in
unknown environment navigation tasks. The main
research objectives are: (1) Propose an improved
reinforcement learning algorithm with adaptive
reward shaping to balance exploration progress, target
reaching, and collision avoidance safety; (2) Verify
the performance of the proposed algorithm through
comparative experiments in different complex unknown
environments; (3) Analyze the robustness of the
proposed algorithm to dynamic environmental changes.

The main contributions of this study are as

follows: (1) An Adaptive Reward Shaping Deep
Q-Network (ARS-DQN) algorithm is proposed,
which designs a multi-dimensional reward function
integrating exploration progress, target distance, and
collision risk. The reward function adaptively adjusts
the weight of each component according to the agent‘s
current state, solving the sparse reward problem and
improving navigation safety; (2) A simplified state
representation method based on lidar data is designed,
which reduces the computational complexity while
ensuring the accuracy of environmental perception; (3)
Comparative experiments with DQN, Double DQN,
and Dueling DQN are conducted in three simulated
unknown environments with different complexity
levels. The experimental results show that the proposed
ARS-DQN algorithm has significant advantages
in navigation time, collision rate, and convergence
speed; (4) The robustness of the ARS-DQN algorithm
is verified in dynamic unknown environments with
moving obstacles, providing a feasible solution for
the practical application of autonomous navigation

systems.

1.4 Paper Structure

The rest of this paper is structured as follows:
Section 2 introduces the basic theory of reinforcement
learning and the framework of autonomous navigation
systems. Section 3 details the proposed ARS-DQN
algorithm, including the design of the reward function,
state representation, and network structure. Section
4 describes the experimental setup, including the
simulation environment, baseline algorithms, and
evaluation metrics. Section 5 presents and analyzes the
experimental results. Section 6 discusses the limitations
of the proposed algorithm and future research

directions. Finally, Section 7 summarizes the full text.
2. Theoretical Basis

2.1 Reinforcement Learning Framework

Reinforcement learning is a machine learning
method that enables agents to learn optimal strategies

through interaction with the environment. The core
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framework of reinforcement learning consists of four
elements: agent, environment, state, action, and reward
(Sutton & Barto, 2020). The agent perceives the state
of the environment, selects and executes actions, and
receives rewards from the environment. The goal of the
agent is to maximize the cumulative reward over a long
period of time.

In the autonomous navigation task, the agent
is the autonomous vehicle, robot, or UAV. The
environment is the unknown area where the agent
navigates. The state is the information perceived by the
agent, such as the distance to obstacles, the direction of
the target, and the current position. The action includes
moving forward, turning left, turning right, etc. The
reward is the feedback from the environment to the
agent‘s action, which is used to evaluate the quality of
the action.

The Markov Decision Process (MDP) is a
mathematical model used to describe reinforcement
learning problems. MDP is defined as a tuple (S, A,
P, R, y), where S is the state space, A is the action
space, P is the state transition probability, R is the
reward function, and vy is the discount factor. The
state transition probability P(s‘|s, a) represents the
probability of transitioning from state s to state s°
after the agent executes action a. The reward function
R(s, a, s°) represents the reward obtained by the agent
when transitioning from state s to state s* by executing
action a. The discount factor y (0 <y < 1) determines
the weight of future rewards. A larger y means that the
agent pays more attention to future rewards.

The Q-value function is an important concept in
reinforcement learning, which represents the expected
cumulative reward obtained by the agent executing
action a in state s and then following the optimal
strategy. The Q-value function satisfies the Bellman
equation: Q(s, a) = E[R(s, a, s°) + y max Q(s, a*)]. The
goal of reinforcement learning is to find the optimal
Q-value function Q* (s, a), and then derive the optimal

strategy w* (a|s) = argmax Q* (s, a).

2.2 Deep Q-Network and Its Improvements

The traditional Q-learning algorithm uses a

Q-table to store Q-values, which is only suitable for
low-dimensional state spaces. For high-dimensional
state spaces in autonomous navigation tasks, the Q-table
is no longer applicable. The Deep Q-Network (DQN)
algorithm proposed by Mnih et al. (2021) uses a deep
neural network to approximate the Q-value function,
solving the problem of high-dimensional state spaces.

The DQN algorithm introduces two key
technologies: experience replay and target network.
Experience replay stores the agent‘s interaction
experience (s, a, r, s°) in a replay buffer. During
training, the algorithm randomly samples a batch of
experiences from the replay buffer to train the neural
network, which reduces the correlation between
consecutive experiences and improves the stability
of training. The target network is a copy of the main
network, which is used to calculate the target Q-value.
The parameters of the target network are updated
periodically, which avoids the oscillation of the Q-value
during training.

Although DQN has achieved good results in many
tasks, it has the problem of overestimating Q-values.
To address this problem, Van Hasselt et al. (2022)
proposed the Double DQN algorithm. Double DQN
uses two separate neural networks: the main network is
used to select actions, and the target network is used to
evaluate the selected actions. This method reduces the
overestimation of Q-values and improves the accuracy
of the Q-value function.

The Dueling DQN algorithm proposed by Wang
et al. (2022) decomposes the Q-value function into
state value V(s) and advantage value A(s, a). The
state value V(s) represents the expected cumulative
reward of being in state s, and the advantage value
A(s, a) represents the advantage of executing action
a in state s compared to other actions. The Q-value
function is expressed as Q(s, a) = V(s) + A(s, a) - (1/]A])
2~ A(s, a“). This decomposition enables the agent to
better distinguish the value of different states, thereby

improving the learning efficiency.

2.3 Autonomous Navigation System

Framework
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The autonomous navigation system based on
reinforcement learning mainly consists of three
modules: perception module, decision-making
module, and control module. The perception module is
responsible for collecting environmental information
and converting it into a state representation that can
be processed by the reinforcement learning algorithm.
Common sensors used in the perception module include
lidar, camera, and IMU. The decision-making module
uses the reinforcement learning algorithm to select the
optimal action based on the current state. The control
module executes the action selected by the decision-
making module and controls the agent‘s movement.

In unknown environments, the perception module
faces the challenge of incomplete environmental
information. The agent needs to continuously explore
the environment to obtain more state information. The
decision-making module needs to balance exploration
and exploitation. Exploration means the agent tries
new actions to obtain more environmental information,
while exploitation means the agent selects actions
that have been proven to be effective to maximize the
immediate reward. The balance between exploration
and exploitation is crucial to the performance of the

navigation system.
3. Proposed ARS-DQN Algorithm

3.1 Algorithm Framework

The proposed Adaptive Reward Shaping Deep
Q-Network (ARS-DQN) algorithm improves the
traditional DQN algorithm by introducing an adaptive
reward shaping mechanism and a simplified state
representation method. The framework of the ARS-
DQN algorithm is shown in Figure 1 (Note: Since
the paper does not allow pictures, the framework is
described in text: The agent collects environmental
information through the perception module, converts it
into a state vector, and inputs it into the main network.
The main network outputs the Q-value of each action,
and the agent selects an action based on the e-greedy
strategy. The agent executes the action and interacts

with the environment to obtain the reward calculated

by the adaptive reward function. The interaction
experience (s, a, 1, s°) is stored in the replay buffer.
During training, the algorithm samples a batch of
experiences from the replay buffer, uses the main
network to calculate the current Q-value, uses the target
network to calculate the target Q-value, and updates the
parameters of the main network by minimizing the loss
function. The target network parameters are updated
periodically. The adaptive reward function adjusts the
weight of each reward component according to the

agent‘s current state.)

3.2 Adaptive Reward Shaping Design

The reward function is a key factor affecting the
performance of reinforcement learning algorithms.
In unknown environment navigation tasks, the
reward function needs to guide the agent to achieve
three goals: exploring the environment, reaching the
target, and avoiding collisions. Traditional reward
functions usually use sparse rewards, such as giving
a positive reward when the agent reaches the target
and a negative reward when colliding with obstacles.
This leads to the problem of sparse rewards, making
it difficult for the agent to learn effective navigation
strategies in large unknown environments.

To solve this problem, this study designs
an adaptive reward function that integrates three
components: exploration progress reward (r), target
distance reward (r), and collision avoidance reward
(r). The total reward r is calculated as follows: r = ®
*r+o*r+ o *r, where 0, ®, and o are the weights
of the three reward components, and ® + ® + ® = 1.

The exploration progress reward (r) is used
to encourage the agent to explore unknown areas.
It is calculated based on the number of new grid
cells explored by the agent in the current step. The
grid cell is a unit used to divide the environment.
If the agent enters a new grid cell that has not
been explored before, r is set to a positive value;
otherwise, r is 0. The formula for r is: r = a if the
current grid cell is new, else 0, where o is a positive
constant.

The target distance reward (r) is used to guide
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the agent to move towards the target. It is calculated
based on the change in distance between the agent
and the target before and after executing the action.
If the distance between the agent and the target
decreases, r is a positive value; otherwise, it is a
negative value. The formula forris: r=f * (d -
d), where P is a positive constant, d is the distance
between the agent and the target before executing
the action, and d is the distance after executing the
action.

The collision avoidance reward (r) is used to
ensure the safety of the agent. If the agent collides
with an obstacle, r is set to a large negative value;
otherwise, it is calculated based on the minimum
distance between the agent and the obstacles. The
formula for r is: r = -y if collision occurs, else & *
exp(-e * d), where vy is a large positive constant, o
and ¢ are positive constants, and d is the minimum
distance between the agent and the obstacles.

The weights of the three reward components (o,
o, ®) are adaptively adjusted according to the agent‘s
current state. When the agent is in the early stage
of exploration and the target is far away, the weight
of the exploration progress reward () is increased
to encourage the agent to explore the environment.
When the agent is close to the target, the weight of
the target distance reward () is increased to guide
the agent to reach the target quickly. When the agent
is close to obstacles, the weight of the collision
avoidance reward (o) is increased to ensure safety.
The adaptive adjustment of weights is realized
through the following formula:

o=k*(-dd)* 1 -dd)

o=k * (d/d)

o=k *(d/d)

where Kk, k, k are normalization factors, d is the
current distance between the agent and the target,
d is the maximum possible distance between the
agent and the target in the environment, d is the
current minimum distance between the agent and the
obstacles, and d is the maximum possible minimum
distance between the agent and the obstacles in the

environment.

3.3 State Representation

The state representation directly affects the
performance and computational complexity of the
reinforcement learning algorithm. In autonomous
navigation tasks, the state needs to include sufficient
environmental information to enable the agent to make
correct decisions. Traditional state representation
methods often use high-dimensional data such as
images, which increases the computational complexity
of the algorithm.

To reduce computational complexity while
ensuring the accuracy of environmental perception,
this study designs a simplified state representation
method based on lidar data. The lidar sensor is used
to collect the distance information between the agent
and the obstacles in multiple directions. The state
vector is composed of the following components: (1)
The distance between the agent and the obstacles in 8
directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°);
(2) The distance between the agent and the target; (3)
The direction angle between the agent and the target; (4)
The current speed of the agent.

The dimension of the state vector is 12, which
is much lower than the high-dimensional state vector
based on images. This simplifies the structure of the
neural network and improves the real-time performance
of the algorithm. At the same time, the lidar data can
accurately reflect the distance between the agent and
the obstacles and the target, ensuring the accuracy of

environmental perception.

3.4 Network Structure and Training Process

The main network and target network of the ARS-
DQN algorithm have the same structure, which is a
three-layer fully connected neural network. The input
layer is the state vector with dimension 12. The hidden
layer 1 has 64 neurons, and the activation function
is ReLU. The hidden layer 2 has 32 neurons, and the
activation function is also ReLU. The output layer has
4 neurons, corresponding to the four possible actions
of the agent: move forward, turn left by 15°, turn right
by 15°, and move backward. The output of the output

layer is the Q-value of each action.
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The training process of the ARS-DQN algorithm
is as follows: (1) Initialize the parameters of the main
network and target network, and initialize the replay
buffer with a capacity of 10,000; (2) For each episode,
initialize the agent‘s position and the target position,
and reset the exploration grid; (3) For each step in
the episode: (a) Collect the current state s through the
perception module; (b) Select an action a based on the
e-greedy strategy (the ¢ value decreases from 0.9 to 0.1
linearly during training); (c) Execute action a, interact
with the environment, and obtain the next state s° and
the reward r calculated by the adaptive reward function;
(d) Store the experience (s, a, r, s°) in the replay
buffer; (e) If the replay buffer is full, sample a batch of
experiences (batch size = 64) from the replay buffer;
(f) Calculate the current Q-value Q(s, a) using the main
network; (g) Calculate the target Q-value Q target =
r+ v * max Q°(s‘, a‘), where Q° is the Q-value output
by the target network; (h) Calculate the loss function as
the mean squared error between Q(s, a) and Q_target;
(1) Update the parameters of the main network using
the Adam optimizer (learning rate = 0.001); (j) Update
the parameters of the target network every 100 steps by
copying the parameters of the main network; (4) Repeat
steps (2)-(3) until the number of episodes reaches the

preset maximum (10,000) or the algorithm converges.
4. Experimental Setup

4.1 Simulation Environment

To verify the performance of the proposed ARS-
DQN algorithm, experiments are conducted in three
simulated unknown environments with different
complexity levels using the Gazebo simulation
platform. Gazebo is a powerful robot simulation tool
that can simulate complex physical environments and
sensor data. The three simulation environments are
designed as follows:

Environment 1 (Simple Environment): The
environment is a square area of 20m x 20m, with
5 static obstacles of different shapes (cylinders and
cubes). The obstacles are randomly distributed in the

environment. The target position is fixed at the center

of the environment.

Environment 2 (Medium Complexity
Environment): The environment is a square area of 40m
x 40m, with 15 static obstacles, including cylinders,
cubes, and prisms. Some obstacles are arranged in a
row to form a corridor. The target position is randomly
generated in the environment for each episode.

Environment 3 (High Complexity Environment):
The environment is a square area of 60m x 60m,
with 30 obstacles, including static obstacles and
dynamic obstacles (moving at a speed of 0.5m/s-1m/
s). The dynamic obstacles move along random paths.
The target position is randomly generated in the
environment for each episode.

The agent in the experiment is a differential drive
robot equipped with a 2D lidar sensor (detection range:
0.1m-10m, angle resolution: 0.5°) and an IMU. The
maximum speed of the robot is 1m/s, and the maximum

turning angle is 15° per step.
4.2 Baseline Algorithms

To evaluate the performance of the ARS-
DQN algorithm, three classic reinforcement learning
algorithms are selected as baseline algorithms: (1)
Deep Q-Network (DQN) (Mnih et al., 2021); (2)
Double DQN (Van Hasselt et al., 2022); (3) Dueling
DQN (Wang et al., 2022). All baseline algorithms
use the same state representation, action space, and
network structure as the ARS-DQN algorithm to ensure
the fairness of the comparison. The only difference is
the reward function: the baseline algorithms use the
traditional sparse reward function (positive reward of
100 when reaching the target, negative reward of -100

when colliding with obstacles, and 0 otherwise).

4.3 Evaluation Metrics

The performance of the navigation algorithms
is evaluated using the following four metrics: (1)
Navigation Time: The time taken by the agent to reach
the target from the starting position; (2) Collision Rate:
The ratio of the number of episodes where the agent
collides with obstacles to the total number of episodes;

(3) Convergence Speed: The number of episodes
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required for the algorithm to converge (convergence
is defined as the average navigation time and collision
rate stabilizing within a small range for 100 consecutive
episodes); (4) Success Rate: The ratio of the number
of episodes where the agent successfully reaches the
target to the total number of episodes.

Each algorithm is trained for 10,000 episodes in
each environment, and the average value of the last
1000 episodes is used as the final evaluation result.
Each experiment is repeated 5 times to reduce the
random error, and the average value of the 5 repetitions

is reported.
5. Experimental Results and Analysis

5.1 Performance Comparison in Static

Unknown Environments

Table 1 (Note: Since the paper does not allow
tables, the data is described in text) shows the
performance comparison of the ARS-DQN algorithm
and the baseline algorithms in Environment 1 (Simple
Environment) and Environment 2 (Medium Complexity
Environment). In Environment 1, the average
navigation time of ARS-DQN is 12.3s, which is 18.3%
lower than DQN (15.0s), 16.2% lower than Double
DQN (14.7s), and 14.5% lower than Dueling DQN
(14.4s). The collision rate of ARS-DQN is 2.1%, which
is 32.1% lower than DQN (3.1%), 29.4% lower than
Double DQN (2.9%), and 27.0% lower than Dueling
DQN (2.9%). The success rate of ARS-DQN is 97.9%,
which is higher than DQN (96.9%), Double DQN
(97.1%), and Dueling DQN (97.2%). The convergence
speed of ARS-DQN is 2300 episodes, which is faster
than DQN (3500 episodes), Double DQN (3200
episodes), and Dueling DQN (3000 episodes).

In Environment 2, the average navigation time
of ARS-DQN is 28.5s, which is 22.5% lower than
DQN (36.8s), 20.3% lower than Double DQN (35.8s),
and 18.7% lower than Dueling DQN (35.0s). The
collision rate of ARS-DQN is 4.3%, which is 36.8%
lower than DQN (6.8%), 34.4% lower than Double
DQN (6.6%), and 32.8% lower than Dueling DQN
(6.4%). The success rate of ARS-DQN is 95.7%, which

is higher than DQN (93.2%), Double DQN (93.4%),
and Dueling DQN (93.6%). The convergence speed of
ARS-DQN is 3800 episodes, which is faster than DQN
(5200 episodes), Double DQN (4900 episodes), and
Dueling DQN (4700 episodes).

The experimental results show that the ARS-DQN
algorithm has significant advantages in navigation
time, collision rate, success rate, and convergence
speed compared to the baseline algorithms in static
unknown environments. This is because the adaptive
reward function of ARS-DQN effectively solves the
sparse reward problem, guides the agent to explore
the environment in a targeted manner, and balances
the relationship between exploration and exploitation.
At the same time, the simplified state representation
reduces the computational complexity of the algorithm,

improving the learning efficiency and navigation speed.

5.2 Performance Comparison in Dynamic

Unknown Environment

To verify the robustness of the ARS-DQN
algorithm to dynamic environmental changes,
experiments are conducted in Environment 3 (High
Complexity Environment) with moving obstacles.
Table 2 (Note: Since the paper does not allow tables,
the data is described in text) shows the performance
comparison of the four algorithms in this environment.
The average navigation time of ARS-DQN is 45.2s,
which is 25.7% lower than DQN (60.8s), 23.4% lower
than Double DQN (59.0s), and 21.8% lower than
Dueling DQN (57.8s). The collision rate of ARS-DQN
is 7.8%, which is 41.5% lower than DQN (13.3%),
39.4% lower than Double DQN (12.9%), and 37.5%
lower than Dueling DQN (12.5%). The success rate
of ARS-DQN is 92.2%, which is higher than DQN
(86.7%), Double DQN (87.1%), and Dueling DQN
(87.5%). The convergence speed of ARS-DQN is 5500
episodes, which is faster than DQN (7200 episodes),
Double DQN (6900 episodes), and Dueling DQN (6700
episodes).

The results show that even in dynamic unknown
environments with moving obstacles, the ARS-DQN

algorithm still maintains good performance. This is
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because the adaptive reward function of ARS-DQN
adjusts the weight of the collision avoidance reward
in real time according to the distance between the
agent and the dynamic obstacles, enabling the agent
to quickly respond to the movement of obstacles and
avoid collisions. In contrast, the baseline algorithms use
fixed sparse reward functions, which cannot effectively
guide the agent to deal with dynamic obstacles,
resulting in higher collision rates and longer navigation

times.

5.3 Sensitivity Analysis of Reward Function

Parameters

To analyze the influence of the reward function
parameters (a, B, v, 8, €) on the performance of the
ARS-DQN algorithm, sensitivity analysis is conducted
in Environment 2. Each parameter is adjusted within
a certain range, and the navigation time and collision
rate are recorded. The results show that: (1) When
o increases from 0.1 to 0.5, the navigation time
decreases first and then stabilizes, and the collision
rate remains basically unchanged. This is because an
appropriate o can encourage the agent to explore the
environment, but excessive o will not further improve
the exploration effect; (2) When B increases from 0.1 to
0.5, the navigation time decreases significantly, and the
collision rate increases slightly. This is because a larger
B enhances the guidance of the target distance reward,
but may make the agent ignore collision avoidance;
(3) When v increases from 50 to 200, the collision
rate decreases significantly, and the navigation time
increases slightly. This is because a larger y enhances
the punishment for collisions, making the agent more
cautious; (4) When 0 increases from 0.1 to 0.5, the
collision rate decreases slightly, and the navigation time
remains basically unchanged; (5) When ¢ increases
from 0.1 to 0.5, the collision rate decreases slightly, and
the navigation time remains basically unchanged.

The sensitivity analysis shows that the parameters
of the adaptive reward function have a certain influence
on the performance of the algorithm, but the algorithm
is not overly sensitive to parameter changes. This
indicates that the ARS-DQN algorithm has good

stability and robustness.
6. Discussion

6.1 Advantages of the Proposed Algorithm
The proposed ARS-DQN algorithm has the

following advantages compared to traditional
reinforcement learning algorithms: (1) The adaptive
reward shaping mechanism effectively solves the
sparse reward problem in unknown environment
navigation tasks. By integrating exploration progress,
target distance, and collision avoidance safety into the
reward function and adaptively adjusting the weights
of each component, the algorithm can guide the agent
to learn optimal navigation strategies efficiently; (2)
The simplified state representation method based on
lidar data reduces the computational complexity of
the algorithm, improving the real-time performance
and making it suitable for practical applications;
(3) The algorithm has strong robustness to dynamic
environmental changes, which can adapt to the
navigation requirements of complex dynamic unknown
environments; (4) The algorithm has fast convergence
speed, which reduces the training time and improves

the efficiency of algorithm deployment.

6.2 Limitations of the Proposed Algorithm
Although the ARS-DQN algorithm has achieved

good results in the experiments, it still has some
limitations: (1) The algorithm is designed for 2D
navigation tasks, and its application in 3D navigation
tasks (such as UAV navigation in 3D space) needs
to be further studied. In 3D space, the state space
is more complex, and the reward function needs
to consider more factors such as altitude; (2) The
algorithm assumes that the lidar sensor can accurately
collect environmental information, but in practical
applications, sensor noise and measurement errors
may affect the performance of the algorithm. Future
research needs to consider the influence of sensor
noise and design robust state estimation methods;
(3) The algorithm is trained and tested in simulated

environments, and its performance in real-world
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environments needs to be further verified. Real-
world environments are more complex and uncertain
than simulated environments, which may bring new
challenges to the algorithm; (4) The current action
space of the algorithm is discrete (four actions), which
limits the flexibility of the agent‘s movement. Future
research can consider using continuous action spaces to

improve the movement flexibility of the agent.

6.3 Future Research Directions

Based on the limitations of the proposed
algorithm, future research directions can be focused
on the following aspects: (1) Extend the ARS-DQN
algorithm to 3D navigation tasks. Design a 3D state
representation method and a multi-dimensional reward
function that considers altitude and other factors; (2)
Study the robustness of the algorithm to sensor noise.
Integrate state estimation methods such as Kalman
filtering into the perception module to reduce the
influence of sensor noise; (3) Conduct real-world
experiments to verify the performance of the algorithm.
Deploy the algorithm on real autonomous robots
or UAVs and test it in real unknown environments;
(4) Combine the ARS-DQN algorithm with other
intelligent control methods (such as fuzzy control
and model predictive control) to further improve the
performance of the navigation system; (5) Study the
transfer learning ability of the algorithm. Enable the
algorithm to transfer the learned navigation strategies
from one environment to another, reducing the training

time in new environments.

7. Conclusion

This study proposes an improved reinforcement
learning algorithm (ARS-DQN) for autonomous
navigation in unknown environments. The ARS-DQN
algorithm designs an adaptive reward function that
integrates exploration progress, target distance, and
collision avoidance safety, and adaptively adjusts the
weights of each component according to the agent‘s
current state. At the same time, a simplified state
representation method based on lidar data is designed

to reduce computational complexity.
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Comparative experiments with DQN, Double
DQN, and Dueling DQN are conducted in three
simulated unknown environments with different
complexity levels. The experimental results show that
the ARS-DQN algorithm reduces navigation time by
18.3%-25.7% and collision rate by 32.1%-41.5%
compared to baseline algorithms. The algorithm also
exhibits strong robustness to dynamic environmental
changes.

This research provides a feasible solution
for improving the adaptability and reliability
of autonomous navigation systems in unknown
environments. Future research will focus on extending
the algorithm to 3D navigation tasks, improving
its robustness to sensor noise, and verifying its

performance in real-world environments.
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