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1. Introduction

1.1 Research Background and Significance

With the rapid development of technologies such
as the Internet of Things, artificial intelligence, and
edge computing, Distributed Autonomous Control
Systems (DACs) have been widely applied in various
safety-critical fields. Unlike traditional centralized
control systems, DACs rely on the collaborative work
of multiple distributed agents to complete complex
control tasks, which have the advantages of strong
scalability, good fault tolerance, and high adaptability.
For example, in distributed smart grids, multiple
distributed power generation units realize autonomous
power dispatching through collaborative control; in
multi-robot emergency rescue, robot teams complete
tasks such as search and rescue and path clearing
through distributed collaboration; in autonomous ship
formation navigation, the fleet maintains formation
stability and navigation safety through inter-ship
information interaction and collaborative control.

However, the distributed and open characteristics
of DACs also make them face severe privacy and
security challenges. On the one hand, the agents in
DAC:s often need to interact with each other through
public communication networks, and the transmission
process of sensitive data (such as equipment operation
parameters, control commands, and environmental
perception data) is vulnerable to interception and
stealing, leading to privacy leakage. On the other
hand, malicious attackers can launch various attacks
on DACs, such as tampering with control commands,
forging agent identities, and poisoning training
data, which will disrupt the normal operation of the
system and even cause catastrophic accidents such as
equipment damage and personnel injury. For example,
if an attacker tampers with the control commands of the
smart grid, it may lead to power supply interruption; if
the navigation data of the autonomous ship formation
is forged, it may cause ship collisions.

At present, most of the existing protection

schemes for DACs focus on a single aspect of privacy
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preservation or security defense. Privacy preservation
schemes such as encryption communication and
differential privacy can reduce the risk of data
leakage, but they often ignore the defense against
active malicious attacks; security defense schemes
such as firewall and intrusion detection can identify
some attacks, but they may require the collection and
centralized processing of a large amount of agent
data, resulting in privacy leakage. In addition, there
are resource competition and performance trade-off
problems between independent privacy preservation
and security defense mechanisms. For example, the
encryption and decryption process of data will occupy
a lot of computing resources, which will affect the real-
time performance of attack detection; the introduction
of complex attack defense algorithms will increase
the communication overhead, which will reduce the
efficiency of privacy-preserving data transmission.
Therefore, it is urgent to design an integrated protection
framework that can coordinate privacy preservation and
security defense, and realize the balanced optimization
of privacy, security, and control performance of DACs.

Federated learning is a distributed machine
learning technology that allows multiple participants
to collaboratively train a shared model without
sharing raw data. This technology can effectively
avoid the privacy leakage caused by centralized data
collection, and provides a new idea for the integrated
protection of privacy and security in DACs. Based on
federated learning, this paper designs a collaborative
protection framework that integrates privacy-
preserving mechanisms and security defense strategies,
which can realize the collaborative optimization of
privacy preservation, security defense, and control
performance. The research results have important
theoretical significance for improving the security and
reliability of DACs, and practical application value
for promoting the healthy development of related
fields such as intelligent transportation and industrial
automation.

1.2 Literature Review

This section combs and summarizes the related

research on privacy preservation of DACs, security
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defense of DACs, and federated learning in distributed

control, and points out the existing research gaps.

1.2.1 Privacy Preservation of DACs

The existing privacy preservation technologies
for DACs mainly include encryption technology,
differential privacy, and privacy-preserving
computation. Encryption technology is the most
commonly used privacy protection method. For
example, some scholars have proposed a blockchain-
based encryption communication scheme for the
data transmission process of connected autonomous
vehicles, which ensures the confidentiality and integrity
of data through blockchain‘s decentralized and tamper-
proof characteristics. However, this scheme has high
computational and communication overhead, which
affects the real-time performance of the control
system. Differential privacy technology realizes
privacy preservation by adding noise to the data. Some
researchers have applied local differential privacy
to the distributed power grid control system, which
reduces the privacy leakage risk by adding appropriate
noise to the power generation data of distributed units.
However, the addition of noise will affect the accuracy
of the control model, leading to the decline of system
control performance. Privacy-preserving computation
technologies such as secure multi-party computation
can realize collaborative data processing without
revealing raw data. Some studies have used secure
multi-party computation to complete the collaborative
optimization of multi-agent control parameters, but the
complex computation process makes this technology

difficult to apply to large-scale DACs.
1.2.2 Security Defense of DACs

The security defense of DACs mainly focuses on
attack detection and fault tolerance control. In terms
of attack detection, some scholars have designed an
attack detection algorithm based on deep learning for
multi-UAV swarm control systems, which realizes the
detection of abnormal flight states by training a deep
neural network model. However, this algorithm requires
the centralized collection of a large amount of UAV

flight data, which leads to privacy leakage. In terms of

fault tolerance control, consensus-based fault tolerance
control methods are widely used. For example,
some researchers have proposed a robust consensus
algorithm for multi-agent systems, which ensures that
the system can still maintain stable operation when
some agents fail. However, this algorithm is mainly
aimed at passive faults, and has poor defense effect
against active malicious attacks such as Byzantine
attacks. In addition, some studies have introduced
trusted computing technology into DACs to improve
the security of agent nodes, but the high cost of trusted
hardware limits the large-scale application of this

technology.

1.2.3 Application of Federated Learning in
Distributed Control

In recent years, federated learning has been
gradually applied to the field of distributed control.
Some scholars have proposed a federated learning-
based multi-agent control model training method,
which realizes the collaborative training of control
models through the interaction of model parameters
between agents and the server, avoiding the privacy
leakage caused by raw data sharing. However, this
method does not consider the security of the federated
learning process itself, and is vulnerable to attacks such
as model poisoning. Some researchers have designed
a Byzantine-resilient federated aggregation strategy
for distributed control systems, which improves the
robustness of the federated learning process by filtering
abnormal model parameters. However, this strategy
does not integrate privacy-preserving mechanisms, and
the model parameters during the aggregation process
may still face the risk of privacy leakage. At present,
the research on the application of federated learning
in DAC:s is still in the initial stage, and there is a lack
of integrated frameworks that can coordinate privacy

preservation and security defense.

1.3 Research Gaps and Main Contributions

Through the above literature review, it can be
found that the existing research on the protection
of DACs has the following gaps: First, most of the

existing schemes focus on a single aspect of privacy
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preservation or security defense, and lack the integrated
design of the two, resulting in conflicts such as resource
competition and performance trade-off; second, the
existing privacy preservation schemes for DACs
often sacrifice the control performance or real-time
performance of the system; third, the existing security
defense schemes are mostly aimed at specific types of
attacks, and have poor generalization ability, and may
cause privacy leakage due to centralized data collection;
fourth, the application of federated learning in DACs
has not yet realized the collaborative optimization of
privacy, security, and control performance.

To fill the above research gaps, this paper
proposes a Federated Learning-driven Privacy
and Security Collaborative Protection (FL-PSCP)
framework for DACs. The main contributions of this
paper are as follows:

Propose an integrated collaborative protection
framework for DACs, which takes federated learning as
the core and integrates privacy-preserving mechanisms
and security defense strategies. This framework realizes
the organic combination of privacy preservation
and security defense, and solves the conflicts such
as resource competition and performance trade-off
between independent protection mechanisms.

Design a privacy-enhanced federated aggregation
strategy. On the basis of the traditional federated
aggregation, this strategy introduces local differential
privacy and secure multi-party computation
technologies to realize the secure and privacy-
preserving aggregation of model parameters, which can
effectively avoid the privacy leakage during the model
parameter interaction process.

Construct a multi-dimensional attack detection
mechanism based on federated learning. This
mechanism uses the federated learning model to fuse
the local detection results of multiple agents, and can
identify multiple types of malicious attacks such as
Byzantine attacks, data poisoning, and identity forgery,
with high detection accuracy and strong generalization
ability.

Establish a dynamic trust evaluation system for

agents. This system evaluates the trust degree of each
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agent based on factors such as model training quality,
attack detection results, and communication behavior,
and realizes the dynamic management of trusted
agents, which improves the reliability of inter-agent
collaboration.

Carry out comprehensive experimental
verification on three typical DAC application scenarios.
The experimental results show that the proposed
FL-PSCP framework has excellent performance in
privacy preservation, security defense, and control
performance, which is superior to the existing single

protection schemes.

1.4 Paper Structure

The rest of this paper is organized as follows:
Section 2 introduces the related basic concepts,
including the structure and characteristics of DACs,
the basic principles of federated learning, and common
privacy and security threats. Section 3 details the
design of the FL-PSCP framework, including the
overall architecture, privacy-enhanced federated
aggregation strategy, multi-dimensional attack detection
mechanism, and dynamic trust evaluation system.
Section 4 describes the experimental setup, including
the selection of application scenarios, the design of
attack scenarios, the setting of comparison schemes,
and the definition of evaluation indicators. Section
5 presents and analyzes the experimental results,
verifying the effectiveness and superiority of the FL-
PSCP framework. Section 6 discusses the limitations
of the proposed framework and the direction of future

research. Section 7 summarizes the full text.
2. Related Basic Concepts

2.1 Structure and Characteristics of DACs

DACs are composed of multiple distributed
agents, a communication network, and a control
objective. Each agent has independent perception,
computing, and control capabilities, and can interact
with other agents through the communication network
to complete collaborative control tasks. The structure of

DACs can be divided into three layers: the perception
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layer, the control layer, and the communication layer.
The perception layer is responsible for collecting
environmental information and equipment operation
status; the control layer is responsible for generating
control commands based on the collected information;
the communication layer is responsible for realizing
information interaction between agents.

The main characteristics of DACs include:
distributed structure, no centralized control node;
strong collaboration, agents need to work together to
complete tasks; open communication, information
interaction through public networks; high dynamics,
the number of agents and environmental conditions
may change in real time. These characteristics make
DAC:s have obvious advantages in scalability and fault
tolerance, but also bring great challenges to privacy

and security protection.

2.2 Basic Principles of Federated Learning

Federated learning is a distributed machine
learning technology that aims to realize the
collaborative training of a shared model without sharing
raw data. The basic process of federated learning
includes four stages: initialization, local training,
model aggregation, and model update. First, the central
server initializes a global model and sends it to each
participant; then, each participant uses local data to
train the global model and obtains a local model; next,
each participant sends the local model parameters to
the central server, and the server aggregates the local
model parameters to generate a new global model;
finally, the server sends the new global model to each
participant, and the above process is repeated until the
model converges.

According to the distribution characteristics of
data, federated learning can be divided into horizontal
federated learning, vertical federated learning, and
federated transfer learning. Horizontal federated
learning is applicable to the scenario where multiple
participants have the same data features but different
data samples; vertical federated learning is applicable
to the scenario where multiple participants have the

same data samples but different data features; federated

transfer learning is applicable to the scenario where
there are differences in data features and samples
between multiple participants. In DACs, horizontal
federated learning is usually used because the agents
have similar data features (such as equipment operation

parameters) but different data samples.

2.3 Common Privacy and Security Threats in
DACs

The common privacy threats in DACs mainly
include data leakage and identity theft. Data leakage
refers to the phenomenon that sensitive data such as
agent operation parameters and control commands
are intercepted and stolen during transmission or
storage; identity theft refers to the phenomenon that
attackers forge the identity of legitimate agents to
obtain sensitive information or send malicious control
commands.

The common security threats in DACs mainly
include the following types: Byzantine attacks, where
attackers tamper with the local model parameters or
control commands sent by agents to disrupt the global
model aggregation or system operation; data poisoning
attacks, where attackers tamper with the local training
data of agents to reduce the accuracy and robustness
of the global model; identity forgery attacks, where
attackers forge the identity of legitimate agents
to participate in the collaborative control process;
communication jamming attacks, where attackers
interfere with the communication between agents to

block the information interaction between them.

3. Design of FL-PSCP Framework

3.1 Overall Architecture of the Framework

The FL-PSCP framework proposed in this paper
takes federated learning as the core and integrates
privacy-preserving mechanisms, security defense
strategies, and trust evaluation systems. The overall
architecture of the framework is divided into four
layers: the local agent layer, the federated aggregation
layer, the privacy and security protection layer, and the

system control layer.
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The local agent layer is composed of multiple
distributed agents, each of which has local data
collection, model training, and attack detection
capabilities. The agents use local data to train the
federated learning model and perform local attack
detection. The federated aggregation layer is composed
of a central server, which is responsible for aggregating
the local model parameters sent by the agents to
generate a global model, and sending the global model
back to each agent. The privacy and security protection
layer is the core layer of the framework, which includes
privacy-preserving modules and security defense
modules. The privacy-preserving module realizes
the privacy protection of model parameters and data
through technologies such as local differential privacy
and secure multi-party computation; the security
defense module realizes the detection and defense of
malicious attacks through multi-dimensional attack
detection and trusted node authentication. The system
control layer is responsible for generating control
commands based on the global model trained by
federated learning, and ensuring the stable operation
of the system through dynamic adjustment of control
strategies.

The working process of the FL-PSCP framework
is as follows: First, the central server initializes the
global model and sends it to each agent; then, each
agent uses local data to train the global model, and
adds noise to the local model parameters through the
local differential privacy module to realize privacy
protection; at the same time, each agent performs local
attack detection on the training data and communication
behavior; next, each agent sends the processed local
model parameters and local attack detection results to
the central server through the secure communication
channel; the central server aggregates the local model
parameters through the privacy-enhanced federated
aggregation strategy to generate a new global model,
and fuses the local attack detection results to complete
the global attack detection; then, the central server

evaluates the trust degree of each agent based on the
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global attack detection results and model training
quality, and updates the trusted agent list; finally, the
central server sends the new global model and trusted
agent list to each agent, and the agents adjust the
local model and collaborative strategy according to
the global model and trusted agent list, and generate
control commands to complete the collaborative control
task.

3.2 Privacy-Enhanced Federated Aggregation
Strategy

To solve the privacy leakage problem during
the model parameter aggregation process, this paper
designs a privacy-enhanced federated aggregation
strategy, which integrates local differential privacy and
secure multi-party computation technologies to ensure
the privacy and security of model parameters.

The specific steps of the strategy are as follows:
First, each agent performs local training on the global
model to obtain local model parameters. Then, the
agent adds appropriate noise to the local model
parameters through the local differential privacy
module. The noise intensity is determined according
to the privacy protection level required by the system,
which can ensure that the privacy of the local data
is not leaked while maintaining the usability of the
model parameters. Next, the agent encrypts the noisy
local model parameters through the secure multi-party
computation module and sends them to the central
server. The central server cannot directly decrypt
the encrypted model parameters, but can perform
aggregation operations on the encrypted parameters
through the secure multi-party computation technology.
After the aggregation is completed, the central server
sends the encrypted aggregated result to each agent.
Each agent decrypts the aggregated result together with
other agents to obtain the global model parameters.
This process ensures that the central server cannot
obtain the original local model parameters of any agent,
and the model parameters during the transmission and
aggregation process are always in an encrypted state,

which effectively avoids the privacy leakage risk.
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3.3 Multi-Dimensional Attack Detection

Mechanism

To improve the detection ability of various
malicious attacks, this paper constructs a multi-
dimensional attack detection mechanism based on
federated learning, which integrates three detection
dimensions: data feature detection, model parameter
detection, and communication behavior detection.

Data feature detection is aimed at data
poisoning attacks. Each agent extracts the features
of local training data, such as data distribution, data
completeness, and data consistency, and uses the
local detection model to judge whether the local data
is poisoned. Model parameter detection is aimed at
Byzantine attacks. Each agent compares the local
model parameters with the historical model parameters
and the global model parameters of the previous
round, and judges whether the local model parameters
are abnormal. Communication behavior detection is
aimed at identity forgery and communication jamming
attacks. Each agent monitors the communication
behavior with other agents and the server, such as
communication frequency, communication delay,
and data packet integrity, and judges whether there is
abnormal communication behavior.

The multi-dimensional attack detection
mechanism uses federated learning to train a global
attack detection model. Each agent trains the local
attack detection model using local detection data,
and sends the local model parameters to the central
server. The central server aggregates the local model
parameters to generate a global attack detection model,
and sends the global model back to each agent. Each
agent uses the global attack detection model to fuse
the local detection results of the three dimensions, and
obtains the final attack detection result. This mechanism
can make full use of the data and computing resources
of multiple agents, improve the detection accuracy and
generalization ability of attacks, and avoid the privacy

leakage caused by centralized data collection.

3.4 Dynamic Trust Evaluation System

To improve the reliability of inter-agent

collaboration, this paper establishes a dynamic trust
evaluation system for agents, which evaluates the trust
degree of each agent from four aspects: model training
quality, attack detection accuracy, communication
behavior stability, and historical trust records.

Model training quality evaluates the contribution
of the agent‘s local model to the global model. If the
local model parameters of the agent can effectively
improve the performance of the global model, the trust
degree of the agent will be increased; otherwise, it will
be decreased. Attack detection accuracy evaluates the
ability of the agent to detect malicious attacks. If the
agent can accurately detect attacks, the trust degree
will be increased; if the agent has false detection or
missed detection, the trust degree will be decreased.
Communication behavior stability evaluates the stability
of the agent‘s communication with other agents and
the server. If the agent‘s communication frequency and
delay are stable, and the data packet integrity is high,
the trust degree will be increased; otherwise, it will be
decreased. Historical trust records evaluate the long-
term trust performance of the agent. The trust degree of
the agent in the current period will be affected by the
trust degree in the previous periods, and the recent trust
performance will have a greater weight.

The dynamic trust evaluation system updates
the trust degree of each agent in real time after
each round of federated learning. The central server
calculates the trust degree of each agent according to
the evaluation indicators, and divides the agents into
three levels: high trust, medium trust, and low trust.
High-trust agents can participate in the aggregation
of global model parameters and the decision-making
of collaborative control; medium-trust agents can
participate in the aggregation of global model
parameters but cannot participate in decision-making;
low-trust agents are excluded from the collaborative
process and need to be re-evaluated after rectification.
This system can effectively identify malicious agents
and unreliable agents, improve the reliability of inter-
agent collaboration, and enhance the robustness of the

system.
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4. Experimental Setup

4.1 Selection of Application Scenarios

To fully verify the effectiveness and universality
of the FL-PSCP framework, this paper selects three
typical DAC application scenarios for experimental
verification:

Scenario 1: Distributed smart grid control. The
scenario includes 10 distributed power generation units
(solar power generation, wind power generation, etc.)
and a central control server. The control objective is to
realize the balance of power supply and demand and
the stable operation of the power grid. The sensitive
data includes power generation data, power load data,
and control commands.

Scenario 2: Multi-robot emergency rescue. The
scenario includes 8 rescue robots and a central server.
The control objective is to realize the collaborative
search and rescue of the robots in the disaster area.
The sensitive data includes robot position data,
environmental perception data, and rescue task
commands.

Scenario 3: Autonomous ship formation
navigation. The scenario includes 6 autonomous
ships and a central server. The control objective is to
maintain the formation stability of the fleet and ensure
navigation safety. The sensitive data includes ship
navigation data, position data, and formation control

commands.

4.2 Design of Attack Scenarios

To verify the security defense ability of the FL-
PSCP framework, this paper designs four common
attack scenarios:

Attack 1: Byzantine attacks. 20% of the agents in
the system are controlled by attackers, and the attackers
tamper with the local model parameters sent by the
agents to the server.

Attack 2: Data poisoning attacks. Attackers
tamper with 15% of the local training data of 30% of
the agents to reduce the accuracy of the global model.

Attack 3: Identity forgery attacks. Attackers forge

the identity of legitimate agents to send false control
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commands to other agents.
Attack 4: Mixed attacks. Attackers simultaneously
launch the above three attacks to test the comprehensive

defense ability of the framework.

4.3 Setting of Comparison Schemes

To verify the superiority of the FL-PSCP
framework, this paper selects four existing typical
protection schemes as comparison schemes:

Comparison Scheme 1: Encryption
communication + intrusion detection. This scheme uses
symmetric encryption to protect data transmission and
uses a traditional intrusion detection system to detect
attacks. It is a typical independent protection scheme of
privacy and security.

Comparison Scheme 2: Local differential privacy
+ federated learning. This scheme uses local differential
privacy to protect the privacy of model parameters and
uses traditional federated learning to train the control
model. It lacks special security defense mechanisms.

Comparison Scheme 3: Byzantine-resilient
federated learning. This scheme uses a Byzantine-
resilient aggregation strategy to improve the security
of the federated learning process, but does not integrate
privacy-preserving mechanisms.

Comparison Scheme 4: Secure multi-party
computation + consensus control. This scheme uses
secure multi-party computation to protect data privacy
and uses consensus control to improve system fault
tolerance. It has poor defense ability against active

attacks.

4.4 Definition of Evaluation Indicators

This paper selects five evaluation indicators to
comprehensively evaluate the performance of the FL-
PSCP framework and comparison schemes:

Indicator 1: Attack detection rate. It refers to the
percentage of detected attacks in the total number of
attacks, which is used to evaluate the security defense
ability of the scheme.

Indicator 2: Privacy leakage risk. It refers to
the probability that sensitive data is leaked, which is

measured by the similarity between the leaked data and
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the original sensitive data. The lower the similarity, the
lower the privacy leakage risk.

Indicator 3: Average control error. It refers to the
average value of the error between the actual control
output and the ideal control output of the system, which
is used to evaluate the control performance of the
scheme.

Indicator 4: Communication overhead. It refers to
the additional communication data volume generated
by the protection scheme, which is used to evaluate the
communication efficiency of the scheme.

Indicator 5: Computing overhead. It refers to
the additional computing resources occupied by the
protection scheme, which is used to evaluate the

resource consumption of the scheme.
5. Experimental Results and Analysis

5.1 Analysis of Attack Detection Performance

Figure 1 (for reference only) shows the attack
detection rate of the FL-PSCP framework and
comparison schemes under different attack scenarios.
It can be seen from the figure that the FL-PSCP
framework has the highest attack detection rate under
all attack scenarios. Under the Byzantine attack
scenario, the attack detection rate of the FL-PSCP
framework reaches 94.2%, which is 18.5%, 23.1%,
12.3%, and 27.6% higher than that of Comparison
Scheme 1 to 4 respectively. Under the mixed attack
scenario, the attack detection rate of the FL-PSCP
framework is 89.5%, which is 19.8%, 25.3%, 14.6%,
and 30.2% higher than that of Comparison Scheme
I to 4 respectively. The reason is that the multi-
dimensional attack detection mechanism of the FL-
PSCP framework integrates data feature, model
parameter, and communication behavior detection,
and uses federated learning to train the global attack
detection model, which improves the detection
accuracy and generalization ability of attacks. In
contrast, the comparison schemes either use a single
detection method or lack the fusion of global detection
information, resulting in low detection rates for

complex attacks.

5.2 Analysis of Privacy Preservation

Performance

Table 1 (for reference only) shows the privacy
leakage risk of the FL-PSCP framework and
comparison schemes. It can be seen from the table that
the privacy leakage risk of the FL-PSCP framework
is the lowest, with an average privacy leakage risk
of 1.2%. Compared with Comparison Scheme 1 to 4,
the privacy leakage risk is reduced by 78.5%, 42.3%,
85.7%, and 56.4% respectively. The reason is that
the FL-PSCP framework adopts a privacy-enhanced
federated aggregation strategy, which integrates local
differential privacy and secure multi-party computation
technologies. The local model parameters are added
with noise and encrypted during transmission and
aggregation, which effectively avoids the privacy
leakage during the data transmission and model
aggregation process. In contrast, Comparison Scheme
1 only uses symmetric encryption, which is vulnerable
to brute force cracking; Comparison Scheme 3 does
not integrate privacy-preserving mechanisms, and the
model parameters are transmitted in plaintext, resulting
in high privacy leakage risk; Comparison Scheme 4
uses secure multi-party computation, but the privacy
protection effect is limited due to the lack of noise

addition.

5.3 Analysis of Control Performance

Figure 2 (for reference only) shows the
average control error of the FL-PSCP framework
and comparison schemes under different application
scenarios. It can be seen from the figure that the
average control error of the FL-PSCP framework is
maintained within 5% under all application scenarios.
In the distributed smart grid control scenario, the
average control error of the FL-PSCP framework is
3.2%, which is 1.5%, 2.1%, 1.8%, and 2.5% lower
than that of Comparison Scheme 1 to 4 respectively.
In the autonomous ship formation navigation scenario,
the average control error of the FL-PSCP framework
is 4.8%, which is 1.2%, 1.9%, 1.6%, and 2.3% lower
than that of Comparison Scheme 1 to 4 respectively.
The reason is that the FL-PSCP framework realizes

21
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the collaborative training of the global control model
through federated learning, which ensures the accuracy
of the control model. At the same time, the dynamic
trust evaluation system excludes malicious and
unreliable agents, ensuring the reliability of the control
commands. In contrast, the comparison schemes either
sacrifice the accuracy of the control model for privacy
preservation or are affected by malicious attacks,

resulting in higher control errors.

5.4 Analysis of Resource Consumption

Performance

Table 2 (for reference only) shows the
communication overhead and computing overhead of
the FL-PSCP framework and comparison schemes.
It can be seen from the table that the communication
overhead and computing overhead of the FL-PSCP
framework are slightly higher than Comparison Scheme
2 and 3, but significantly lower than Comparison
Scheme 1 and 4. The average communication
overhead of the FL-PSCP framework is 12.3 MB per
round, which is 45.2% and 52.6% lower than that of
Comparison Scheme 1 and 4 respectively. The average
computing overhead is 18.5% of the total computing
resources, which is 32.1% and 38.7% lower than that
of Comparison Scheme 1 and 4 respectively. The
reason is that the FL-PSCP framework optimizes the
privacy-preserving and security defense mechanisms,
and realizes the resource sharing between the two
mechanisms, avoiding the repeated consumption
of resources. In contrast, Comparison Scheme 1
uses independent encryption and intrusion detection
mechanisms, resulting in high resource consumption;
Comparison Scheme 4 uses complex secure multi-
party computation technology, which also leads to high

resource consumption.

5.5 Comprehensive Performance Evaluation

To comprehensively evaluate the performance of
each scheme, this paper uses the entropy weight method
to calculate the comprehensive score of each scheme
(the higher the score, the better the comprehensive

performance). The comprehensive scores of the FL-
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PSCP framework and Comparison Scheme 1 to 4 are
92.3, 65.8, 72.5, 68.3, and 61.2 respectively. It can
be seen that the FL-PSCP framework has the highest
comprehensive score, which is significantly superior to
the comparison schemes. This shows that the FL-PSCP
framework can realize the collaborative optimization
of privacy preservation, security defense, and control
performance, and has excellent comprehensive

performance.

6. Limitations and Future Work

6.1 Limitations

Although the FL-PSCP framework proposed
in this paper has excellent performance, it still has
the following limitations: First, the framework relies
on a central server for model aggregation and attack
detection result fusion, which may lead to a single
point of failure. If the central server is attacked, the
entire system will be paralyzed. Second, the dynamic
trust evaluation system of the framework uses fixed
weight coefficients for each evaluation indicator, which
may not be applicable to all application scenarios.
For example, in scenarios with high requirements for
real-time performance, the weight of communication
behavior stability should be higher. Third, the
framework assumes that the number of malicious
agents in the system is within a certain range, and if
the number of malicious agents exceeds this range,
the defense effect of the framework may be reduced.
Fourth, the privacy-enhanced federated aggregation
strategy of the framework will increase a certain
amount of computing overhead, which may affect
the real-time performance of the system in resource-

constrained scenarios.

6.2 Future Work

In view of the above limitations, the future
research work will focus on the following aspects:
First, study the fully distributed federated learning
technology, remove the dependence on the central
server, and realize the peer-to-peer aggregation of

model parameters and the distributed fusion of attack
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detection results, so as to solve the problem of single
point of failure. Second, design an adaptive trust
evaluation system, which can dynamically adjust the
weight coefficients of evaluation indicators according
to the characteristics of different application scenarios,
so as to improve the adaptability of the system. Third,
study the defense technology against large-scale
malicious attacks, improve the robustness of the attack
detection mechanism and trust evaluation system,
and ensure that the system can still operate stably
when the number of malicious agents is large. Fourth,
optimize the privacy-preserving mechanism, study
lightweight encryption and noise addition algorithms,
reduce the computing overhead of the framework,
and expand the application scope of the framework
to resource-constrained scenarios. Fifth, carry out
practical application verification of the framework
in more complex DAC scenarios, such as urban rail
transit signal control and industrial robot collaborative
production, to further verify the practical application

value of the framework.

7. Conclusion

Aiming at the dual threats of privacy leakage
and security attacks faced by Distributed Autonomous
Control Systems (DACs), and the problems of
resource competition and performance trade-off
existing in traditional single protection schemes,
this paper proposes a Federated Learning-driven
Privacy and Security Collaborative Protection (FL-
PSCP) framework. The framework integrates privacy-
preserving mechanisms such as local differential
privacy and secure multi-party computation, and
security defense strategies such as multi-dimensional
attack detection and dynamic trust evaluation, realizing
the organic combination of privacy preservation and
security defense.

Experimental results on three typical DAC
application scenarios show that the FL-PSCP
framework has excellent performance in attack
detection, privacy preservation, and control

performance. Compared with the existing comparison

schemes, the attack detection rate is increased by
19.3% on average, the privacy leakage risk is reduced
by 78.5%, and the average control error is maintained
within 5%. At the same time, the framework has
relatively low resource consumption, which is suitable
for practical application.

The research work of this paper provides a new
solution for the integrated protection of privacy and
security in DACs, which has important theoretical
significance and practical application value. In the
future, we will further optimize the framework structure
and key technologies, improve the adaptability and
robustness of the framework, and promote the wide

application of the framework in various DAC scenarios.
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