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1. Introduction

1.1 Research Background and Significance
With the rapid development of technologies such 

as the Internet of Things, artificial intelligence, and 
edge computing, Distributed Autonomous Control 
Systems (DACs) have been widely applied in various 
safety-critical fields. Unlike traditional centralized 
control systems, DACs rely on the collaborative work 
of multiple distributed agents to complete complex 
control tasks, which have the advantages of strong 
scalability, good fault tolerance, and high adaptability. 
For example, in distributed smart grids, multiple 
distributed power generation units realize autonomous 
power dispatching through collaborative control; in 
multi-robot emergency rescue, robot teams complete 
tasks such as search and rescue and path clearing 
through distributed collaboration; in autonomous ship 
formation navigation, the fleet maintains formation 
stability and navigation safety through inter-ship 
information interaction and collaborative control.

However, the distributed and open characteristics 
of DACs also make them face severe privacy and 
security challenges. On the one hand, the agents in 
DACs often need to interact with each other through 
public communication networks, and the transmission 
process of sensitive data (such as equipment operation 
parameters, control commands, and environmental 
perception data) is vulnerable to interception and 
stealing, leading to privacy leakage. On the other 
hand, malicious attackers can launch various attacks 
on DACs, such as tampering with control commands, 
forging agent identities, and poisoning training 
data, which will disrupt the normal operation of the 
system and even cause catastrophic accidents such as 
equipment damage and personnel injury. For example, 
if an attacker tampers with the control commands of the 
smart grid, it may lead to power supply interruption; if 
the navigation data of the autonomous ship formation 
is forged, it may cause ship collisions.

At present, most of the existing protection 
schemes for DACs focus on a single aspect of privacy 

preservation or security defense. Privacy preservation 
schemes such as encryption communication and 
differential privacy can reduce the risk of data 
leakage, but they often ignore the defense against 
active malicious attacks; security defense schemes 
such as firewall and intrusion detection can identify 
some attacks, but they may require the collection and 
centralized processing of a large amount of agent 
data, resulting in privacy leakage. In addition, there 
are resource competition and performance trade-off 
problems between independent privacy preservation 
and security defense mechanisms. For example, the 
encryption and decryption process of data will occupy 
a lot of computing resources, which will affect the real-
time performance of attack detection; the introduction 
of complex attack defense algorithms will increase 
the communication overhead, which will reduce the 
efficiency of privacy-preserving data transmission. 
Therefore, it is urgent to design an integrated protection 
framework that can coordinate privacy preservation and 
security defense, and realize the balanced optimization 
of privacy, security, and control performance of DACs.

Federated learning is a distributed machine 
learning technology that allows multiple participants 
to collaboratively train a shared model without 
sharing raw data. This technology can effectively 
avoid the privacy leakage caused by centralized data 
collection, and provides a new idea for the integrated 
protection of privacy and security in DACs. Based on 
federated learning, this paper designs a collaborative 
protection framework that integrates privacy-
preserving mechanisms and security defense strategies, 
which can realize the collaborative optimization of 
privacy preservation, security defense, and control 
performance. The research results have important 
theoretical significance for improving the security and 
reliability of DACs, and practical application value 
for promoting the healthy development of related 
fields such as intelligent transportation and industrial 
automation.

1.2 Literature Review
This section combs and summarizes the related 

research on privacy preservation of DACs, security 
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defense of DACs, and federated learning in distributed 
control, and points out the existing research gaps.

1.2.1 Privacy Preservation of DACs

The existing privacy preservation technologies 
for DACs mainly include encryption technology, 
d i ffe rent ia l  pr ivacy,  and  pr ivacy-preserv ing 
computation. Encryption technology is the most 
commonly used privacy protection method. For 
example, some scholars have proposed a blockchain-
based encryption communication scheme for the 
data transmission process of connected autonomous 
vehicles, which ensures the confidentiality and integrity 
of data through blockchain‘s decentralized and tamper-
proof characteristics. However, this scheme has high 
computational and communication overhead, which 
affects the real-time performance of the control 
system. Differential privacy technology realizes 
privacy preservation by adding noise to the data. Some 
researchers have applied local differential privacy 
to the distributed power grid control system, which 
reduces the privacy leakage risk by adding appropriate 
noise to the power generation data of distributed units. 
However, the addition of noise will affect the accuracy 
of the control model, leading to the decline of system 
control performance. Privacy-preserving computation 
technologies such as secure multi-party computation 
can realize collaborative data processing without 
revealing raw data. Some studies have used secure 
multi-party computation to complete the collaborative 
optimization of multi-agent control parameters, but the 
complex computation process makes this technology 
difficult to apply to large-scale DACs.

1.2.2 Security Defense of DACs

The security defense of DACs mainly focuses on 
attack detection and fault tolerance control. In terms 
of attack detection, some scholars have designed an 
attack detection algorithm based on deep learning for 
multi-UAV swarm control systems, which realizes the 
detection of abnormal flight states by training a deep 
neural network model. However, this algorithm requires 
the centralized collection of a large amount of UAV 
flight data, which leads to privacy leakage. In terms of 

fault tolerance control, consensus-based fault tolerance 
control methods are widely used. For example, 
some researchers have proposed a robust consensus 
algorithm for multi-agent systems, which ensures that 
the system can still maintain stable operation when 
some agents fail. However, this algorithm is mainly 
aimed at passive faults, and has poor defense effect 
against active malicious attacks such as Byzantine 
attacks. In addition, some studies have introduced 
trusted computing technology into DACs to improve 
the security of agent nodes, but the high cost of trusted 
hardware limits the large-scale application of this 
technology.

1.2.3 Application of Federated Learning in 
Distributed Control

In recent years, federated learning has been 
gradually applied to the field of distributed control. 
Some scholars have proposed a federated learning-
based multi-agent control model training method, 
which realizes the collaborative training of control 
models through the interaction of model parameters 
between agents and the server, avoiding the privacy 
leakage caused by raw data sharing. However, this 
method does not consider the security of the federated 
learning process itself, and is vulnerable to attacks such 
as model poisoning. Some researchers have designed 
a Byzantine-resilient federated aggregation strategy 
for distributed control systems, which improves the 
robustness of the federated learning process by filtering 
abnormal model parameters. However, this strategy 
does not integrate privacy-preserving mechanisms, and 
the model parameters during the aggregation process 
may still face the risk of privacy leakage. At present, 
the research on the application of federated learning 
in DACs is still in the initial stage, and there is a lack 
of integrated frameworks that can coordinate privacy 
preservation and security defense.

1.3 Research Gaps and Main Contributions
Through the above literature review, it can be 

found that the existing research on the protection 
of DACs has the following gaps: First, most of the 
existing schemes focus on a single aspect of privacy 
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preservation or security defense, and lack the integrated 
design of the two, resulting in conflicts such as resource 
competition and performance trade-off; second, the 
existing privacy preservation schemes for DACs 
often sacrifice the control performance or real-time 
performance of the system; third, the existing security 
defense schemes are mostly aimed at specific types of 
attacks, and have poor generalization ability, and may 
cause privacy leakage due to centralized data collection; 
fourth, the application of federated learning in DACs 
has not yet realized the collaborative optimization of 
privacy, security, and control performance.

To fill the above research gaps, this paper 
proposes a Federated Learning-driven Privacy 
and Security Collaborative Protection (FL-PSCP) 
framework for DACs. The main contributions of this 
paper are as follows:

Propose an integrated collaborative protection 
framework for DACs, which takes federated learning as 
the core and integrates privacy-preserving mechanisms 
and security defense strategies. This framework realizes 
the organic combination of privacy preservation 
and security defense, and solves the conflicts such 
as resource competition and performance trade-off 
between independent protection mechanisms.

Design a privacy-enhanced federated aggregation 
strategy. On the basis of the traditional federated 
aggregation, this strategy introduces local differential 
pr ivacy  and secure  mul t i -par ty  computa t ion 
technologies to realize the secure and privacy-
preserving aggregation of model parameters, which can 
effectively avoid the privacy leakage during the model 
parameter interaction process.

Construct a multi-dimensional attack detection 
mechanism based on federated learning. This 
mechanism uses the federated learning model to fuse 
the local detection results of multiple agents, and can 
identify multiple types of malicious attacks such as 
Byzantine attacks, data poisoning, and identity forgery, 
with high detection accuracy and strong generalization 
ability.

Establish a dynamic trust evaluation system for 
agents. This system evaluates the trust degree of each 

agent based on factors such as model training quality, 
attack detection results, and communication behavior, 
and realizes the dynamic management of trusted 
agents, which improves the reliability of inter-agent 
collaboration.

Ca r ry  ou t  comprehens ive  expe r imen ta l 
verification on three typical DAC application scenarios. 
The experimental results show that the proposed 
FL-PSCP framework has excellent performance in 
privacy preservation, security defense, and control 
performance, which is superior to the existing single 
protection schemes.

1.4 Paper Structure
The rest of this paper is organized as follows: 

Section 2 introduces the related basic concepts, 
including the structure and characteristics of DACs, 
the basic principles of federated learning, and common 
privacy and security threats. Section 3 details the 
design of the FL-PSCP framework, including the 
overall architecture, privacy-enhanced federated 
aggregation strategy, multi-dimensional attack detection 
mechanism, and dynamic trust evaluation system. 
Section 4 describes the experimental setup, including 
the selection of application scenarios, the design of 
attack scenarios, the setting of comparison schemes, 
and the definition of evaluation indicators. Section 
5 presents and analyzes the experimental results, 
verifying the effectiveness and superiority of the FL-
PSCP framework. Section 6 discusses the limitations 
of the proposed framework and the direction of future 
research. Section 7 summarizes the full text.

2. Related Basic Concepts

2.1 Structure and Characteristics of DACs
DACs are composed of multiple distributed 

agents, a communication network, and a control 
objective. Each agent has independent perception, 
computing, and control capabilities, and can interact 
with other agents through the communication network 
to complete collaborative control tasks. The structure of 
DACs can be divided into three layers: the perception 
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layer, the control layer, and the communication layer. 
The perception layer is responsible for collecting 
environmental information and equipment operation 
status; the control layer is responsible for generating 
control commands based on the collected information; 
the communication layer is responsible for realizing 
information interaction between agents.

The main characteristics of DACs include: 
distributed structure, no centralized control node; 
strong collaboration, agents need to work together to 
complete tasks; open communication, information 
interaction through public networks; high dynamics, 
the number of agents and environmental conditions 
may change in real time. These characteristics make 
DACs have obvious advantages in scalability and fault 
tolerance, but also bring great challenges to privacy 
and security protection.

2.2 Basic Principles of Federated Learning
Federated learning is a distributed machine 

learning technology that  a ims to  rea l ize  the 
collaborative training of a shared model without sharing 
raw data. The basic process of federated learning 
includes four stages: initialization, local training, 
model aggregation, and model update. First, the central 
server initializes a global model and sends it to each 
participant; then, each participant uses local data to 
train the global model and obtains a local model; next, 
each participant sends the local model parameters to 
the central server, and the server aggregates the local 
model parameters to generate a new global model; 
finally, the server sends the new global model to each 
participant, and the above process is repeated until the 
model converges.

According to the distribution characteristics of 
data, federated learning can be divided into horizontal 
federated learning, vertical federated learning, and 
federated transfer learning. Horizontal federated 
learning is applicable to the scenario where multiple 
participants have the same data features but different 
data samples; vertical federated learning is applicable 
to the scenario where multiple participants have the 
same data samples but different data features; federated 

transfer learning is applicable to the scenario where 
there are differences in data features and samples 
between multiple participants. In DACs, horizontal 
federated learning is usually used because the agents 
have similar data features (such as equipment operation 
parameters) but different data samples.

2.3 Common Privacy and Security Threats in 
DACs

The common privacy threats in DACs mainly 
include data leakage and identity theft. Data leakage 
refers to the phenomenon that sensitive data such as 
agent operation parameters and control commands 
are intercepted and stolen during transmission or 
storage; identity theft refers to the phenomenon that 
attackers forge the identity of legitimate agents to 
obtain sensitive information or send malicious control 
commands.

The common security threats in DACs mainly 
include the following types: Byzantine attacks, where 
attackers tamper with the local model parameters or 
control commands sent by agents to disrupt the global 
model aggregation or system operation; data poisoning 
attacks, where attackers tamper with the local training 
data of agents to reduce the accuracy and robustness 
of the global model; identity forgery attacks, where 
attackers forge the identity of legitimate agents 
to participate in the collaborative control process; 
communication jamming attacks, where attackers 
interfere with the communication between agents to 
block the information interaction between them.

3. Design of FL-PSCP Framework

3.1 Overall Architecture of the Framework
The FL-PSCP framework proposed in this paper 

takes federated learning as the core and integrates 
privacy-preserving mechanisms, security defense 
strategies, and trust evaluation systems. The overall 
architecture of the framework is divided into four 
layers: the local agent layer, the federated aggregation 
layer, the privacy and security protection layer, and the 
system control layer.
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The local agent layer is composed of multiple 
distributed agents, each of which has local data 
collection, model training, and attack detection 
capabilities. The agents use local data to train the 
federated learning model and perform local attack 
detection. The federated aggregation layer is composed 
of a central server, which is responsible for aggregating 
the local model parameters sent by the agents to 
generate a global model, and sending the global model 
back to each agent. The privacy and security protection 
layer is the core layer of the framework, which includes 
privacy-preserving modules and security defense 
modules. The privacy-preserving module realizes 
the privacy protection of model parameters and data 
through technologies such as local differential privacy 
and secure multi-party computation; the security 
defense module realizes the detection and defense of 
malicious attacks through multi-dimensional attack 
detection and trusted node authentication. The system 
control layer is responsible for generating control 
commands based on the global model trained by 
federated learning, and ensuring the stable operation 
of the system through dynamic adjustment of control 
strategies.

The working process of the FL-PSCP framework 
is as follows: First, the central server initializes the 
global model and sends it to each agent; then, each 
agent uses local data to train the global model, and 
adds noise to the local model parameters through the 
local differential privacy module to realize privacy 
protection; at the same time, each agent performs local 
attack detection on the training data and communication 
behavior; next, each agent sends the processed local 
model parameters and local attack detection results to 
the central server through the secure communication 
channel; the central server aggregates the local model 
parameters through the privacy-enhanced federated 
aggregation strategy to generate a new global model, 
and fuses the local attack detection results to complete 
the global attack detection; then, the central server 
evaluates the trust degree of each agent based on the 

global attack detection results and model training 
quality, and updates the trusted agent list; finally, the 
central server sends the new global model and trusted 
agent list to each agent, and the agents adjust the 
local model and collaborative strategy according to 
the global model and trusted agent list, and generate 
control commands to complete the collaborative control 
task.

3.2 Privacy-Enhanced Federated Aggregation 
Strategy

To solve the privacy leakage problem during 
the model parameter aggregation process, this paper 
designs a privacy-enhanced federated aggregation 
strategy, which integrates local differential privacy and 
secure multi-party computation technologies to ensure 
the privacy and security of model parameters.

The specific steps of the strategy are as follows: 
First, each agent performs local training on the global 
model to obtain local model parameters. Then, the 
agent adds appropriate noise to the local model 
parameters through the local differential privacy 
module. The noise intensity is determined according 
to the privacy protection level required by the system, 
which can ensure that the privacy of the local data 
is not leaked while maintaining the usability of the 
model parameters. Next, the agent encrypts the noisy 
local model parameters through the secure multi-party 
computation module and sends them to the central 
server. The central server cannot directly decrypt 
the encrypted model parameters, but can perform 
aggregation operations on the encrypted parameters 
through the secure multi-party computation technology. 
After the aggregation is completed, the central server 
sends the encrypted aggregated result to each agent. 
Each agent decrypts the aggregated result together with 
other agents to obtain the global model parameters. 
This process ensures that the central server cannot 
obtain the original local model parameters of any agent, 
and the model parameters during the transmission and 
aggregation process are always in an encrypted state, 
which effectively avoids the privacy leakage risk.
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3.3 Multi-Dimensional Attack Detection 
Mechanism

To improve the detection ability of various 
malicious attacks, this paper constructs a multi-
dimensional attack detection mechanism based on 
federated learning, which integrates three detection 
dimensions: data feature detection, model parameter 
detection, and communication behavior detection.

Data  fea ture  de tec t ion  i s  a imed  a t  da ta 
poisoning attacks. Each agent extracts the features 
of local training data, such as data distribution, data 
completeness, and data consistency, and uses the 
local detection model to judge whether the local data 
is poisoned. Model parameter detection is aimed at 
Byzantine attacks. Each agent compares the local 
model parameters with the historical model parameters 
and the global model parameters of the previous 
round, and judges whether the local model parameters 
are abnormal. Communication behavior detection is 
aimed at identity forgery and communication jamming 
attacks. Each agent monitors the communication 
behavior with other agents and the server, such as 
communication frequency, communication delay, 
and data packet integrity, and judges whether there is 
abnormal communication behavior.

The  mul t i -d imens iona l  a t t ack  de tec t ion 
mechanism uses federated learning to train a global 
attack detection model. Each agent trains the local 
attack detection model using local detection data, 
and sends the local model parameters to the central 
server. The central server aggregates the local model 
parameters to generate a global attack detection model, 
and sends the global model back to each agent. Each 
agent uses the global attack detection model to fuse 
the local detection results of the three dimensions, and 
obtains the final attack detection result. This mechanism 
can make full use of the data and computing resources 
of multiple agents, improve the detection accuracy and 
generalization ability of attacks, and avoid the privacy 
leakage caused by centralized data collection.

3.4 Dynamic Trust Evaluation System
To improve the rel iabi l i ty of  inter-agent 

collaboration, this paper establishes a dynamic trust 
evaluation system for agents, which evaluates the trust 
degree of each agent from four aspects: model training 
quality, attack detection accuracy, communication 
behavior stability, and historical trust records.

Model training quality evaluates the contribution 
of the agent‘s local model to the global model. If the 
local model parameters of the agent can effectively 
improve the performance of the global model, the trust 
degree of the agent will be increased; otherwise, it will 
be decreased. Attack detection accuracy evaluates the 
ability of the agent to detect malicious attacks. If the 
agent can accurately detect attacks, the trust degree 
will be increased; if the agent has false detection or 
missed detection, the trust degree will be decreased. 
Communication behavior stability evaluates the stability 
of the agent‘s communication with other agents and 
the server. If the agent‘s communication frequency and 
delay are stable, and the data packet integrity is high, 
the trust degree will be increased; otherwise, it will be 
decreased. Historical trust records evaluate the long-
term trust performance of the agent. The trust degree of 
the agent in the current period will be affected by the 
trust degree in the previous periods, and the recent trust 
performance will have a greater weight.

The dynamic trust evaluation system updates 
the trust degree of each agent in real time after 
each round of federated learning. The central server 
calculates the trust degree of each agent according to 
the evaluation indicators, and divides the agents into 
three levels: high trust, medium trust, and low trust. 
High-trust agents can participate in the aggregation 
of global model parameters and the decision-making 
of collaborative control; medium-trust agents can 
participate in the aggregation of global model 
parameters but cannot participate in decision-making; 
low-trust agents are excluded from the collaborative 
process and need to be re-evaluated after rectification. 
This system can effectively identify malicious agents 
and unreliable agents, improve the reliability of inter-
agent collaboration, and enhance the robustness of the 
system.



Journal of Intelligent and Autonomous Control  | Volume 01 | Issue 01 | December 2025

20

4. Experimental Setup
4.1 Selection of Application Scenarios
To fully verify the effectiveness and universality 

of the FL-PSCP framework, this paper selects three 
typical DAC application scenarios for experimental 
verification:

Scenario 1: Distributed smart grid control. The 
scenario includes 10 distributed power generation units 
(solar power generation, wind power generation, etc.) 
and a central control server. The control objective is to 
realize the balance of power supply and demand and 
the stable operation of the power grid. The sensitive 
data includes power generation data, power load data, 
and control commands.

Scenario 2: Multi-robot emergency rescue. The 
scenario includes 8 rescue robots and a central server. 
The control objective is to realize the collaborative 
search and rescue of the robots in the disaster area. 
The sensitive data includes robot position data, 
environmental perception data, and rescue task 
commands.

Scenar io  3 :  Autonomous ship  format ion 
navigation. The scenario includes 6 autonomous 
ships and a central server. The control objective is to 
maintain the formation stability of the fleet and ensure 
navigation safety. The sensitive data includes ship 
navigation data, position data, and formation control 
commands.

4.2 Design of Attack Scenarios
To verify the security defense ability of the FL-

PSCP framework, this paper designs four common 
attack scenarios:

Attack 1: Byzantine attacks. 20% of the agents in 
the system are controlled by attackers, and the attackers 
tamper with the local model parameters sent by the 
agents to the server.

Attack 2: Data poisoning attacks. Attackers 
tamper with 15% of the local training data of 30% of 
the agents to reduce the accuracy of the global model.

Attack 3: Identity forgery attacks. Attackers forge 
the identity of legitimate agents to send false control 

commands to other agents.
Attack 4: Mixed attacks. Attackers simultaneously 

launch the above three attacks to test the comprehensive 
defense ability of the framework.

4.3 Setting of Comparison Schemes
To verify the superiority of the FL-PSCP 

framework, this paper selects four existing typical 
protection schemes as comparison schemes:

C o m p a r i s o n  S c h e m e  1 :  E n c r y p t i o n 
communication + intrusion detection. This scheme uses 
symmetric encryption to protect data transmission and 
uses a traditional intrusion detection system to detect 
attacks. It is a typical independent protection scheme of 
privacy and security.

Comparison Scheme 2: Local differential privacy 
+ federated learning. This scheme uses local differential 
privacy to protect the privacy of model parameters and 
uses traditional federated learning to train the control 
model. It lacks special security defense mechanisms.

Comparison Scheme 3: Byzantine-resilient 
federated learning. This scheme uses a Byzantine-
resilient aggregation strategy to improve the security 
of the federated learning process, but does not integrate 
privacy-preserving mechanisms.

Comparison Scheme 4: Secure multi-party 
computation + consensus control. This scheme uses 
secure multi-party computation to protect data privacy 
and uses consensus control to improve system fault 
tolerance. It has poor defense ability against active 
attacks.

4.4 Definition of Evaluation Indicators
This paper selects five evaluation indicators to 

comprehensively evaluate the performance of the FL-
PSCP framework and comparison schemes:

Indicator 1: Attack detection rate. It refers to the 
percentage of detected attacks in the total number of 
attacks, which is used to evaluate the security defense 
ability of the scheme.

Indicator 2: Privacy leakage risk. It refers to 
the probability that sensitive data is leaked, which is 
measured by the similarity between the leaked data and 
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the original sensitive data. The lower the similarity, the 
lower the privacy leakage risk.

Indicator 3: Average control error. It refers to the 
average value of the error between the actual control 
output and the ideal control output of the system, which 
is used to evaluate the control performance of the 
scheme.

Indicator 4: Communication overhead. It refers to 
the additional communication data volume generated 
by the protection scheme, which is used to evaluate the 
communication efficiency of the scheme.

Indicator 5: Computing overhead. It refers to 
the additional computing resources occupied by the 
protection scheme, which is used to evaluate the 
resource consumption of the scheme.

5. Experimental Results and Analysis

5.1 Analysis of Attack Detection Performance
Figure 1 (for reference only) shows the attack 

detection rate of the FL-PSCP framework and 
comparison schemes under different attack scenarios. 
It can be seen from the figure that the FL-PSCP 
framework has the highest attack detection rate under 
all attack scenarios. Under the Byzantine attack 
scenario, the attack detection rate of the FL-PSCP 
framework reaches 94.2%, which is 18.5%, 23.1%, 
12.3%, and 27.6% higher than that of Comparison 
Scheme 1 to 4 respectively. Under the mixed attack 
scenario, the attack detection rate of the FL-PSCP 
framework is 89.5%, which is 19.8%, 25.3%, 14.6%, 
and 30.2% higher than that of Comparison Scheme 
1 to 4 respectively. The reason is that the multi-
dimensional attack detection mechanism of the FL-
PSCP framework integrates data feature, model 
parameter, and communication behavior detection, 
and uses federated learning to train the global attack 
detection model, which improves the detection 
accuracy and generalization ability of attacks. In 
contrast, the comparison schemes either use a single 
detection method or lack the fusion of global detection 
information, resulting in low detection rates for 
complex attacks.

5.2  Analys is  of  Privacy Preservat ion 
Performance

Table 1 (for reference only) shows the privacy 
leakage r isk of  the  FL-PSCP framework and 
comparison schemes. It can be seen from the table that 
the privacy leakage risk of the FL-PSCP framework 
is the lowest, with an average privacy leakage risk 
of 1.2%. Compared with Comparison Scheme 1 to 4, 
the privacy leakage risk is reduced by 78.5%, 42.3%, 
85.7%, and 56.4% respectively. The reason is that 
the FL-PSCP framework adopts a privacy-enhanced 
federated aggregation strategy, which integrates local 
differential privacy and secure multi-party computation 
technologies. The local model parameters are added 
with noise and encrypted during transmission and 
aggregation, which effectively avoids the privacy 
leakage during the data transmission and model 
aggregation process. In contrast, Comparison Scheme 
1 only uses symmetric encryption, which is vulnerable 
to brute force cracking; Comparison Scheme 3 does 
not integrate privacy-preserving mechanisms, and the 
model parameters are transmitted in plaintext, resulting 
in high privacy leakage risk; Comparison Scheme 4 
uses secure multi-party computation, but the privacy 
protection effect is limited due to the lack of noise 
addition.

5.3 Analysis of Control Performance
Figure  2  ( for  reference only)  shows the 

average control error of the FL-PSCP framework 
and comparison schemes under different application 
scenarios. It can be seen from the figure that the 
average control error of the FL-PSCP framework is 
maintained within 5% under all application scenarios. 
In the distributed smart grid control scenario, the 
average control error of the FL-PSCP framework is 
3.2%, which is 1.5%, 2.1%, 1.8%, and 2.5% lower 
than that of Comparison Scheme 1 to 4 respectively. 
In the autonomous ship formation navigation scenario, 
the average control error of the FL-PSCP framework 
is 4.8%, which is 1.2%, 1.9%, 1.6%, and 2.3% lower 
than that of Comparison Scheme 1 to 4 respectively. 
The reason is that the FL-PSCP framework realizes 
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the collaborative training of the global control model 
through federated learning, which ensures the accuracy 
of the control model. At the same time, the dynamic 
trust evaluation system excludes malicious and 
unreliable agents, ensuring the reliability of the control 
commands. In contrast, the comparison schemes either 
sacrifice the accuracy of the control model for privacy 
preservation or are affected by malicious attacks, 
resulting in higher control errors.

5.4 Analysis of Resource Consumption 
Performance

Table  2  ( fo r  r e fe rence  on ly )  shows  the 
communication overhead and computing overhead of 
the FL-PSCP framework and comparison schemes. 
It can be seen from the table that the communication 
overhead and computing overhead of the FL-PSCP 
framework are slightly higher than Comparison Scheme 
2 and 3, but significantly lower than Comparison 
Scheme 1 and 4.  The average communication 
overhead of the FL-PSCP framework is 12.3 MB per 
round, which is 45.2% and 52.6% lower than that of 
Comparison Scheme 1 and 4 respectively. The average 
computing overhead is 18.5% of the total computing 
resources, which is 32.1% and 38.7% lower than that 
of Comparison Scheme 1 and 4 respectively. The 
reason is that the FL-PSCP framework optimizes the 
privacy-preserving and security defense mechanisms, 
and realizes the resource sharing between the two 
mechanisms, avoiding the repeated consumption 
of resources. In contrast, Comparison Scheme 1 
uses independent encryption and intrusion detection 
mechanisms, resulting in high resource consumption; 
Comparison Scheme 4 uses complex secure multi-
party computation technology, which also leads to high 
resource consumption.

5.5 Comprehensive Performance Evaluation
To comprehensively evaluate the performance of 

each scheme, this paper uses the entropy weight method 
to calculate the comprehensive score of each scheme 
(the higher the score, the better the comprehensive 
performance). The comprehensive scores of the FL-

PSCP framework and Comparison Scheme 1 to 4 are 
92.3, 65.8, 72.5, 68.3, and 61.2 respectively. It can 
be seen that the FL-PSCP framework has the highest 
comprehensive score, which is significantly superior to 
the comparison schemes. This shows that the FL-PSCP 
framework can realize the collaborative optimization 
of privacy preservation, security defense, and control 
performance, and has excellent comprehensive 
performance.

6. Limitations and Future Work

6.1 Limitations
Although the FL-PSCP framework proposed 

in this paper has excellent performance, it still has 
the following limitations: First, the framework relies 
on a central server for model aggregation and attack 
detection result fusion, which may lead to a single 
point of failure. If the central server is attacked, the 
entire system will be paralyzed. Second, the dynamic 
trust evaluation system of the framework uses fixed 
weight coefficients for each evaluation indicator, which 
may not be applicable to all application scenarios. 
For example, in scenarios with high requirements for 
real-time performance, the weight of communication 
behavior stability should be higher. Third, the 
framework assumes that the number of malicious 
agents in the system is within a certain range, and if 
the number of malicious agents exceeds this range, 
the defense effect of the framework may be reduced. 
Fourth, the privacy-enhanced federated aggregation 
strategy of the framework will increase a certain 
amount of computing overhead, which may affect 
the real-time performance of the system in resource-
constrained scenarios.

6.2 Future Work
In view of the above limitations, the future 

research work will focus on the following aspects: 
First, study the fully distributed federated learning 
technology, remove the dependence on the central 
server, and realize the peer-to-peer aggregation of 
model parameters and the distributed fusion of attack 
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detection results, so as to solve the problem of single 
point of failure. Second, design an adaptive trust 
evaluation system, which can dynamically adjust the 
weight coefficients of evaluation indicators according 
to the characteristics of different application scenarios, 
so as to improve the adaptability of the system. Third, 
study the defense technology against large-scale 
malicious attacks, improve the robustness of the attack 
detection mechanism and trust evaluation system, 
and ensure that the system can still operate stably 
when the number of malicious agents is large. Fourth, 
optimize the privacy-preserving mechanism, study 
lightweight encryption and noise addition algorithms, 
reduce the computing overhead of the framework, 
and expand the application scope of the framework 
to resource-constrained scenarios. Fifth, carry out 
practical application verification of the framework 
in more complex DAC scenarios, such as urban rail 
transit signal control and industrial robot collaborative 
production, to further verify the practical application 
value of the framework.

7. Conclusion
Aiming at the dual threats of privacy leakage 

and security attacks faced by Distributed Autonomous 
Control Systems (DACs), and the problems of 
resource competition and performance trade-off 
existing in traditional single protection schemes, 
this paper proposes a Federated Learning-driven 
Privacy and Security Collaborative Protection (FL-
PSCP) framework. The framework integrates privacy-
preserving mechanisms such as local differential 
privacy and secure multi-party computation, and 
security defense strategies such as multi-dimensional 
attack detection and dynamic trust evaluation, realizing 
the organic combination of privacy preservation and 
security defense.

Experimental results on three typical DAC 
application scenarios show that  the FL-PSCP 
framework has excellent performance in attack 
detec t ion ,  pr ivacy preservat ion ,  and contro l 
performance. Compared with the existing comparison 

schemes, the attack detection rate is increased by 
19.3% on average, the privacy leakage risk is reduced 
by 78.5%, and the average control error is maintained 
within 5%. At the same time, the framework has 
relatively low resource consumption, which is suitable 
for practical application.

The research work of this paper provides a new 
solution for the integrated protection of privacy and 
security in DACs, which has important theoretical 
significance and practical application value. In the 
future, we will further optimize the framework structure 
and key technologies, improve the adaptability and 
robustness of the framework, and promote the wide 
application of the framework in various DAC scenarios.
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