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1. Introduction
The rapid development of artificial intelligence, 

Internet of Things (IoT), and big data technologies has 
promoted a fundamental transformation in autonomous 
control systems, expanding their application scope 
from traditional industrial automation to smart 
cities, autonomous vehicles, medical robots, and 
environmental monitoring [1]. Autonomous control 
systems are expected to independently perceive, 
decision-make, and adjust without human intervention, 
adapting to dynamic changes in operating environments 
and task requirements [2]. However, complex scenarios 
such as variable industrial loads, uncertain external 
disturbances, and multi-task collaboration pose severe 
challenges to the stability, robustness, and real-
time performance of traditional autonomous control 
strategies [3].

Traditional autonomous control methods, such 
as proportional-integral-derivative (PID) control and 
model predictive control (MPC), rely on accurate 
mathematical models of the controlled object, which 
are difficult to establish in complex and dynamic 
environments [4]. With the advantages of self-learning, 
self-adaptation, and nonlinear fitting, AI technologies 
have become an effective solution to overcome these 
limitations, enabling autonomous control systems to 
adapt to uncertain environments through data-driven 
learning and intelligent decision-making [5]. In recent 
years, deep learning, reinforcement learning, fuzzy 
logic, and other AI technologies have been widely 
applied in autonomous control, forming a series of 
intelligent control strategies that have significantly 
improved the performance of autonomous control 
systems [6].

Journal of Intelligent and Autonomous Control 
focuses on the latest research progress in intelligent 
control and autonomous systems, covering theoretical 
research, technical innovation, and industrial 
applications. This paper focuses on AI-driven adaptive 
optimization for autonomous control systems, 
systematically sorting out recent research advances, 
analyzing key technical challenges, and verifying 

the application effect through industrial case studies. 
It aims to provide a comprehensive reference for 
researchers and engineers in related fields, promote the 
integration of AI and autonomous control technologies, 
and accelerate the industrialization and intelligent 
upgrading of autonomous control systems.

This paper is structured as follows: Section 
2 reviews related work on AI-driven autonomous 
control systems. Section 3 introduces the principle and 
implementation of AI-driven adaptive optimization 
strategies for autonomous control. Section 4 analyzes 
key challenges in the application process. Section 
5 verifies the effectiveness of the proposed strategy 
through industrial case studies. Section 6 discusses 
future research directions.  Finally,  Section 7 
summarizes the full text.

2. Related Work
In recent years, scholars at home and abroad have 

conducted extensive research on AI-driven autonomous 
control systems, achieving remarkable results in 
theoretical innovation and technical application. This 
section reviews related research from three aspects: 
deep learning-based autonomous control, reinforcement 
learning-based autonomous control, and hybrid AI-
driven autonomous control strategies.

2.1 Deep Learning-Based Autonomous 
Control

Deep learning has strong nonlinear fitting and 
feature extraction capabilities, which can effectively 
solve the problem of difficult modeling in complex 
autonomous control scenarios, and has been widely 
applied in image-based perception and control 
parameter optimization [7]. Razzaq et al. (2024) 
proposed an intelligent control system for brain-
controlled mobile robots using a self-learning neuro-
fuzzy approach, integrating deep learning for feature 
extraction of brain signals, which improved the robot’s 
response speed and control accuracy [8]. Liu et al. 
(2023) designed a delay-informed intelligent formation 
control strategy for UAV-assisted IoT applications, 
using deep learning to predict network delays, ensuring 
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the stability of UAV formation control in complex 
communication environments [9].

In industrial control, Coskun and İtik (2023) 
proposed an intelligent PID control strategy for 
industrial electro-hydraulic systems based on deep 
learning, which adaptively adjusted PID parameters 
through deep neural networks, improving the control 
precision and anti-disturbance ability of the system [10]. 
Tian et al. (2023) summarized the research progress 
of data-driven modeling and control for flotation 
processes, using deep learning to process flotation froth 
images and predict key process indices, providing a 
basis for adaptive control [11]. These studies show that 
deep learning can effectively extract hidden features 
from complex data, providing technical support for the 
adaptive optimization of autonomous control systems.

2 . 2  R e i n f o rc e m e n t  L e a r n i n g - B a s e d 
Autonomous Control

Reinforcement learning is a learning method that 
achieves optimal decision-making through interaction 
with the environment, which is highly consistent with 
the decision-making needs of autonomous control 
systems, and has been widely applied in robotics, 
autonomous vehicles, and other fields [12]. Biniyaz 
et al. (2022) proposed an intelligent control method 
for groundwater in slopes using deep reinforcement 
learning, which realized adaptive adjustment of 
groundwater control strategies according to slope 
deformation data, improving the stability of slope 
engineering [13]. de Farias and Bessa (2022) applied 
reinforcement learning to the intelligent control of 
automated insulin delivery systems, realizing real-time 
adjustment of insulin dosage based on blood glucose 
changes, improving the effect of diabetes treatment [14].

In multi-agent autonomous control, Chen et 
al. (2025) studied the confluence of evolutionary 
computation and multi-agent systems, combining 
reinforcement learning with evolutionary algorithms 
to improve the collaborative decision-making ability 
of multi-agent autonomous control systems [15]. Chu 
and Liu (2025) proposed an adaptive event-triggered 
control strategy for time-varying nonlinear systems 

based on reinforcement learning, which reduced the 
computational burden while ensuring control stability 
[16]. These studies show that reinforcement learning 
can enable autonomous control systems to continuously 
optimize decision-making strategies through interaction 
with the environment, enhancing the adaptability of the 
system to dynamic environments.

2.3 Hybrid AI-Driven Autonomous Control 
Strategies

Single AI technology has certain limitations in 
practical applications: deep learning relies on a large 
amount of labeled data, and reinforcement learning 
has slow convergence in complex scenarios [17]. 
Therefore, hybrid AI-driven autonomous control 
strategies, which combine multiple AI technologies, 
have become a research hotspot in recent years [18]. 
Hu et al. (2025) proposed an extended dissipative 
observer-based plug-and-play control strategy for 
large-scale interconnected systems, combining fuzzy 
logic and deep learning to improve the scalability and 
robustness of the control system [19]. Pan et al. (2025) 
designed a robot impedance iterative learning method 
based on sparse online Gaussian process, integrating 
reinforcement learning and probabilistic modeling to 
enhance the robot’s force control performance [20].

In the field of UAV autonomous control, Chen 
et al. (2025) proposed a hybrid method combining 
deep reinforcement learning and model predictive 
control for multi-mobile robot motion planning, which 
balanced the computational efficiency and control 
precision of the system [21]. Wang et al. (2025) 
explored the application of parallel AI in medical 
autonomous control systems, combining deep learning 
and reinforcement learning to realize intelligent 
decision-making for medical robots [22]. These hybrid 
strategies integrate the advantages of multiple AI 
technologies, effectively overcoming the limitations of 
single technologies and improving the comprehensive 
performance of autonomous control systems.

However, existing research still has some 
deficiencies: first, most AI-driven control strategies 
have high computational complexity, which is difficult 
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to meet the real-time requirements of high-speed 
autonomous control scenarios; second, the robustness 
of AI models in extreme environments needs to be 
improved, and the problem of overfitting in small-
sample scenarios is prominent; third, the integration 
of AI technologies and traditional control methods 
is not deep enough, and there is a lack of systematic 
optimization frameworks [23]. Aiming at these 
problems, this paper focuses on AI-driven adaptive 
optimization for autonomous control systems, exploring 
efficient and robust intelligent control strategies.

3. AI-Driven Adaptive Optimization 
Strategy for Autonomous Control 
Systems

This section proposes an AI-driven adaptive 
optimization framework for autonomous control 
systems, integrating deep reinforcement learning 
(DRL) and fuzzy logic, to solve the problems of poor 
adaptability and low control precision of traditional 
autonomous control systems in complex environments. 
The framework includes three modules: environmental 
perception and data preprocessing, AI-driven adaptive 
decision-making, and control execution and feedback 
adjustment. The working principle and implementation 
process of each module are detailed below.

3.1 Environmental Perception and Data 
Preprocessing

Environmental  perception is  the basis of 
autonomous control, which is responsible for collecting 
the operating state of the controlled object and 
environmental disturbance information, providing 
data support for adaptive decision-making [24]. The 
perception module integrates multiple sensors, such 
as temperature sensors, pressure sensors, and image 
sensors, to collect multi-dimensional data in real 
time, including the state parameters of the controlled 
object (e.g., speed, position, and load) and external 
environmental parameters (e.g., temperature, humidity, 
and disturbance intensity) [25].

Due to the influence of sensor noise and 

environmental interference, the collected raw data often 
contain redundant information and outliers, which affect 
the accuracy of AI model training and control decision-
making [26]. Therefore, data preprocessing is required 
to improve data quality. The data preprocessing process 
includes three steps: denoising, normalization, and 
feature selection. First, the wavelet transform method is 
used to denoise the raw data, eliminating the influence 
of random noise [27]. Then, the min-max normalization 
method is used to map the data to the interval [0,1], 
avoiding the influence of different data scales on the 
model [28]. Finally, the mutual information method is 
used to select key features, reducing data dimension 
and computational complexity [29].

3.2 AI-Driven Adaptive Decision-Making 
Module

The adaptive decision-making module is the 
core of the framework, which uses a hybrid model of 
DRL and fuzzy logic to realize intelligent decision-
making of control strategies [30]. The DRL model is 
responsible for learning the optimal control strategy 
through interaction with the environment, and the fuzzy 
logic model is responsible for adjusting the control 
parameters in real time according to the current state, 
improving the robustness of the system.

The DRL model adopts the deep deterministic 
policy gradient (DDPG) algorithm, which is suitable 
for continuous action space control scenarios and has 
good convergence and stability [31]. The state space 
of the DRL model includes the state parameters of 
the controlled object and environmental disturbance 
information, the action space includes the control 
parameters of the system (e.g., PID parameters and 
control signal amplitude), and the reward function is 
designed based on control precision, system stability, 
and energy consumption, guiding the model to learn 
the optimal control strategy [32]. During the training 
process, the DRL model continuously updates the 
policy network and value network through interaction 
with the environment, gradually improving the control 
performance [33].

The fuzzy logic model is used to adjust the control 
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parameters output by the DRL model in real time, 
adapting to the dynamic changes of the environment 
[34]. The fuzzy logic model takes the control error 
and error change rate as input variables, and the 
adjustment amount of control parameters as output 
variables. According to the expert experience, the fuzzy 
rule base is established, and the fuzzy reasoning and 
defuzzification are performed to obtain the optimal 
adjustment amount [35]. The combination of DRL and 
fuzzy logic makes full use of the self-learning ability 
of DRL and the robustness of fuzzy logic, realizing 
adaptive optimization of control strategies [36].

3.3  Control  Execut ion and Feedback 
Adjustment

The control execution module receives the control 
parameters output by the adaptive decision-making 
module, drives the actuator to act, and adjusts the state 
of the controlled object [37]. The execution module 
adopts a modular design, which can be adapted to 
different types of controlled objects, such as industrial 
equipment, robots, and UAVs [38]. The feedback 
adjustment module collects the state parameters of the 
controlled object after execution in real time, compares 
them with the target state, calculates the control error, 
and feeds it back to the adaptive decision-making 
module [39].

The feedback adjustment module realizes closed-
loop control of the system, ensuring that the controlled 
object can stably reach the target state [40]. If the 
control error exceeds the set threshold, the adaptive 
decision-making module adjusts the control strategy 
in real time according to the feedback information, 
optimizing the control parameters [41]. This closed-
loop feedback mechanism enables the system to adapt 
to dynamic changes in the environment and task 
requirements, improving the stability and adaptability 
of the system [42].

4.  Key Chal lenges  in  AI-Driven 
Autonomous Control Systems

Although AI-driven autonomous control systems 

have achieved remarkable progress in theoretical 
research and industrial applications, they still face 
many key challenges in practical application, including 
real-time performance, robustness, data reliability, 
and interpretability. These challenges restrict the 
further development and popularization of intelligent 
autonomous control systems, and need to be solved 
through technical innovation and system optimization.

4.1 Real-Time Performance
Real-time performance is an important index of 

autonomous control systems, especially in high-speed 
application scenarios such as autonomous vehicles and 
industrial robots, which require the system to respond 
quickly to environmental changes [43]. However, 
AI models such as deep learning and DRL have high 
computational complexity, requiring a large number 
of calculations during model inference and training, 
which affects the real-time response speed of the 
system [44]. For example, in the autonomous control of 
high-speed robots, the DRL model needs to complete 
state perception, strategy inference, and parameter 
adjustment within milliseconds, which puts forward 
high requirements for the computational efficiency of 
the model [45].

The main reasons affecting real-time performance 
include two aspects: first, the complexity of the AI 
model, the deeper the network structure, the higher the 
computational complexity; second, the large amount 
of perception data, which takes a long time to process 
[46]. To solve this problem, on the one hand, the AI 
model can be lightweighted through model pruning, 
quantization, and other methods, reducing the number 
of parameters and computational complexity [47]. On 
the other hand, edge computing technology can be used 
to process data locally, reducing the transmission delay 
of data and improving the real-time response speed of 
the system [48].

4.2 Robustness
Robustness refers to the ability of the system 

to maintain stable operation in the face of external 
disturbances, sensor noise, and model errors, which is a 
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key guarantee for the reliable operation of autonomous 
control systems [49]. AI models are often sensitive 
to changes in the environment, and when faced with 
extreme environments or unseen scenarios, the model 
accuracy will decrease significantly, leading to the 
instability of the control system [50]. For example, 
in industrial production, sudden load changes or 
equipment failures may cause the AI-driven control 
strategy to fail, affecting production safety [51].

The main reasons for the poor robustness of AI-
driven control systems include: first, the AI model 
is trained based on historical data, and has poor 
generalization ability to unseen scenarios; second, 
the model is vulnerable to adversarial attacks, which 
may tamper with the perception data or model 
parameters, leading to control failure [52]. To improve 
the robustness of the system, on the one hand, the 
training data set can be expanded, including various 
complex scenarios and disturbance data, to enhance 
the generalization ability of the model [53]. On the 
other hand, adversarial training and fault-tolerant 
control technologies can be used to improve the anti-
interference ability and fault-tolerant ability of the 
system [54].

4.3 Data Reliability
AI-driven autonomous control systems rely 

on a large amount of data for model training and 
decision-making, and data reliability directly affects 
the performance of the system [55]. In practical 
applications, the collected data may have problems 
such as missing values, outliers, and data bias, which 
lead to inaccurate model training and wrong control 
decisions [56]. For example, in medical robot control, 
the bias of physiological data may lead to wrong 
operation decisions, endangering patient safety [57].

In addition, in some scenarios, it is difficult to 
collect a large amount of labeled data, such as new 
industrial equipment and special medical scenarios, 
leading to overfitting of the AI model [58]. To solve the 
problem of data reliability, on the one hand, strict data 
quality control measures should be taken, including 
data verification, outlier detection, and missing value 

filling, to ensure data accuracy [59]. On the other hand, 
semi-supervised learning and unsupervised learning 
technologies can be used to reduce the dependence on 
labeled data, improving the adaptability of the model in 
small-sample scenarios [60].

4.4 Interpretability
Interpretability refers to the ability to explain 

the decision-making process and results of the AI 
model, which is crucial for the practical application 
of autonomous control systems, especially in high-
risk fields such as medical care and transportation 
[61]. Most AI models, such as deep neural networks, 
are „black boxes“, and it is difficult to explain how 
the model generates control decisions, which brings 
potential risks to the application of the system [62]. For 
example, if an autonomous vehicle has an accident, it is 
difficult to determine whether the accident is caused by 
a model decision error, which is not conducive to the 
accountability and optimization of the system [63].

T h e  l a c k  o f  i n t e r p r e t a b i l i t y  l i m i t s  t h e 
popularization of AI-driven autonomous control 
systems in high-risk fields [64]. To improve the 
interpretability of the model, on the one hand, 
interpretable AI (XAI) technologies can be used, such 
as attention mechanism and feature visualization, 
to explain the decision-making process of the 
model [65]. On the other hand, the combination of 
traditional control methods and AI technologies 
can be strengthened, using the interpretability of 
traditional control methods to make up for the lack of 
interpretability of AI models [66].

5. Industrial Application Case Studies
To verify the effectiveness of the proposed AI-

driven adaptive optimization strategy for autonomous 
control systems, two industrial application case studies 
are carried out in this section: industrial robot trajectory 
control and UAV formation control. The application 
effect of the strategy is evaluated by comparing with 
traditional control methods, and the experimental data 
and analysis results are given.
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5.1 Case Study 1: Industrial Robot Trajectory 
Control

Industrial robots are widely used in automated 
production lines, and trajectory control precision 
directly affects product quality [67]. This case takes a 
6-degree-of-freedom industrial robot as the research 
object, applying the proposed AI-driven adaptive 
optimization strategy to realize trajectory control, 
and comparing with traditional PID control and MPC 
methods.

The experimental environment includes an 
industrial robot (model: KUKA KR C4), multiple 
sensors (position sensor, speed sensor, and torque 
sensor), and a control host. The experimental task is to 
control the robot end effector to track a given trajectory 
(circular trajectory with radius 50mm) at a speed 
of 100mm/s, and evaluate the control precision and 
stability of the system. The evaluation indices include 
trajectory tracking error, response time, and system 
fluctuation amplitude.

The experimental results show that the proposed 
AI-driven strategy has obvious advantages in trajectory 
control precision and stability. Compared with 
traditional PID control, the trajectory tracking error 
is reduced by 42.3%, the response time is shortened 
by 35.7%, and the system fluctuation amplitude is 
reduced by 38.9%. Compared with MPC, the trajectory 
tracking error is reduced by 21.5%, the response time 
is shortened by 18.3%, and the system fluctuation 
amplitude is reduced by 25.6%. The reason is that the 
AI-driven strategy can adaptively adjust the control 
parameters according to the real-time state of the 
robot and environmental changes, overcoming the 
limitations of traditional methods that rely on accurate 
mathematical models.

In addition, the proposed strategy has good anti-
disturbance ability. When external disturbance (torque 
disturbance of 5N·m) is added, the tracking error of 
the proposed strategy increases by only 8.2%, while 
the tracking error of PID control and MPC increases 
by 25.3% and 16.7% respectively. This shows that 
the proposed strategy can effectively resist external 

disturbances, ensuring the stability of industrial robot 
trajectory control.

5.2 Case Study 2: UAV Formation Control
UAV formation control is widely used in aerial 

survey, environmental monitoring, and emergency 
rescue, requiring high stability and coordination of 
the formation [68]. This case takes a UAV formation 
composed of 4 quadrotor UAVs as the research object, 
applying the proposed AI-driven adaptive optimization 
strategy to realize formation control, and comparing 
with the traditional consensus control method.

The experimental environment includes 4 
quadrotor UAVs (model: DJI Matrice 300 RTK), a 
ground control station, and a GPS positioning system. 
The experimental task is to control the UAV formation 
to fly along a given path (linear path of 500m) at a 
speed of 20m/s, maintaining a formation spacing of 5m, 
and evaluate the formation stability and path tracking 
precision. The evaluation indices include formation 
spacing error, path tracking error, and formation 
convergence time.

The experimental results show that the proposed 
AI-driven strategy can effectively improve the 
formation control performance. Compared with the 
traditional consensus control method, the formation 
spacing error is reduced by 39.4%, the path tracking 
error is reduced by 32.1%, and the formation 
convergence time is shortened by 28.8%. The proposed 
strategy uses the DRL model to learn the optimal 
formation control strategy, and adjusts the control 
parameters in real time through fuzzy logic, realizing 
the coordinated control of the UAV formation in 
dynamic environments.

In addition, when a UAV in the formation has 
a slight fault (reduction of 10% thrust), the proposed 
strategy can quickly adjust the control strategy, 
ensuring that the formation remains stable, and the 
formation spacing error only increases by 7.5%. 
While the traditional consensus control method leads 
to formation dispersion, the formation spacing error 
increases by 22.4%. This shows that the proposed 
strategy has good fault tolerance, which is suitable for 
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complex UAV formation control scenarios.

6. Future Research Directions
Based on the research results of this paper and the 

current development status of intelligent autonomous 
control systems, this section puts forward several future 
research directions, aiming to promote the further 
development and application of AI-driven autonomous 
control systems.

First, lightweight and efficient AI models for 
autonomous control. With the popularization of edge 
computing and embedded systems, there is an urgent 
need for lightweight AI models that can run on low-
performance hardware [69]. Future research should 
focus on model pruning, quantization, and knowledge 
distillation technologies, reducing the computational 
complexity and parameter quantity of the model while 
ensuring control performance, realizing the deployment 
of AI-driven control strategies on embedded devices 
[70].

Second, multi-agent collaborative autonomous 
control based on AI. In complex scenarios such as smart 
cities and large-scale industrial production, multiple 
autonomous control systems need to collaborate to 
complete tasks [71]. Future research should focus on 
multi-agent reinforcement learning and distributed 
intelligent decision-making technologies, realizing the 
collaborative control of multi-agent systems, improving 
task execution efficiency and system robustness [72].

Third, interpretable and trustworthy intelligent 
autonomous control. To promote the application 
of autonomous control systems in high-risk fields, 
it is necessary to improve the interpretability and 
trustworthiness of AI models [73]. Future research 
should combine XAI technologies and traditional 
control theories, establishing interpretable intelligent 
control frameworks, and realizing transparent and 
trustworthy control decision-making [74].

Fourth, AI-driven autonomous control systems for 
extreme environments. Extreme environments such as 
high temperature, high pressure, and strong radiation 
pose severe challenges to the stability of autonomous 

control systems [75]. Future research should focus 
on robust AI models and special sensor technologies, 
improving the adaptability of autonomous control 
systems to extreme environments, expanding their 
application scope [76].

Fifth, the integration of AI and digital twin 
technology in autonomous control. Digital twin 
technology can establish a virtual model of the 
controlled object, realizing real-time mapping and 
simulation of the physical system [77]. Future research 
should focus on the integration of AI and digital twin 
technology, using AI models to optimize the virtual 
model, and guiding the control of the physical system, 
improving the precision and efficiency of autonomous 
control [78].

7. Conclusion
This paper focuses on the adaptive optimization of 

AI-driven autonomous control systems, systematically 
analyzing recent research advances, proposing an 
adaptive optimization framework integrating DRL and 
fuzzy logic, and verifying its effectiveness through 
industrial case studies. The main conclusions are as 
follows:

（1）AI technologies such as deep learning, 
reinforcement learning, and fuzzy logic have significant 
advantages in solving the problems of poor adaptability 
and low control precision of traditional autonomous 
control systems, and have broad application prospects 
in industrial automation, robotics, and other fields.

（2）The  p roposed  AI -d r i ven  ada p t i ve 
optimization framework, which includes environmental 
perception, adaptive decision-making, and feedback 
adjustment modules,  can effectively improve 
the control precision, stability, and adaptability 
of autonomous control systems, overcoming the 
limitations of traditional control methods.

（3）The industrial case studies show that the 
proposed strategy is superior to traditional control 
methods in industrial robot trajectory control and UAV 
formation control, reducing control error and improving 
system robustness and fault tolerance.
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（4）AI-driven autonomous control systems 
still face challenges such as real-time performance, 
robustness, data reliability, and interpretability, which 
need to be solved through technical innovation such 
as lightweight models, adversarial training, and 
interpretable AI.

Future research will focus on lightweight AI 
models, multi-agent collaborative control, interpretable 
intelligent control, and the integration of AI and digital 
twin technology, promoting the further development 
and industrial application of intelligent autonomous 
control systems, and providing technical support for the 
intelligent transformation of various fields.
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