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1. Introduction

The rapid development of artificial intelligence,
Internet of Things (IoT), and big data technologies has
promoted a fundamental transformation in autonomous
control systems, expanding their application scope
from traditional industrial automation to smart
cities, autonomous vehicles, medical robots, and
environmental monitoring [1]. Autonomous control
systems are expected to independently perceive,
decision-make, and adjust without human intervention,
adapting to dynamic changes in operating environments
and task requirements [2]. However, complex scenarios
such as variable industrial loads, uncertain external
disturbances, and multi-task collaboration pose severe
challenges to the stability, robustness, and real-
time performance of traditional autonomous control
strategies [3].

Traditional autonomous control methods, such
as proportional-integral-derivative (PID) control and
model predictive control (MPC), rely on accurate
mathematical models of the controlled object, which
are difficult to establish in complex and dynamic
environments [4]. With the advantages of self-learning,
self-adaptation, and nonlinear fitting, Al technologies
have become an effective solution to overcome these
limitations, enabling autonomous control systems to
adapt to uncertain environments through data-driven
learning and intelligent decision-making [5]. In recent
years, deep learning, reinforcement learning, fuzzy
logic, and other Al technologies have been widely
applied in autonomous control, forming a series of
intelligent control strategies that have significantly
improved the performance of autonomous control
systems [6].

Journal of Intelligent and Autonomous Control
focuses on the latest research progress in intelligent
control and autonomous systems, covering theoretical
research, technical innovation, and industrial
applications. This paper focuses on Al-driven adaptive
optimization for autonomous control systems,
systematically sorting out recent research advances,

analyzing key technical challenges, and verifying
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the application effect through industrial case studies.
It aims to provide a comprehensive reference for
researchers and engineers in related fields, promote the
integration of Al and autonomous control technologies,
and accelerate the industrialization and intelligent
upgrading of autonomous control systems.

This paper is structured as follows: Section
2 reviews related work on Al-driven autonomous
control systems. Section 3 introduces the principle and
implementation of Al-driven adaptive optimization
strategies for autonomous control. Section 4 analyzes
key challenges in the application process. Section
5 verifies the effectiveness of the proposed strategy
through industrial case studies. Section 6 discusses
future research directions. Finally, Section 7

summarizes the full text.

2. Related Work

In recent years, scholars at home and abroad have
conducted extensive research on Al-driven autonomous
control systems, achieving remarkable results in
theoretical innovation and technical application. This
section reviews related research from three aspects:
deep learning-based autonomous control, reinforcement
learning-based autonomous control, and hybrid Al-

driven autonomous control strategies.

2.1 Deep Learning-Based Autonomous

Control

Deep learning has strong nonlinear fitting and
feature extraction capabilities, which can effectively
solve the problem of difficult modeling in complex
autonomous control scenarios, and has been widely
applied in image-based perception and control
parameter optimization [7]. Razzaq et al. (2024)
proposed an intelligent control system for brain-
controlled mobile robots using a self-learning neuro-
fuzzy approach, integrating deep learning for feature
extraction of brain signals, which improved the robot’s
response speed and control accuracy [8]. Liu et al.
(2023) designed a delay-informed intelligent formation
control strategy for UAV-assisted loT applications,

using deep learning to predict network delays, ensuring
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the stability of UAV formation control in complex
communication environments [9].

In industrial control, Coskun and Itik (2023)
proposed an intelligent PID control strategy for
industrial electro-hydraulic systems based on deep
learning, which adaptively adjusted PID parameters
through deep neural networks, improving the control
precision and anti-disturbance ability of the system [10].
Tian et al. (2023) summarized the research progress
of data-driven modeling and control for flotation
processes, using deep learning to process flotation froth
images and predict key process indices, providing a
basis for adaptive control [11]. These studies show that
deep learning can effectively extract hidden features
from complex data, providing technical support for the

adaptive optimization of autonomous control systems.

2.2 Reinforcement Learning-Based

Autonomous Control

Reinforcement learning is a learning method that
achieves optimal decision-making through interaction
with the environment, which is highly consistent with
the decision-making needs of autonomous control
systems, and has been widely applied in robotics,
autonomous vehicles, and other fields [12]. Biniyaz
et al. (2022) proposed an intelligent control method
for groundwater in slopes using deep reinforcement
learning, which realized adaptive adjustment of
groundwater control strategies according to slope
deformation data, improving the stability of slope
engineering [13]. de Farias and Bessa (2022) applied
reinforcement learning to the intelligent control of
automated insulin delivery systems, realizing real-time
adjustment of insulin dosage based on blood glucose
changes, improving the effect of diabetes treatment [14].

In multi-agent autonomous control, Chen et
al. (2025) studied the confluence of evolutionary
computation and multi-agent systems, combining
reinforcement learning with evolutionary algorithms
to improve the collaborative decision-making ability
of multi-agent autonomous control systems [15]. Chu
and Liu (2025) proposed an adaptive event-triggered

control strategy for time-varying nonlinear systems

based on reinforcement learning, which reduced the
computational burden while ensuring control stability
[16]. These studies show that reinforcement learning
can enable autonomous control systems to continuously
optimize decision-making strategies through interaction
with the environment, enhancing the adaptability of the

system to dynamic environments.

2.3 Hybrid AI-Driven Autonomous Control

Strategies

Single Al technology has certain limitations in
practical applications: deep learning relies on a large
amount of labeled data, and reinforcement learning
has slow convergence in complex scenarios [17].
Therefore, hybrid Al-driven autonomous control
strategies, which combine multiple Al technologies,
have become a research hotspot in recent years [18].
Hu et al. (2025) proposed an extended dissipative
observer-based plug-and-play control strategy for
large-scale interconnected systems, combining fuzzy
logic and deep learning to improve the scalability and
robustness of the control system [19]. Pan et al. (2025)
designed a robot impedance iterative learning method
based on sparse online Gaussian process, integrating
reinforcement learning and probabilistic modeling to
enhance the robot’s force control performance [20].

In the field of UAV autonomous control, Chen
et al. (2025) proposed a hybrid method combining
deep reinforcement learning and model predictive
control for multi-mobile robot motion planning, which
balanced the computational efficiency and control
precision of the system [21]. Wang et al. (2025)
explored the application of parallel Al in medical
autonomous control systems, combining deep learning
and reinforcement learning to realize intelligent
decision-making for medical robots [22]. These hybrid
strategies integrate the advantages of multiple Al
technologies, effectively overcoming the limitations of
single technologies and improving the comprehensive
performance of autonomous control systems.

However, existing research still has some
deficiencies: first, most Al-driven control strategies

have high computational complexity, which is difficult
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to meet the real-time requirements of high-speed
autonomous control scenarios; second, the robustness
of Al models in extreme environments needs to be
improved, and the problem of overfitting in small-
sample scenarios is prominent; third, the integration
of Al technologies and traditional control methods
is not deep enough, and there is a lack of systematic
optimization frameworks [23]. Aiming at these
problems, this paper focuses on Al-driven adaptive
optimization for autonomous control systems, exploring

efficient and robust intelligent control strategies.

3. AI-Driven Adaptive Optimization
Strategy for Autonomous Control
Systems

This section proposes an Al-driven adaptive
optimization framework for autonomous control
systems, integrating deep reinforcement learning
(DRL) and fuzzy logic, to solve the problems of poor
adaptability and low control precision of traditional
autonomous control systems in complex environments.
The framework includes three modules: environmental
perception and data preprocessing, Al-driven adaptive
decision-making, and control execution and feedback
adjustment. The working principle and implementation

process of each module are detailed below.

3.1 Environmental Perception and Data

Preprocessing

Environmental perception is the basis of
autonomous control, which is responsible for collecting
the operating state of the controlled object and
environmental disturbance information, providing
data support for adaptive decision-making [24]. The
perception module integrates multiple sensors, such
as temperature sensors, pressure sensors, and image
sensors, to collect multi-dimensional data in real
time, including the state parameters of the controlled
object (e.g., speed, position, and load) and external
environmental parameters (e.g., temperature, humidity,
and disturbance intensity) [25].

Due to the influence of sensor noise and
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environmental interference, the collected raw data often
contain redundant information and outliers, which affect
the accuracy of Al model training and control decision-
making [26]. Therefore, data preprocessing is required
to improve data quality. The data preprocessing process
includes three steps: denoising, normalization, and
feature selection. First, the wavelet transform method is
used to denoise the raw data, eliminating the influence
of random noise [27]. Then, the min-max normalization
method is used to map the data to the interval [0,1],
avoiding the influence of different data scales on the
model [28]. Finally, the mutual information method is
used to select key features, reducing data dimension

and computational complexity [29].

3.2 AI-Driven Adaptive Decision-Making
Module

The adaptive decision-making module is the
core of the framework, which uses a hybrid model of
DRL and fuzzy logic to realize intelligent decision-
making of control strategies [30]. The DRL model is
responsible for learning the optimal control strategy
through interaction with the environment, and the fuzzy
logic model is responsible for adjusting the control
parameters in real time according to the current state,
improving the robustness of the system.

The DRL model adopts the deep deterministic
policy gradient (DDPG) algorithm, which is suitable
for continuous action space control scenarios and has
good convergence and stability [31]. The state space
of the DRL model includes the state parameters of
the controlled object and environmental disturbance
information, the action space includes the control
parameters of the system (e.g., PID parameters and
control signal amplitude), and the reward function is
designed based on control precision, system stability,
and energy consumption, guiding the model to learn
the optimal control strategy [32]. During the training
process, the DRL model continuously updates the
policy network and value network through interaction
with the environment, gradually improving the control
performance [33].

The fuzzy logic model is used to adjust the control
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parameters output by the DRL model in real time,
adapting to the dynamic changes of the environment
[34]. The fuzzy logic model takes the control error
and error change rate as input variables, and the
adjustment amount of control parameters as output
variables. According to the expert experience, the fuzzy
rule base is established, and the fuzzy reasoning and
defuzzification are performed to obtain the optimal
adjustment amount [35]. The combination of DRL and
fuzzy logic makes full use of the self-learning ability
of DRL and the robustness of fuzzy logic, realizing

adaptive optimization of control strategies [36].

3.3 Control Execution and Feedback
Adjustment

The control execution module receives the control
parameters output by the adaptive decision-making
module, drives the actuator to act, and adjusts the state
of the controlled object [37]. The execution module
adopts a modular design, which can be adapted to
different types of controlled objects, such as industrial
equipment, robots, and UAVs [38]. The feedback
adjustment module collects the state parameters of the
controlled object after execution in real time, compares
them with the target state, calculates the control error,
and feeds it back to the adaptive decision-making
module [39].

The feedback adjustment module realizes closed-
loop control of the system, ensuring that the controlled
object can stably reach the target state [40]. If the
control error exceeds the set threshold, the adaptive
decision-making module adjusts the control strategy
in real time according to the feedback information,
optimizing the control parameters [41]. This closed-
loop feedback mechanism enables the system to adapt
to dynamic changes in the environment and task
requirements, improving the stability and adaptability
of the system [42].

4. Key Challenges in AI-Driven
Autonomous Control Systems

Although Al-driven autonomous control systems

have achieved remarkable progress in theoretical
research and industrial applications, they still face
many key challenges in practical application, including
real-time performance, robustness, data reliability,
and interpretability. These challenges restrict the
further development and popularization of intelligent
autonomous control systems, and need to be solved

through technical innovation and system optimization.

4.1 Real-Time Performance

Real-time performance is an important index of
autonomous control systems, especially in high-speed
application scenarios such as autonomous vehicles and
industrial robots, which require the system to respond
quickly to environmental changes [43]. However,
Al models such as deep learning and DRL have high
computational complexity, requiring a large number
of calculations during model inference and training,
which affects the real-time response speed of the
system [44]. For example, in the autonomous control of
high-speed robots, the DRL model needs to complete
state perception, strategy inference, and parameter
adjustment within milliseconds, which puts forward
high requirements for the computational efficiency of
the model [45].

The main reasons affecting real-time performance
include two aspects: first, the complexity of the Al
model, the deeper the network structure, the higher the
computational complexity; second, the large amount
of perception data, which takes a long time to process
[46]. To solve this problem, on the one hand, the Al
model can be lightweighted through model pruning,
quantization, and other methods, reducing the number
of parameters and computational complexity [47]. On
the other hand, edge computing technology can be used
to process data locally, reducing the transmission delay
of data and improving the real-time response speed of
the system [48].

4.2 Robustness

Robustness refers to the ability of the system
to maintain stable operation in the face of external

disturbances, sensor noise, and model errors, which is a
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key guarantee for the reliable operation of autonomous
control systems [49]. Al models are often sensitive
to changes in the environment, and when faced with
extreme environments or unseen scenarios, the model
accuracy will decrease significantly, leading to the
instability of the control system [50]. For example,
in industrial production, sudden load changes or
equipment failures may cause the Al-driven control
strategy to fail, affecting production safety [51].

The main reasons for the poor robustness of Al-
driven control systems include: first, the Al model
is trained based on historical data, and has poor
generalization ability to unseen scenarios; second,
the model is vulnerable to adversarial attacks, which
may tamper with the perception data or model
parameters, leading to control failure [52]. To improve
the robustness of the system, on the one hand, the
training data set can be expanded, including various
complex scenarios and disturbance data, to enhance
the generalization ability of the model [53]. On the
other hand, adversarial training and fault-tolerant
control technologies can be used to improve the anti-
interference ability and fault-tolerant ability of the

system [54].
4.3 Data Reliability

Al-driven autonomous control systems rely
on a large amount of data for model training and
decision-making, and data reliability directly affects
the performance of the system [55]. In practical
applications, the collected data may have problems
such as missing values, outliers, and data bias, which
lead to inaccurate model training and wrong control
decisions [56]. For example, in medical robot control,
the bias of physiological data may lead to wrong
operation decisions, endangering patient safety [57].

In addition, in some scenarios, it is difficult to
collect a large amount of labeled data, such as new
industrial equipment and special medical scenarios,
leading to overfitting of the Al model [58]. To solve the
problem of data reliability, on the one hand, strict data
quality control measures should be taken, including

data verification, outlier detection, and missing value
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filling, to ensure data accuracy [59]. On the other hand,
semi-supervised learning and unsupervised learning
technologies can be used to reduce the dependence on
labeled data, improving the adaptability of the model in

small-sample scenarios [60].

4.4 Interpretability

Interpretability refers to the ability to explain
the decision-making process and results of the Al
model, which is crucial for the practical application
of autonomous control systems, especially in high-
risk fields such as medical care and transportation
[61]. Most Al models, such as deep neural networks,
are ,,black boxes“, and it is difficult to explain how
the model generates control decisions, which brings
potential risks to the application of the system [62]. For
example, if an autonomous vehicle has an accident, it is
difficult to determine whether the accident is caused by
a model decision error, which is not conducive to the
accountability and optimization of the system [63].

The lack of interpretability limits the
popularization of Al-driven autonomous control
systems in high-risk fields [64]. To improve the
interpretability of the model, on the one hand,
interpretable Al (XAI) technologies can be used, such
as attention mechanism and feature visualization,
to explain the decision-making process of the
model [65]. On the other hand, the combination of
traditional control methods and Al technologies
can be strengthened, using the interpretability of
traditional control methods to make up for the lack of
interpretability of Al models [66].

5. Industrial Application Case Studies

To verify the effectiveness of the proposed Al-
driven adaptive optimization strategy for autonomous
control systems, two industrial application case studies
are carried out in this section: industrial robot trajectory
control and UAV formation control. The application
effect of the strategy is evaluated by comparing with
traditional control methods, and the experimental data

and analysis results are given.
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5.1 Case Study 1: Industrial Robot Trajectory
Control

Industrial robots are widely used in automated
production lines, and trajectory control precision
directly affects product quality [67]. This case takes a
6-degree-of-freedom industrial robot as the research
object, applying the proposed Al-driven adaptive
optimization strategy to realize trajectory control,
and comparing with traditional PID control and MPC
methods.

The experimental environment includes an
industrial robot (model: KUKA KR C4), multiple
sensors (position sensor, speed sensor, and torque
sensor), and a control host. The experimental task is to
control the robot end effector to track a given trajectory
(circular trajectory with radius 50mm) at a speed
of 100mm/s, and evaluate the control precision and
stability of the system. The evaluation indices include
trajectory tracking error, response time, and system
fluctuation amplitude.

The experimental results show that the proposed
Al-driven strategy has obvious advantages in trajectory
control precision and stability. Compared with
traditional PID control, the trajectory tracking error
is reduced by 42.3%, the response time is shortened
by 35.7%, and the system fluctuation amplitude is
reduced by 38.9%. Compared with MPC, the trajectory
tracking error is reduced by 21.5%, the response time
is shortened by 18.3%, and the system fluctuation
amplitude is reduced by 25.6%. The reason is that the
Al-driven strategy can adaptively adjust the control
parameters according to the real-time state of the
robot and environmental changes, overcoming the
limitations of traditional methods that rely on accurate
mathematical models.

In addition, the proposed strategy has good anti-
disturbance ability. When external disturbance (torque
disturbance of 5SN-m) is added, the tracking error of
the proposed strategy increases by only 8.2%, while
the tracking error of PID control and MPC increases
by 25.3% and 16.7% respectively. This shows that

the proposed strategy can effectively resist external

disturbances, ensuring the stability of industrial robot

trajectory control.

5.2 Case Study 2: UAV Formation Control

UAV formation control is widely used in aerial
survey, environmental monitoring, and emergency
rescue, requiring high stability and coordination of
the formation [68]. This case takes a UAV formation
composed of 4 quadrotor UAVs as the research object,
applying the proposed Al-driven adaptive optimization
strategy to realize formation control, and comparing
with the traditional consensus control method.

The experimental environment includes 4
quadrotor UAVs (model: DJI Matrice 300 RTK), a
ground control station, and a GPS positioning system.
The experimental task is to control the UAV formation
to fly along a given path (linear path of 500m) at a
speed of 20m/s, maintaining a formation spacing of 5m,
and evaluate the formation stability and path tracking
precision. The evaluation indices include formation
spacing error, path tracking error, and formation
convergence time.

The experimental results show that the proposed
Al-driven strategy can effectively improve the
formation control performance. Compared with the
traditional consensus control method, the formation
spacing error is reduced by 39.4%, the path tracking
error is reduced by 32.1%, and the formation
convergence time is shortened by 28.8%. The proposed
strategy uses the DRL model to learn the optimal
formation control strategy, and adjusts the control
parameters in real time through fuzzy logic, realizing
the coordinated control of the UAV formation in
dynamic environments.

In addition, when a UAV in the formation has
a slight fault (reduction of 10% thrust), the proposed
strategy can quickly adjust the control strategy,
ensuring that the formation remains stable, and the
formation spacing error only increases by 7.5%.
While the traditional consensus control method leads
to formation dispersion, the formation spacing error
increases by 22.4%. This shows that the proposed

strategy has good fault tolerance, which is suitable for
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complex UAV formation control scenarios.

6. Future Research Directions

Based on the research results of this paper and the
current development status of intelligent autonomous
control systems, this section puts forward several future
research directions, aiming to promote the further
development and application of Al-driven autonomous
control systems.

First, lightweight and efficient Al models for
autonomous control. With the popularization of edge
computing and embedded systems, there is an urgent
need for lightweight Al models that can run on low-
performance hardware [69]. Future research should
focus on model pruning, quantization, and knowledge
distillation technologies, reducing the computational
complexity and parameter quantity of the model while
ensuring control performance, realizing the deployment
of Al-driven control strategies on embedded devices
[70].

Second, multi-agent collaborative autonomous
control based on Al. In complex scenarios such as smart
cities and large-scale industrial production, multiple
autonomous control systems need to collaborate to
complete tasks [71]. Future research should focus on
multi-agent reinforcement learning and distributed
intelligent decision-making technologies, realizing the
collaborative control of multi-agent systems, improving
task execution efficiency and system robustness [72].

Third, interpretable and trustworthy intelligent
autonomous control. To promote the application
of autonomous control systems in high-risk fields,
it is necessary to improve the interpretability and
trustworthiness of AI models [73]. Future research
should combine XAI technologies and traditional
control theories, establishing interpretable intelligent
control frameworks, and realizing transparent and
trustworthy control decision-making [74].

Fourth, Al-driven autonomous control systems for
extreme environments. Extreme environments such as
high temperature, high pressure, and strong radiation

pose severe challenges to the stability of autonomous
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control systems [75]. Future research should focus
on robust Al models and special sensor technologies,
improving the adaptability of autonomous control
systems to extreme environments, expanding their
application scope [76].

Fifth, the integration of AI and digital twin
technology in autonomous control. Digital twin
technology can establish a virtual model of the
controlled object, realizing real-time mapping and
simulation of the physical system [77]. Future research
should focus on the integration of Al and digital twin
technology, using Al models to optimize the virtual
model, and guiding the control of the physical system,
improving the precision and efficiency of autonomous
control [78].

7. Conclusion

This paper focuses on the adaptive optimization of
Al-driven autonomous control systems, systematically
analyzing recent research advances, proposing an
adaptive optimization framework integrating DRL and
fuzzy logic, and verifying its effectiveness through
industrial case studies. The main conclusions are as
follows:

(1) AI technologies such as deep learning,
reinforcement learning, and fuzzy logic have significant
advantages in solving the problems of poor adaptability
and low control precision of traditional autonomous
control systems, and have broad application prospects
in industrial automation, robotics, and other fields.

(2) The proposed Al-driven adaptive
optimization framework, which includes environmental
perception, adaptive decision-making, and feedback
adjustment modules, can effectively improve
the control precision, stability, and adaptability
of autonomous control systems, overcoming the
limitations of traditional control methods.

(3) The industrial case studies show that the
proposed strategy is superior to traditional control
methods in industrial robot trajectory control and UAV
formation control, reducing control error and improving

system robustness and fault tolerance.
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(4) Al-driven autonomous control systems
still face challenges such as real-time performance,
robustness, data reliability, and interpretability, which
need to be solved through technical innovation such
as lightweight models, adversarial training, and
interpretable Al

Future research will focus on lightweight Al
models, multi-agent collaborative control, interpretable
intelligent control, and the integration of Al and digital
twin technology, promoting the further development
and industrial application of intelligent autonomous
control systems, and providing technical support for the

intelligent transformation of various fields.
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