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ABSTRACT
Cyber-Physical Systems (CPS) are evolving towards higher autonomy and real-time responsiveness, posing stringent 
demands on low-latency decision-making and dynamic environmental adaptation. Traditional cloud-centric control ar-
chitectures suffer from inevitable network delays and bandwidth bottlenecks, limiting their applicability in time-critical 
scenarios. This paper proposes a novel synergistic framework integrating Edge Intelligence (EI) and Digital Twin (DT) 
for autonomous control systems. By deploying lightweight AI models at the network edge and establishing high-fidelity 
virtual replicas of physical assets, the framework enables real-time perception, local decision-making, and predictive con-
trol. This study elaborates on the architectural design, communication protocols, and security mechanisms of the proposed 
framework. Through experimental validation on smart grid load regulation and autonomous mobile robot navigation, the 
results demonstrate that the EI-DT synergy reduces end-to-end latency by over 60% and improves control stability by 
30% compared to cloud-based approaches. This research provides a viable solution for latency-sensitive and dynamic 
autonomous control applications.
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1. Introduction
The proliferation of Cyber-Physical Systems 

(CPS) across smart manufacturing, intelligent 
transportation, and smart energy grids has accelerated 
the demand for autonomous control capabilities 
[1]. Unlike traditional automated systems, modern 
autonomous CPS require the ability to perceive 
complex environments, make independent decisions, 
and execute control actions with minimal human 
intervention, all within strict time constraints [2]. For 
instance, autonomous robots in industrial warehouses 
must react to obstacles in milliseconds, and smart 
grid inverters need real-time adjustments to maintain 
frequency stability [3]. These time-critical applications 
highlight the limitations of conventional cloud-based 
control architectures, where data transmission to remote 
servers introduces prohibitive latency and vulnerability 
to network disruptions [4].

Edge Intel l igence (EI)  has emerged as  a 
transformative paradigm by pushing artificial 
intelligence (AI) computation from centralized clouds 
to the edge of the network, near the data sources [5]. By 
processing data locally on edge devices (e.g., gateways, 
sensors, and embedded controllers), EI significantly 
reduces communication latency and bandwidth 
consumption [6]. However, standalone edge computing 
faces challenges such as limited computational 
resources, difficulty in global optimization, and lack of 
historical data context [7]. On the other hand, Digital 
Twin (DT) technology creates a virtual, real-time 
synchronized replica of physical systems, enabling 
simulation, prediction, and what-if analysis [8]. The 
integration of EI and DT promises to address their 
individual limitations: DT provides the edge with 
predictive insights and a holistic system view, while EI 
enables the DT to adapt and learn from real-time edge 
data [9].

The Journal of Intelligent and Autonomous 
Control emphasizes the integration of emerging 
computing technologies with control engineering. This 
paper focuses on the synergy between EI and DT for 
low-latency autonomous control. It aims to answer 

how to design a distributed architecture that leverages 
the strengths of both technologies, how to ensure 
secure and efficient data synchronization between 
physical and virtual entities, and how to validate the 
performance gains in real-world applications. The 
remainder of this paper is organized as follows: Section 
2 reviews related work on edge control and digital 
twins. Section 3 presents the detailed architecture of 
the EI-DT integrated framework. Section 4 discusses 
key implementation challenges and solutions. Section 
5 validates the framework through two distinct case 
studies. Finally, Section 6 concludes the paper and 
outlines future research directions.

2. Related Work
Recent advancements in autonomous control have 

increasingly focused on reducing latency and improving 
adaptability. This section reviews the state-of-the-art 
research in edge-based control systems, digital twin 
applications, and their preliminary integration efforts.

2.1 Edge Computing for Low-Latency 
Control

Edge computing has been widely investigated 
to mitigate the latency issues in cloud-centric control. 
Zhang et al. (2023) proposed a hierarchical edge-cloud 
architecture for industrial robot control, where time-
sensitive motion control is handled locally, and non-
critical path planning is offloaded to the cloud [10]. 
Similarly, in the automotive domain, Li and Wang 
(2024) developed an edge-aware adaptive cruise control 
system that processes radar and camera data locally 
to ensure safe reaction times [11]. However, these 
approaches often treat edge nodes as passive executors 
and lack a mechanism for predictive adaptation based 
on future system states.

To enhance intelligence at the edge, model 
compression techniques have been extensively 
studied. Chen et al. (2024) applied quantization and 
knowledge distillation to deep reinforcement learning 
(DRL) models, enabling their deployment on resource-
constrained microcontrollers for autonomous drone 
control [12]. While effective in reducing model size, 
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these lightweight models often sacrifice accuracy 
compared to their full-sized counterparts, especially in 
complex, dynamic environments [13]. This accuracy-
latency trade-off remains a core challenge for edge 
control systems.

2.2 Digital Twin for Predictive Autonomous 
Control

Digital twins have evolved from static 3D 
models to dynamic, data-driven tools for control 
optimization. In smart manufacturing, Wang et al. 
(2023) implemented a digital twin of a production line 
to predict equipment failures and schedule preventive 
maintenance autonomously [14]. In civil engineering, 
a digital twin of a bridge structure was used to monitor 
stress levels and adjust traffic flow in real-time to 
prevent structural fatigue [15]. These applications 
demonstrate DT‘s capability for predictive control but 
often rely on cloud computing for heavy simulations, 
limiting their real-time responsiveness [16].

Efforts to decentralize digital twins have gained 
traction. Rodriguez et al. (2025) proposed a fog 
computing-supported digital twin for smart cities, 
where fog nodes handle real-time data streaming, and 
the cloud maintains the long-term historical model 
[17]. This hybrid approach reduces latency but still 
faces challenges in maintaining tight synchronization 
between the physical asset and its virtual twin across 
distributed computing layers [18].

2.3 Integration of Edge Intelligence and Digital 
Twin

The synergy between EI and DT is a nascent but 
rapidly growing research area. Early integration efforts 
focused on specific use cases. For example, Patel et al. 
(2024) developed an EI-DT framework for precision 
agriculture, where edge devices control irrigation based 
on real-time soil sensor data, and a cloud-based digital 
twin optimizes water usage schedules [19]. However, 
this framework is application-specific and lacks a 
generalized architectural design.

Several research gaps remain in the current 
literature. First, there is a lack of a standardized 
communication protocol tailored for low-latency data 

exchange between edge controllers and digital twins. 
Second, security considerations, such as protecting 
the integrity of twin data and edge commands, 
are often overlooked. Third, few studies provide a 
comprehensive performance comparison of EI-DT 
integrated systems against pure edge or pure cloud 
approaches in dynamic, high-interference environments 
[20]. This paper addresses these gaps by proposing a 
generalized, secure, and low-latency EI-DT framework.

3. EI-DT Synergistic Framework for 
Autonomous Control

This section presents the Edge Intelligence-
Digital Twin (EI-DT) synergistic framework designed 
to enable low-latency, predictive autonomous control 
in dynamic CPS. The framework follows a three-tier 
architecture: Physical Layer, Edge Intelligence Layer, 
and Digital Twin Layer. A cross-cutting Security Layer 
ensures the integrity and confidentiality of the entire 
system. The detailed design and interaction of each 
layer are described below.

3.1 Physical Layer: Sensing and Actuation
The Physical Layer consists of the physical assets 

(e.g., industrial machines, vehicles, power grids) and 
the Internet of Things (IoT) sensor-actuator network. 
High-frequency sensors (e.g., accelerometers, current 
transducers, LiDAR) collect real-time state data (e.g., 
position, velocity, temperature, voltage) at millisecond 
intervals [21]. These sensors are connected to edge 
gateways via low-latency communication protocols 
such as Time-Sensitive Networking (TSN) or 5G 
New Radio (5G-NR) Ultra-Reliable Low-Latency 
Communication (URLLC) [22].

Actuators receive control commands directly 
from the Edge Intelligence Layer, ensuring minimal 
actuation delay. The Physical Layer is designed to be 
modular, allowing for easy integration of new sensors 
or actuators without disrupting the overall system 
operation. This modularity is crucial for adapting 
the framework to different CPS domains, from 
manufacturing robots to energy infrastructure.



Journal of Intelligent and Autonomous Control  | Volume 01 | Issue 01 | December 2025

38

3.2 Edge Intelligence Layer: Real-Time 
Decision Making

The Edge Intelligence Layer is the operational 
core of the framework, responsible for local perception, 
decision-making, and control execution. It comprises 
edge gateways and embedded AI controllers equipped 
with Graphics Processing Units (GPUs) or Tensor 
Processing Units (TPUs) optimized for neural network 
inference [23]. This layer performs three critical 
functions:

(1) Real-Time Perception and Preprocessing: 
Edge nodes receive raw data streams from sensors 
and perform preprocessing (e.g., noise filtering, data 
normalization, feature extraction) locally. Lightweight 
AI models, such as MobileNet or quantized DRL 
models, are deployed here to perform real-time object 
detection, anomaly identification, or state estimation 
[24]. This eliminates the need to transmit raw, 
voluminous data to the cloud.

(2) Autonomous Decision Making: Based on 
the perceived state, the edge controller executes the 
primary control logic. For time-critical tasks, it uses 
pre-trained AI models to generate optimal control 
actions within microseconds. For example, in a 
collision avoidance scenario, the edge controller can 
trigger an emergency stop without waiting for cloud 
confirmation [25].

(3) Twin Synchronization Agent (TSA): A 
dedicated software agent runs on each edge node to 
manage bi-directional communication with the Digital 
Twin Layer. The TSA compresses high-priority state 
data and sends it to the twin for updating. In return, 
it receives predictive state estimates and optimized 
control parameters from the twin, which are used to 
adapt and refine the local AI models [26].

3.3 Digital Twin Layer: Predictive Simulation 
and Optimization

The Digital Twin Layer maintains a high-fidelity, 
real-time virtual replica of the physical system. Unlike 
traditional cloud-based twins, this layer is implemented 
using a hybrid cloud-edge infrastructure to balance 
computational power and latency [27]. It consists of 

three main components:
(1)   Multi-Physics Virtual  Model:  This 

component simulates the physical behavior of the 
asset using mathematical models (e.g., finite element 
analysis, computational fluid dynamics) calibrated 
with real-world data. It accurately mirrors the state 
of the physical asset, including its geometry, material 
properties, and dynamic responses [28].

(2) Predictive Analytics Engine: Leveraging 
historical data and real-time updates from the edge, 
this engine uses long short-term memory (LSTM) 
networks and Gaussian process regression to predict 
future system states [29]. For example, it can forecast 
the temperature rise of a motor in the next few seconds 
or predict the load demand on a power grid. These 
predictions are sent to the edge to enable proactive 
control.

(3) Global Optimization Module:  While 
the edge handles local, reactive control, the digital 
twin performs global, long-horizon optimization. 
It can simulate different control strategies in the 
virtual environment to find the optimal solution that 
maximizes efficiency or minimizes energy consumption 
[30]. The optimized parameters are then pushed to the 
edge controllers during periods of low network activity.

3.4 Security Layer: Trust and Integrity
Security is paramount in autonomous CPS, 

where a single compromised command can lead 
to catastrophic consequences. The Security Layer 
provides end-to-end protection across all layers using 
a defense-in-depth strategy [31]. Key mechanisms 
include:

(1)   Edge-to-Twin Authent icat ion:  Al l 
communication between edge nodes and the digital 
twin is encrypted using Transport Layer Security (TLS) 
1.3. Nodes are authenticated using digital certificates 
stored in hardware security modules (HSMs) to prevent 
spoofing attacks [32].

(2) Data Integrity Verification: Critical sensor 
data and control commands are protected with 
blockchain-based hash timestamps. This ensures that 
any tampering with the data during transmission is 
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immediately detectable [33].
(3) Anomaly Detection for Cyber-Attacks: AI-

based intrusion detection systems (IDS) are deployed 
at both the edge and the twin. These systems learn the 
normal behavior patterns of the system and raise alerts 
for any deviations that may indicate a cyber-attack, 
such as false data injection [34].

4. Key Implementation Challenges and 
Solutions

Implementing the EI-DT synergistic framework 
in real-world scenarios presents several technical 
challenges. This section identifies the key hurdles and 
provides corresponding solutions.

4.1 Latency and Synchronization
The most critical challenge is maintaining tight 

synchronization between the physical asset and its 
digital twin while minimizing communication latency. 
Asynchronous data exchange can lead to the twin 
becoming obsolete, rendering its predictions useless 
[35]. To address this, the framework employs aTime-
Triggered Synchronization (TTS) protocol. TTS 
aligns the clocks of all edge nodes and the twin using 
Precision Time Protocol (PTP) IEEE 1588, ensuring 
that data updates and control commands are processed 
at precisely scheduled intervals [36]. Additionally, a 
priority-based data compression algorithm is used, 
where only the most critical state variables (e.g., those 
with high rates of change) are transmitted in real-time, 
while non-critical data is batched and sent periodically 
[37].

4.2 Edge Resource Constraints
Edge devices typically have limited CPU, 

memory, and power resources, making it challenging 
to run complex AI models and security protocols 
simultaneously. The solution lies in adaptive model 
inference and computational offloading [38]. The 
edge controller dynamically adjusts the complexity of 
the AI model based on the current task. For example, 
it may switch to a simpler model during high-load 
conditions and revert to a complex model when 

resources are available. Furthermore, non-critical 
computational tasks, such as logging and historical data 
analysis, are offloaded to the cloud, freeing up edge 
resources for time-sensitive control [39].

4.3  Model  Adaptabi l i ty  and Transfer 
Learning

AI models trained in a lab environment often 
perform poorly when deployed in real, dynamic 
environments due to domain shift. To enhance model 
adaptability, the framework incorporates a federated 
transfer learning mechanism [40]. The digital twin 
acts as a central server that aggregates model updates 
from multiple edge devices across different locations. It 
then fine-tunes a global model, which is subsequently 
distributed back to the edges. This allows the edge 
models to learn from a diverse range of operating 
conditions without sharing sensitive raw data, thus 
improving their generalization capability [41].

5. Case Studies and Performance 
Evaluation

To validate the effectiveness of the proposed EI-
DT framework, two case studies were conducted in 
distinct application domains: smart grid autonomous 
load regulation and autonomous mobile robot (AMR) 
navigation. The performance was evaluated against 
two baseline architectures: a pure cloud-based control 
system and a standalone edge control system.

5.1 Case Study 1: Smart Grid Autonomous 
Load Regulation

In smart grids, maintaining frequency stability 
requires real-time adjustment of distributed energy 
resources (DERs) such as solar inverters and battery 
storage systems. This case study implemented the EI-
DT framework to control a cluster of 50 DERs in a 
microgrid.

Experimental Setup:  The Physical Layer 
included smart meters, phasor measurement units 
(PMUs), and DER controllers. The Edge Intelligence 
Layer was deployed on industrial edge gateways 
located at the microgrid substation. The Digital Twin 
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Layer was implemented on a local cloud server, 
simulating the microgrid‘s electrical behavior. The 
baseline systems used either cloud-only control (AWS 
IoT Core) or edge-only control (no predictive input 
from a twin).

Results and Analysis: The experiment simulated 
a sudden 10% load increase. The EI-DT framework 
detected the frequency deviation and adjusted the 
DER outputs with an average latency of 12 ms. In 
comparison, the cloud-based system had a latency of 35 
ms, and the standalone edge system had a latency of 15 
ms. More importantly, the EI-DT system reduced the 
frequency deviation by 32% compared to the edge-only 
system because the digital twin predicted the load surge 
200 ms in advance, allowing the edge controller to take 
proactive action [42]. The total harmonic distortion 
(THD) of the grid voltage was also reduced by 18%, 
indicating improved power quality.

5.2 Case Study 2: Autonomous Mobile Robot 
(AMR) Navigation

AMRs in dynamic warehouse environments 
require fast reaction to moving obstacles and efficient 
path planning. This case study tested the framework on 
an AMR navigating a cluttered warehouse with moving 
forklifts and pedestrians.

Experimental Setup: The AMR was equipped 
with 2D LiDAR, RGB-D cameras, and an on-board 
edge computer (NVIDIA Jetson AGX Orin). The 
Digital Twin Layer maintained a virtual map of the 
warehouse, updated in real-time with data from the 
AMR and fixed sensors. The control task was to 
navigate from point A to point B while avoiding 
dynamic obstacles.

Results and Analysis: The EI-DT framework 
enabled the AMR to successfully navigate the 
environment with an average path completion time of 
45 seconds. The cloud-based baseline took 62 seconds 
due to latency, while the edge-only baseline took 51 
seconds but had two near-miss collisions with moving 
obstacles. The EI-DT system‘s superior performance 
was attributed to the digital twin‘s ability to predict 
the future positions of moving obstacles and send 

these predictions to the edge, allowing the AMR to 
plan evasive maneuvers earlier [43]. Furthermore, the 
framework demonstrated high robustness: when the 
AMR lost 50% of its sensor data due to interference, 
the digital twin used sensor fusion to fill in the gaps, 
ensuring continuous operation.

6. Future Research Directions
The EI-DT synergistic framework shows great 

promise for low-latency autonomous control, but 
several avenues for future research remain to unlock its 
full potential.

First, self-evolving digital twins.  Future 
work will focus on developing digital twins that can 
automatically update their mathematical models as 
the physical asset ages or degrades. This will involve 
integrating online system identification algorithms with 
the predictive analytics engine to continuously refine 
the twin‘s accuracy [44].

Second, 6G-enabled ultra-massive connectivity. 
The upcoming 6G technology will enable connectivity 
for tens of thousands of devices per square kilometer. 
Research will explore how to scale the EI-DT 
framework to manage this ultra-massive number of 
edge nodes efficiently, ensuring that the twin can 
maintain synchronization with millions of physical 
assets [45].

Third, human-in-the-loop autonomy. For 
safety-critical applications, it is essential to maintain 
human oversight. Future research will integrate 
explainable AI (XAI) techniques into the edge 
controller to provide human operators with clear, 
actionable explanations for the autonomous decisions 
made by the system, building trust and enabling 
effective intervention [46].

Fourth, energy-efficient edge computing. 
Reducing the power consumption of edge devices is 
crucial for battery-powered applications. Research will 
investigate neuromorphic computing and approximate 
computing techniques to design AI models that 
consume less energy while maintaining acceptable 
control performance [47].
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7. Conclusion
This paper presents a novel Edge Intelligence and 

Digital Twin (EI-DT) synergistic framework designed 
to address the low-latency and adaptability challenges 
in modern autonomous Cyber-Physical Systems. By 
integrating real-time decision-making at the edge 
with predictive simulation and global optimization 
in the digital twin, the framework achieves both high 
responsiveness and long-term efficiency.

The key contributions of this work are threefold: 
(1) A generalized three-tier architecture (Physical, Edge 
Intelligence, Digital Twin) with a dedicated Security 
Layer for autonomous control. (2) A set of solutions 
to critical implementation challenges, including time-
triggered synchronization, adaptive model inference, 
and federated transfer learning. (3) Empirical validation 
through two case studies demonstrating significant 
improvements in latency (60% reduction) and 
control stability (30% improvement) over traditional 
architectures.

The experimental results confirm that the EI-DT 
synergy is not just a theoretical concept but a practical 
solution for time-critical applications such as smart 
grids and autonomous robotics. As CPS continue to 
grow in complexity and scale, the EI-DT framework 
provides a scalable and robust foundation for the next 
generation of intelligent autonomous control systems.
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