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ABSTRACT
Cyber-Physical Systems (CPS) are evolving towards higher autonomy and real-time responsiveness, posing stringent
demands on low-latency decision-making and dynamic environmental adaptation. Traditional cloud-centric control ar-
chitectures suffer from inevitable network delays and bandwidth bottlenecks, limiting their applicability in time-critical
scenarios. This paper proposes a novel synergistic framework integrating Edge Intelligence (EI) and Digital Twin (DT)
for autonomous control systems. By deploying lightweight AI models at the network edge and establishing high-fidelity
virtual replicas of physical assets, the framework enables real-time perception, local decision-making, and predictive con-
trol. This study elaborates on the architectural design, communication protocols, and security mechanisms of the proposed
framework. Through experimental validation on smart grid load regulation and autonomous mobile robot navigation, the
results demonstrate that the EI-DT synergy reduces end-to-end latency by over 60% and improves control stability by
30% compared to cloud-based approaches. This research provides a viable solution for latency-sensitive and dynamic

autonomous control applications.
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1. Introduction

The proliferation of Cyber-Physical Systems
(CPS) across smart manufacturing, intelligent
transportation, and smart energy grids has accelerated
the demand for autonomous control capabilities
[1]. Unlike traditional automated systems, modern
autonomous CPS require the ability to perceive
complex environments, make independent decisions,
and execute control actions with minimal human
intervention, all within strict time constraints [2]. For
instance, autonomous robots in industrial warehouses
must react to obstacles in milliseconds, and smart
grid inverters need real-time adjustments to maintain
frequency stability [3]. These time-critical applications
highlight the limitations of conventional cloud-based
control architectures, where data transmission to remote
servers introduces prohibitive latency and vulnerability
to network disruptions [4].

Edge Intelligence (EI) has emerged as a
transformative paradigm by pushing artificial
intelligence (Al) computation from centralized clouds
to the edge of the network, near the data sources [5]. By
processing data locally on edge devices (e.g., gateways,
sensors, and embedded controllers), EI significantly
reduces communication latency and bandwidth
consumption [6]. However, standalone edge computing
faces challenges such as limited computational
resources, difficulty in global optimization, and lack of
historical data context [7]. On the other hand, Digital
Twin (DT) technology creates a virtual, real-time
synchronized replica of physical systems, enabling
simulation, prediction, and what-if analysis [8]. The
integration of EI and DT promises to address their
individual limitations: DT provides the edge with
predictive insights and a holistic system view, while EI
enables the DT to adapt and learn from real-time edge
data [9].

The Journal of Intelligent and Autonomous
Control emphasizes the integration of emerging
computing technologies with control engineering. This
paper focuses on the synergy between EI and DT for

low-latency autonomous control. It aims to answer
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how to design a distributed architecture that leverages
the strengths of both technologies, how to ensure
secure and efficient data synchronization between
physical and virtual entities, and how to validate the
performance gains in real-world applications. The
remainder of this paper is organized as follows: Section
2 reviews related work on edge control and digital
twins. Section 3 presents the detailed architecture of
the EI-DT integrated framework. Section 4 discusses
key implementation challenges and solutions. Section
5 validates the framework through two distinct case
studies. Finally, Section 6 concludes the paper and

outlines future research directions.

2. Related Work

Recent advancements in autonomous control have
increasingly focused on reducing latency and improving
adaptability. This section reviews the state-of-the-art
research in edge-based control systems, digital twin

applications, and their preliminary integration efforts.

2.1 Edge Computing for Low-Latency

Control

Edge computing has been widely investigated
to mitigate the latency issues in cloud-centric control.
Zhang et al. (2023) proposed a hierarchical edge-cloud
architecture for industrial robot control, where time-
sensitive motion control is handled locally, and non-
critical path planning is offloaded to the cloud [10].
Similarly, in the automotive domain, Li and Wang
(2024) developed an edge-aware adaptive cruise control
system that processes radar and camera data locally
to ensure safe reaction times [11]. However, these
approaches often treat edge nodes as passive executors
and lack a mechanism for predictive adaptation based
on future system states.

To enhance intelligence at the edge, model
compression techniques have been extensively
studied. Chen et al. (2024) applied quantization and
knowledge distillation to deep reinforcement learning
(DRL) models, enabling their deployment on resource-
constrained microcontrollers for autonomous drone

control [12]. While effective in reducing model size,
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these lightweight models often sacrifice accuracy
compared to their full-sized counterparts, especially in
complex, dynamic environments [13]. This accuracy-
latency trade-off remains a core challenge for edge

control systems.

2.2 Digital Twin for Predictive Autonomous
Control

Digital twins have evolved from static 3D
models to dynamic, data-driven tools for control
optimization. In smart manufacturing, Wang et al.
(2023) implemented a digital twin of a production line
to predict equipment failures and schedule preventive
maintenance autonomously [14]. In civil engineering,
a digital twin of a bridge structure was used to monitor
stress levels and adjust traffic flow in real-time to
prevent structural fatigue [15]. These applications
demonstrate DT*s capability for predictive control but
often rely on cloud computing for heavy simulations,
limiting their real-time responsiveness [16].

Efforts to decentralize digital twins have gained
traction. Rodriguez et al. (2025) proposed a fog
computing-supported digital twin for smart cities,
where fog nodes handle real-time data streaming, and
the cloud maintains the long-term historical model
[17]. This hybrid approach reduces latency but still
faces challenges in maintaining tight synchronization
between the physical asset and its virtual twin across
distributed computing layers [18].

2.3 Integration of Edge Intelligence and Digital
Twin

The synergy between EI and DT is a nascent but
rapidly growing research area. Early integration efforts
focused on specific use cases. For example, Patel et al.
(2024) developed an EI-DT framework for precision
agriculture, where edge devices control irrigation based
on real-time soil sensor data, and a cloud-based digital
twin optimizes water usage schedules [19]. However,
this framework is application-specific and lacks a
generalized architectural design.

Several research gaps remain in the current
literature. First, there is a lack of a standardized

communication protocol tailored for low-latency data

exchange between edge controllers and digital twins.
Second, security considerations, such as protecting
the integrity of twin data and edge commands,
are often overlooked. Third, few studies provide a
comprehensive performance comparison of EI-DT
integrated systems against pure edge or pure cloud
approaches in dynamic, high-interference environments
[20]. This paper addresses these gaps by proposing a

generalized, secure, and low-latency EI-DT framework.

3. EI-DT Synergistic Framework for
Autonomous Control

This section presents the Edge Intelligence-
Digital Twin (EI-DT) synergistic framework designed
to enable low-latency, predictive autonomous control
in dynamic CPS. The framework follows a three-tier
architecture: Physical Layer, Edge Intelligence Layer,
and Digital Twin Layer. A cross-cutting Security Layer
ensures the integrity and confidentiality of the entire
system. The detailed design and interaction of each

layer are described below.

3.1 Physical Layer: Sensing and Actuation

The Physical Layer consists of the physical assets
(e.g., industrial machines, vehicles, power grids) and
the Internet of Things (IoT) sensor-actuator network.
High-frequency sensors (e.g., accelerometers, current
transducers, LiDAR) collect real-time state data (e.g.,
position, velocity, temperature, voltage) at millisecond
intervals [21]. These sensors are connected to edge
gateways via low-latency communication protocols
such as Time-Sensitive Networking (TSN) or 5G
New Radio (5G-NR) Ultra-Reliable Low-Latency
Communication (URLLC) [22].

Actuators receive control commands directly
from the Edge Intelligence Layer, ensuring minimal
actuation delay. The Physical Layer is designed to be
modular, allowing for easy integration of new sensors
or actuators without disrupting the overall system
operation. This modularity is crucial for adapting
the framework to different CPS domains, from

manufacturing robots to energy infrastructure.

37



Journal of Intelligent and Autonomous Control | Volume 01 | Issue 01 | December 2025

3.2 Edge Intelligence Layer: Real-Time
Decision Making

The Edge Intelligence Layer is the operational
core of the framework, responsible for local perception,
decision-making, and control execution. It comprises
edge gateways and embedded Al controllers equipped
with Graphics Processing Units (GPUs) or Tensor
Processing Units (TPUs) optimized for neural network
inference [23]. This layer performs three critical
functions:

(1) Real-Time Perception and Preprocessing:
Edge nodes receive raw data streams from sensors
and perform preprocessing (e.g., noise filtering, data
normalization, feature extraction) locally. Lightweight
Al models, such as MobileNet or quantized DRL
models, are deployed here to perform real-time object
detection, anomaly identification, or state estimation
[24]. This eliminates the need to transmit raw,
voluminous data to the cloud.

(2) Autonomous Decision Making: Based on
the perceived state, the edge controller executes the
primary control logic. For time-critical tasks, it uses
pre-trained Al models to generate optimal control
actions within microseconds. For example, in a
collision avoidance scenario, the edge controller can
trigger an emergency stop without waiting for cloud
confirmation [25].

(3) Twin Synchronization Agent (TSA): A
dedicated software agent runs on each edge node to
manage bi-directional communication with the Digital
Twin Layer. The TSA compresses high-priority state
data and sends it to the twin for updating. In return,
it receives predictive state estimates and optimized
control parameters from the twin, which are used to
adapt and refine the local AI models [26].

3.3 Digital Twin Layer: Predictive Simulation

and Optimization

The Digital Twin Layer maintains a high-fidelity,
real-time virtual replica of the physical system. Unlike
traditional cloud-based twins, this layer is implemented
using a hybrid cloud-edge infrastructure to balance

computational power and latency [27]. It consists of
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three main components:

(1) Multi-Physics Virtual Model: This
component simulates the physical behavior of the
asset using mathematical models (e.g., finite element
analysis, computational fluid dynamics) calibrated
with real-world data. It accurately mirrors the state
of the physical asset, including its geometry, material
properties, and dynamic responses [28].

(2) Predictive Analytics Engine: Leveraging
historical data and real-time updates from the edge,
this engine uses long short-term memory (LSTM)
networks and Gaussian process regression to predict
future system states [29]. For example, it can forecast
the temperature rise of a motor in the next few seconds
or predict the load demand on a power grid. These
predictions are sent to the edge to enable proactive
control.

(3) Global Optimization Module: While
the edge handles local, reactive control, the digital
twin performs global, long-horizon optimization.
It can simulate different control strategies in the
virtual environment to find the optimal solution that
maximizes efficiency or minimizes energy consumption
[30]. The optimized parameters are then pushed to the

edge controllers during periods of low network activity.

3.4 Security Layer: Trust and Integrity

Security is paramount in autonomous CPS,
where a single compromised command can lead
to catastrophic consequences. The Security Layer
provides end-to-end protection across all layers using
a defense-in-depth strategy [31]. Key mechanisms
include:

(1) Edge-to-Twin Authentication: All
communication between edge nodes and the digital
twin is encrypted using Transport Layer Security (TLS)
1.3. Nodes are authenticated using digital certificates
stored in hardware security modules (HSMs) to prevent
spoofing attacks [32].

(2) Data Integrity Verification: Critical sensor
data and control commands are protected with
blockchain-based hash timestamps. This ensures that

any tampering with the data during transmission is
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immediately detectable [33].

(3) Anomaly Detection for Cyber-Attacks: Al-
based intrusion detection systems (IDS) are deployed
at both the edge and the twin. These systems learn the
normal behavior patterns of the system and raise alerts
for any deviations that may indicate a cyber-attack,

such as false data injection [34].

4. Key Implementation Challenges and
Solutions

Implementing the EI-DT synergistic framework
in real-world scenarios presents several technical
challenges. This section identifies the key hurdles and

provides corresponding solutions.

4.1 Latency and Synchronization

The most critical challenge is maintaining tight
synchronization between the physical asset and its
digital twin while minimizing communication latency.
Asynchronous data exchange can lead to the twin
becoming obsolete, rendering its predictions useless
[35]. To address this, the framework employs aTime-
Triggered Synchronization (TTS) protocol. TTS
aligns the clocks of all edge nodes and the twin using
Precision Time Protocol (PTP) IEEE 1588, ensuring
that data updates and control commands are processed
at precisely scheduled intervals [36]. Additionally, a
priority-based data compression algorithm is used,
where only the most critical state variables (e.g., those
with high rates of change) are transmitted in real-time,
while non-critical data is batched and sent periodically
[37].

4.2 Edge Resource Constraints

Edge devices typically have limited CPU,
memory, and power resources, making it challenging
to run complex Al models and security protocols
simultaneously. The solution lies in adaptive model
inference and computational offloading [38]. The
edge controller dynamically adjusts the complexity of
the Al model based on the current task. For example,
it may switch to a simpler model during high-load

conditions and revert to a complex model when

resources are available. Furthermore, non-critical
computational tasks, such as logging and historical data
analysis, are offloaded to the cloud, freeing up edge

resources for time-sensitive control [39].

4.3 Model Adaptability and Transfer
Learning

Al models trained in a lab environment often
perform poorly when deployed in real, dynamic
environments due to domain shift. To enhance model
adaptability, the framework incorporates a federated
transfer learning mechanism [40]. The digital twin
acts as a central server that aggregates model updates
from multiple edge devices across different locations. It
then fine-tunes a global model, which is subsequently
distributed back to the edges. This allows the edge
models to learn from a diverse range of operating
conditions without sharing sensitive raw data, thus

improving their generalization capability [41].

5. Case Studies and Performance
Evaluation

To validate the effectiveness of the proposed EI-
DT framework, two case studies were conducted in
distinct application domains: smart grid autonomous
load regulation and autonomous mobile robot (AMR)
navigation. The performance was evaluated against
two baseline architectures: a pure cloud-based control

system and a standalone edge control system.

5.1 Case Study 1: Smart Grid Autonomous
Load Regulation

In smart grids, maintaining frequency stability
requires real-time adjustment of distributed energy
resources (DERs) such as solar inverters and battery
storage systems. This case study implemented the EI-
DT framework to control a cluster of 50 DERs in a
microgrid.

Experimental Setup: The Physical Layer
included smart meters, phasor measurement units
(PMUs), and DER controllers. The Edge Intelligence
Layer was deployed on industrial edge gateways

located at the microgrid substation. The Digital Twin
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Layer was implemented on a local cloud server,
simulating the microgrid‘s electrical behavior. The
baseline systems used either cloud-only control (AWS
IoT Core) or edge-only control (no predictive input
from a twin).

Results and Analysis: The experiment simulated
a sudden 10% load increase. The EI-DT framework
detected the frequency deviation and adjusted the
DER outputs with an average latency of 12 ms. In
comparison, the cloud-based system had a latency of 35
ms, and the standalone edge system had a latency of 15
ms. More importantly, the EI-DT system reduced the
frequency deviation by 32% compared to the edge-only
system because the digital twin predicted the load surge
200 ms in advance, allowing the edge controller to take
proactive action [42]. The total harmonic distortion
(THD) of the grid voltage was also reduced by 18%,

indicating improved power quality.

5.2 Case Study 2: Autonomous Mobile Robot
(AMR) Navigation

AMRs in dynamic warehouse environments
require fast reaction to moving obstacles and efficient
path planning. This case study tested the framework on
an AMR navigating a cluttered warehouse with moving
forklifts and pedestrians.

Experimental Setup: The AMR was equipped
with 2D LiDAR, RGB-D cameras, and an on-board
edge computer (NVIDIA Jetson AGX Orin). The
Digital Twin Layer maintained a virtual map of the
warehouse, updated in real-time with data from the
AMR and fixed sensors. The control task was to
navigate from point A to point B while avoiding
dynamic obstacles.

Results and Analysis: The EI-DT framework
enabled the AMR to successfully navigate the
environment with an average path completion time of
45 seconds. The cloud-based baseline took 62 seconds
due to latency, while the edge-only baseline took 51
seconds but had two near-miss collisions with moving
obstacles. The EI-DT system‘s superior performance
was attributed to the digital twin‘s ability to predict

the future positions of moving obstacles and send
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these predictions to the edge, allowing the AMR to
plan evasive maneuvers earlier [43]. Furthermore, the
framework demonstrated high robustness: when the
AMR lost 50% of its sensor data due to interference,
the digital twin used sensor fusion to fill in the gaps,

ensuring continuous operation.

6. Future Research Directions

The EI-DT synergistic framework shows great
promise for low-latency autonomous control, but
several avenues for future research remain to unlock its
full potential.

First, self-evolving digital twins. Future
work will focus on developing digital twins that can
automatically update their mathematical models as
the physical asset ages or degrades. This will involve
integrating online system identification algorithms with
the predictive analytics engine to continuously refine
the twin‘s accuracy [44].

Second, 6G-enabled ultra-massive connectivity.
The upcoming 6G technology will enable connectivity
for tens of thousands of devices per square kilometer.
Research will explore how to scale the EI-DT
framework to manage this ultra-massive number of
edge nodes efficiently, ensuring that the twin can
maintain synchronization with millions of physical
assets [45].

Third, human-in-the-loop autonomy. For
safety-critical applications, it is essential to maintain
human oversight. Future research will integrate
explainable Al (XAI) techniques into the edge
controller to provide human operators with clear,
actionable explanations for the autonomous decisions
made by the system, building trust and enabling
effective intervention [46].

Fourth, energy-efficient edge computing.
Reducing the power consumption of edge devices is
crucial for battery-powered applications. Research will
investigate neuromorphic computing and approximate
computing techniques to design Al models that
consume less energy while maintaining acceptable

control performance [47].
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7. Conclusion

This paper presents a novel Edge Intelligence and
Digital Twin (EI-DT) synergistic framework designed
to address the low-latency and adaptability challenges
in modern autonomous Cyber-Physical Systems. By
integrating real-time decision-making at the edge
with predictive simulation and global optimization
in the digital twin, the framework achieves both high
responsiveness and long-term efficiency.

The key contributions of this work are threefold:
(1) A generalized three-tier architecture (Physical, Edge
Intelligence, Digital Twin) with a dedicated Security
Layer for autonomous control. (2) A set of solutions
to critical implementation challenges, including time-
triggered synchronization, adaptive model inference,
and federated transfer learning. (3) Empirical validation
through two case studies demonstrating significant
improvements in latency (60% reduction) and
control stability (30% improvement) over traditional
architectures.

The experimental results confirm that the EI-DT
synergy is not just a theoretical concept but a practical
solution for time-critical applications such as smart
grids and autonomous robotics. As CPS continue to
grow in complexity and scale, the EI-DT framework
provides a scalable and robust foundation for the next

generation of intelligent autonomous control systems.
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