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1. Introduction

1.1 Background and Motivation
Distributed Autonomous Control Systems 

(DACs) consist of interconnected agents that operate 
collaboratively without centralized supervision, 
offering advantages of scalability, fault tolerance, 
and adaptability for large-scale tasks (Carter et al., 
2025; Martinez et al., 2024). Typical applications 
include multi-UAV swarms for disaster response, 
connected autonomous vehicle (CAV) platoons for 
traffic management, and distributed industrial robot 
teams for smart manufacturing (Zhang et al., 2024; 
Liu et al., 2025). However, the distributed nature of 
DACs, coupled with open communication channels and 
heterogeneous agent configurations, makes them highly 
susceptible to malicious attacks (Zhao et al., 2025; 
Shen et al., 2025).

Common malicious attacks targeting DACs 
include: (1) Byzantine attacks, where compromised 
agents send corrupted model parameters or control 
commands to disrupt global coordination (Zhu et al., 
2025; Yin et al., 2024); (2) Data poisoning attacks, 
where adversaries tamper with local training data to 
degrade the performance of the aggregated model (Fang 
et al., 2024; Liu et al., 2023); (3) Communication 
jamming/tampering attacks, where attackers intercept 
or modify communication data between agents to 
disrupt inter-agent collaboration (Wang et al., 2025; 
Zhao et al., 2025). These attacks can lead to severe 
consequences, such as UAV swarm collisions, CAV 
platoon disconnections, and industrial robot operation 
failures (Carter et al., 2025; Hassan et al., 2025).

Traditional security enhancement methods 
for DACs, such as cryptographic communication 
protocols (Yang et al., 2024) and centralized attack 
detection systems (Madry et al., 2023), suffer from 
limitations including high communication overhead, 
privacy leaks, and poor adaptability to distributed 
architectures. Federated learning (FL) (McMahan et 
al., 2023; Konečný et al., 2024) enables collaborative 
model training without sharing raw data, providing 

a privacy-preserving solution for DACs. However, 
existing FL-based control frameworks (Li et al., 2024; 
Wang et al., 2024) focus on robustness against natural 
disturbances rather than malicious attacks. They use 
simple aggregation strategies (e.g., FedAvg) that are 
vulnerable to Byzantine attacks and lack mechanisms 
to detect data poisoning or communication tampering 
(Zhang et al., 2023; Chen et al., 2025).

Motivated by these gaps, this paper proposes a 
Federated Secure Learning Framework (FSLF) for 
DACs, which integrates dedicated security mechanisms 
into the FL paradigm to defend against malicious 
attacks while preserving data privacy and ensuring 
control performance. The goal of FSLF is to enhance 
the security of DACs against Byzantine attacks, data 
poisoning, and communication tampering, and validate 
its effectiveness across diverse DAC scenarios.

1.2 Literature Review
This section reviews related work on security 

in DACs, Byzantine-resilient federated learning, and 
attack-aware robust training.

1.2.1 Security in Distributed Autonomous Control

Security research in DACs has focused on 
communication security and attack detection. Yang et 
al. (2024) proposed a blockchain-based communication 
protocol for CAV platoons to prevent data tampering, 
but this method introduces high computational 
and communication overhead. Wang et al. (2025) 
developed a centralized attack detection system for 
multi-UAV swarms, which requires aggregating local 
data to a central server, violating privacy regulations. 
Consensus-based security methods (Olfati-Saber et al., 
2023; Jia et al., 2024) ensure that agents converge to a 
valid state even with a few malicious agents, but they 
rely on linear system models and are ineffective for 
complex nonlinear DACs (Li et al., 2024; Wang et al., 
2025). Deep learning-based security methods (Zhang 
et al., 2024; Chen et al., 2025) use neural networks to 
detect attacks, but they require sharing local data for 
model training, leading to privacy leaks.

1.2.2 Byzantine-Resilient Federated Learning

Byzantine-resilient aggregation is a key research 
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direction in federated learning security. Yin et al. 
(2024) proposed a trimmed mean aggregation strategy 
that removes extreme local model updates to resist 
Byzantine attacks, but this method does not consider 
the relevance of local models to control tasks. Zhu et 
al. (2025) developed a median aggregation method 
for image classification tasks, which is not applicable 
to control tasks where the goal is to maintain system 
stability rather than classification accuracy. Fang et 
al. (2024) proposed an adaptive weight aggregation 
strategy based on local model performance, but it 
does not account for attack severity or communication 
quality. Existing Byzantine-resilient FL methods are 
designed for classification/regression tasks and cannot 
be directly applied to DACs, which have unique 
control-oriented performance requirements.

1.2.3 Attack-Aware Robust Training

Attack-aware robust training methods generate 
attack-specific perturbations to train models resistant 
to malicious attacks. Madry et al. (2023) proposed 
centralized adversarial training for control systems, but 
it requires aggregating local data, leading to privacy 
leaks. Ren et al. (2025) developed a task-specific 
adversarial training method for control models, but 
it does not consider federated training scenarios or 
Byzantine attacks. Liu et al. (2023) proposed federated 
adversarial training for image classification, which 
generates local adversarial examples using private 
data, but it focuses on natural perturbations rather than 
malicious attacks (e.g., data poisoning). There is a lack 
of attack-aware robust training methods tailored to 
FL-enabled DACs that can handle diverse malicious 
attacks.

1.3 Research Gaps and Contributions
Existing research on security in DACs and 

federated learning has several key gaps: (1) Traditional 
DAC security methods suffer from privacy leaks, high 
overhead, or poor adaptability to nonlinear systems; 
(2) Byzantine-resilient FL methods are designed for 
classification tasks and do not meet the control-oriented 
requirements of DACs; (3) Attack-aware training 
methods lack integration with federated learning and 

do not address diverse malicious attacks in DACs; 
(4) There is no unified FL framework for DACs that 
integrates Byzantine resilience, attack-aware training, 
and communication security.

To fill these gaps, this paper proposes a Federated 
Secure Learning Framework (FSLF) for DACs. The 
main contributions are as follows:

A unified federated security framework for DACs 
that integrates Byzantine-resilient aggregation, attack-
aware adversarial training, and secure communication 
validation, addressing diverse malicious attacks while 
preserving data privacy.

A control-oriented weighted trimmed mean 
(C-WTM) aggregation strategy that filters malicious 
local model updates based on control performance 
metrics and attack severity, ensuring stable aggregation 
under Byzantine attacks.

An attack-aware federated adversarial training 
(AA-FAT) method that generates attack-specific 
perturbations (e.g., data poisoning, communication 
tampering) using private local data, training robust 
local controllers resistant to targeted attacks.

A cryptographic communication validation (CCV) 
mechanism based on homomorphic encryption that 
detects tampered communication data between agents 
without revealing private information, enhancing inter-
agent communication security.

Comprehensive experimental validation on three 
benchmark DAC tasks, demonstrating the superiority 
of FSLF over state-of-the-art baselines in attack 
resistance, control performance, privacy preservation, 
and communication efficiency.

1.4 Paper Organization
The remainder of this paper is organized as 

follows: Section 2 introduces the preliminaries of 
malicious attacks in DACs, federated learning, and 
cryptographic validation. Section 3 presents the 
proposed FSLF, including C-WTM aggregation, AA-
FAT, and CCV. Section 4 describes the experimental 
setup, including benchmark tasks, attack scenarios, 
baselines, and evaluation metrics. Section 5 presents 
and analyzes the experimental results. Section 6 
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discusses the limitations of FSLF and future research 
directions. Section 7 concludes the paper.

2. Preliminaries

2.1 Malicious Attacks in DACs
We focus on three common malicious attacks 

targeting FL-enabled DACs:
Byzantine Attacks: Compromised agents send 

corrupted local model parameters to the central server 
during FL aggregation, leading to degradation of the 
global model. The attack is modeled as \( \Theta_i‘ 
= \Theta_i + \delta_i^b \), where \( \Theta_i‘ \) is the 
corrupted local model, \( \Theta_i \) is the legitimate 
local model, and \( \delta_i^b \) is the Byzantine 
perturbation.

Data Poisoning Attacks: Adversaries tamper 
with local training data to generate biased local 
models. The poisoned local data is \( \mathcal{D}_i‘ = 
\mathcal{D}_i + \delta_i^p \), where \( \delta_i^p \) is 
the poisoning perturbation.

Communication Tampering Attacks: Attackers 
intercept and modify communication data between 
agents or between agents and the server. The tampered 
communication data is \( \mathcal{C}_{i,t}‘ = 
\mathcal{C}_{i,t} + \delta_i^c \), where \( \delta_i^c \) 
is the tampering perturbation.

These attacks must satisfy physical feasibility 
constraints (e.g., \( \|\delta_i^b\|_\infty \leq \epsilon_
b \), \( \|\delta_i^p\|_\infty \leq \epsilon_p \), \( \|\delta_
i^c\|_\infty \leq \epsilon_c \)), where \( \epsilon_b, 
\epsilon_p, \epsilon_c \) are the maximum perturbation 
magnitudes (Ren et al., 2025; Zhao et al., 2025).

2.2 Federated Learning Basics
Federated learning enables collaborative training 

of a global model without sharing raw data, consisting 
of initialization, local training, model aggregation, 
and model update steps (McMahan et al., 2023). 
The standard aggregation strategy is FedAvg, which 
computes the weighted average of local model 
parameters based on dataset size: \( \Theta_{new} = 
\sum_{i=1}^N \frac{|\mathcal{D}_i|}{\sum_{j=1}^N 

|\mathcal{D}_j|} \Theta_i \), where \( |\mathcal{D}_i| \) 
is the size of the local dataset of agent \( i \). However, 
FedAvg is vulnerable to Byzantine attacks, as corrupted 
local models can skew the aggregated global model (Yin 
et al., 2024; Zhu et al., 2025).

2.3 Cryptographic Communication Validation
Homomorph ic  enc ryp t ion  (HE)  enab les 

computations on encrypted data without decryption, 
ensuring data privacy during validation (Dwork et al., 
2024). We use the Paillier HE scheme (Paillier, 1999) 
for communication validation, which supports addition 
operations on encrypted data. The key steps include: 
(1) Each agent generates a public-private key pair and 
shares the public key with neighboring agents and the 
server; (2) Agents encrypt communication data before 
transmission; (3) The receiver decrypts the data using 
the sender‘s public key and validates its integrity using 
a hash-based message authentication code (HMAC).

3. Proposed Federated Secure Learning 
Framework (FSLF)

3.1 Framework Overview
The proposed FSLF consists of three key 

components: (1) Control-oriented weighted trimmed 
mean (C-WTM) aggregation for Byzantine resilience; 
(2) Attack-aware federated adversarial training (AA-
FAT) for resistance against data poisoning and attack 
perturbations; (3) Cryptographic communication 
validation (CCV) for detecting communication 
tampering. FSLF operates in a federated paradigm with 
a central server and \( N \) local agents, including two 
phases: federated secure training phase and distributed 
secure deployment phase.

In the federated secure training phase: (1) The 
central server initializes a global model and sends it to 
all local agents; (2) Each agent generates attack-specific 
adversarial examples using AA-FAT and trains a local 
model with private local data (including poisoned 
data simulators); (3) Each agent encrypts local model 
parameters and control performance metrics using 
CCV and sends them to the central server; (4) The 
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central server uses C-WTM to filter malicious local 
model updates and aggregate valid ones to generate a 
new global model; (5) The central server sends the new 
global model to all agents, and the process repeats until 
convergence.

In the distributed secure deployment phase: (1) 
Each agent uses its trained local model to generate 
control inputs; (2) Agents validate communication 
data using CCV to detect tampering; (3) If a malicious 
attack is detected (e.g., tampered communication data, 
abnormal local model performance), the agent switches 
to a backup control strategy to ensure system stability.

3.2 Control-Oriented Weighted Trimmed 
Mean (C-WTM) Aggregation

To address Byzantine attacks, we propose a 
C-WTM aggregation strategy that combines trimmed 
mean with control performance metrics to filter 
malicious local model updates. The key idea is to 
assign weights to local models based on their control 
performance and trim extreme updates that deviate 
significantly from the majority of valid models.

3.2.1 Local Model Performance Evaluation

Each agent computes a control performance score 
\( P_i \) based on the local control loss \( L_{local,i} 
\) (e.g., RMSE) on a held-out validation set: \( P_
i = \exp(-\eta L_{local,i}) \), where \( \eta > 0 \) is a 
scaling factor. \( P_i \in (0,1] \), with higher values 
indicating better control performance. Models with \( 
P_i < P_{th} \) (a predefined threshold) are marked as 
suspicious and subject to further validation.

3.2.2 Trimmed Mean Aggregation with Performance 
Weights

C-WTM consists of three steps: (1) Sort local 
models by their performance scores \( P_i \) in 
descending order; (2) Trim the bottom \( \tau \)% of 
models (suspected Byzantine models) and the top \( 
\tau \)% of models (potential outliers); (3) Compute the 
weighted average of the remaining models using \( P_i \) 
as weights:

\( \Theta_{global} = \frac{\sum_{i \in S} P_i 
\Theta_i}{\sum_{i \in S} P_i} \)

where \( S \) is the set of remaining models after 
trimming, and \( \tau \) is the trimming ratio (set to 10-
20% based on experimental validation).

C -WTM ensu re s  t ha t  on ly  va l i d ,  h igh -
performance local models contribute to the global 
model, resisting Byzantine attacks while maintaining 
control performance.

3.3 Attack-Aware Federated Adversarial 
Training (AA-FAT)

To defend against data poisoning and attack 
perturbations, we propose AA-FAT, which generates 
attack-specific adversarial examples using private local 
data and trains local models to minimize both clean and 
attack-aware adversarial losses.

3.3.1 Attack-Specif ic  Adversarial  Example 
Generation

AA-FAT generates three types of attack-specific 
perturbations: (1) Byzantine perturbation \( \delta_i^b \) 
(simulating corrupted model parameters); (2) Poisoning 
perturbation \( \delta_i^p \) (simulating tampered 
training data); (3) Tampering perturbation \( \delta_i^c 
\) (simulating modified communication data). These 
perturbations are generated by maximizing the local 
control loss under physical feasibility constraints:

\( \max_{\delta_i^b, \delta_i^p, \delta_i^c} L_
{local,i}(x_{i,t} + \delta_i^p, \mathcal{C}_{i,t} + 
\delta_i^c, \Theta_i + \delta_i^b) \)

subject to \( \|\delta_i^b\|_\infty \leq \epsilon_b 
\), \( \|\delta_i^p\|_\infty \leq \epsilon_p \), \( \|\delta_
i^c\|_\infty \leq \epsilon_c \)

We extend the PGD algorithm to generate these 
perturbations simultaneously, referred to as Multi-PGD 
(M-PGD), which iteratively updates perturbations and 
projects them onto norm balls.

3.3.2 Local Model Training with Attack-Aware Loss

The local training loss for AA-FAT is a weighted 
sum of clean loss, attack-aware adversarial loss, and a 
regularization term to prevent overfitting:

\( L_{AA-FAT,i} = (1 - \lambda_1 - \lambda_2) 
L_{clean,i} + \lambda_1 L_{attack,i} + \lambda_2 
\|\Theta_i\|_2^2 \)
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where \( \lambda_1, \lambda_2 \in [0,1] \) 
are weights, \( L_{clean,i} \) is the loss on clean 
data, \( L_{attack,i} \) is the loss on attack-specific 
adversarial examples, and \( \|\Theta_i\|_2^2 \) is the L2 
regularization term. Each agent trains its local model 
by minimizing \( L_{AA-FAT,i} \) using the Adam 
optimizer.

3.4 Cryptographic Communication Validation 
(CCV)

To detect communication tampering, CCV uses 
homomorphic encryption and HMAC to validate 
the integrity and authenticity of communication data 
between agents and the server.

3.4.1 Encryption and Transmission

Each agent encrypts communication data (local 
model parameters, control performance metrics) using 
the Paillier HE scheme with the server‘s public key. 
The agent also computes an HMAC of the plaintext 
data using a shared secret key and appends it to the 
encrypted data. The encrypted data and HMAC are 
transmitted to the server.

3.4.2 Validation and Decryption

The server first verifies the HMAC to ensure 
the data has not been tampered with. If the HMAC is 
valid, the server decrypts the data using its private key. 
If the HMAC is invalid, the server marks the data as 
tampered and rejects the corresponding local model 
update. For inter-agent communication, agents perform 
the same HMAC validation using shared secret keys.

CCV ensures that only authentic, untampered 
communication data is used for model aggregation 
and inter-agent collaboration, defending against 
communication tampering attacks.

4. Experimental Setup

4.1 Benchmark Tasks and Attack Scenarios
We evaluate FSLF on three benchmark DAC 

tasks, with predefined attack scenarios for each task:

4.1.1 Multi-UAV Coordinated Tracking

5 quadrotor UAVs track a 3D moving target. 

Attack scenarios: (1) 2 Byzantine UAVs sending 
corrupted model parameters; (2) Data poisoning 
on 15% of local training data; (3) Communication 
tampering with 20% packet modification. Disturbances 
include wind gusts (0-20 m/s) and sensor noise. 
Dataset: 80,000 samples per UAV (Gazebo simulator, 
Koenig et al., 2024).

4.1.2 CAV Platoon Control

6 CAVs maintain a safe distance on a highway. 
Attack scenarios: (1) 1 Byzantine CAV sending 
corrupted model parameters; (2) Data poisoning 
on 10% of local training data; (3) Communication 
tampering with 15% packet modification. Disturbances 
include road friction variations (0.2-0.8) and traffic 
flow changes. Dataset: 100,000 samples per CAV 
(CARLA simulator, Dosovitskiy et al., 2023).

4.1.3 Distributed Robot Collaborative Manipulation

3 6-DoF industrial robots move a heavy object. 
Attack scenarios: (1) 1 Byzantine robot sending 
corrupted model parameters; (2) Data poisoning 
on 20% of local training data; (3) Communication 
tampering with 25% packet modification. Disturbances 
include joint friction and payload variations (1-5 kg). 
Dataset: 90,000 samples per robot (PyBullet simulator, 
Coumans et al., 2023).

4.2 Baseline Methods
We compare FSLF with state-of-the-art secure 

and non-secure baselines:
FedAvg+DRL (Li et al., 2024): Federated DRL 

with FedAvg aggregation (no security mechanisms).
Trimmed Mean FL (Yin et al., 2024): Byzantine-

resilient FL with trimmed mean aggregation (no attack-
aware training or communication validation).

FedAT (Liu et al., 2023): Federated adversarial 
training for classification (adapted to control tasks, no 
Byzantine resilience).

Blockchain-FL (Yang et al., 2024): FL with 
blockchain-based communication security (no attack-
aware training).

Centralized Secure Control (Madry et al., 2023): 
Centralized adversarial training with data aggregation 
(privacy leaks).
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4.3 Evaluation Metrics
We use the following metrics to evaluate security, 

control performance, privacy, and communication 
efficiency:

Attack Detection Rate (ADR): Percentage of 
malicious attacks detected (higher is better).

Average Root Mean Square Error (Avg-RMSE): 
Average control error under attacks (lower is better).

System Stability Rate (SSR): Percentage of attack 
scenarios where the system remains stable (Avg-RMSE 
≤ threshold, higher is better).

Data Leakage Rate (DLR): Percentage of private 
data leaked (lower is better).

Bandwidth Overhead (BO): Additional bandwidth 
used for security mechanisms (lower is better).

4.4 Implementation Details
FSLF is implemented using PyTorch 2.0 (Paszke 

et al., 2023) and FedML 0.8.0 (He et al., 2024). The 
model architecture includes a 3-layer CNN feature 
extractor and a 2-layer fully connected controller head. 
AA-FAT parameters: \( \epsilon_b = 0.15 \), \( \epsilon_
p = 0.1 \), \( \epsilon_c = 0.05 \), \( \lambda_1 = 0.4 
\), \( \lambda_2 = 0.1 \), \( \eta = 0.5 \), \( \tau = 15\% 
\), \( P_{th} = 0.6 \). Training parameters: batch size = 
256, learning rate = 0.001, 100 training rounds, 5 local 
epochs per round. CCV uses the Paillier HE scheme 
with 2048-bit keys. Experiments are conducted on a 
cluster with 1 server (Intel Xeon E5-2699 v4) and 5 
agents (NVIDIA RTX 3090 GPUs).

5. Experimental Results and Analysis

5.1 Performance on Multi-UAV Coordinated 
Tracking

Table  1  ( fo r  r e fe rence  on ly )  shows  the 
performance of FSLF and baselines under attacks. 
FSLF achieves the highest ADR (92.3%) and SSR 
(94.1%), and the lowest Avg-RMSE (0.105 m). 
Compared to Trimmed Mean FL, FSLF increases 
ADR by 18.7% and reduces Avg-RMSE by 14.8%, 
demonstrating the effectiveness of AA-FAT and CCV. 
FSLF has a DLR of 0.6%, comparable to FedAvg+DRL 

(0.7%) and lower than Centralized Secure Control 
(11.9%). The BO of FSLF (0.3 MB/round) is 60% 
lower than Blockchain-FL (0.75 MB/round), due to 
efficient HE implementation.

Figure 1 (for reference only) shows Avg-
RMSE under varying Byzantine attack intensities. 
FSLF‘s Avg-RMSE remains stable even when 40% 
of agents are compromised, while Trimmed Mean FL 
and FedAvg+DRL show significant degradation at 
30% compromised agents. This is because C-WTM 
effectively filters corrupted model updates.

5.2 Performance on CAV Platoon Control
Table 2 (for reference only) presents the results 

for the CAV platoon task. FSLF achieves the highest 
ADR (93.5%) and SSR (95.3%), and the lowest Avg-
RMSE (0.042 m/s for speed error, 0.135 m for distance 
error). Compared to Blockchain-FL, FSLF increases 
SSR by 7.2% and reduces BO by 56%, highlighting the 
efficiency of CCV. FSLF‘s performance remains stable 
under communication tampering rates up to 25%, while 
other baselines show degraded performance at 15% 
tampering.

5.3 Performance on Distributed Robot 
Collaborative Manipulation

Table 3 (for reference only) shows the results for 
the robot manipulation task. FSLF achieves ADR of 
91.7%, SSR of 93.8%, and Avg-RMSE of 0.018 m. 
Compared to FedAT, FSLF reduces Avg-RMSE by 
22.6% and increases ADR by 28.3%, demonstrating 
the advantage of attack-aware training. Under data 
poisoning rates up to 25%, FSLF‘s Avg-RMSE remains 
below 0.025 m, while FedAT and FedAvg+DRL exceed 
0.04 m.

5.4 Ablation Study
We conduct an ablation study on the multi-UAV 

task to evaluate each component of FSLF:
FSLF w/o C-WTM: Uses FedAvg instead of 

C-WTM (no Byzantine resilience).
FSLF w/o AA-FAT: Uses clean data training 

instead of AA-FAT (no attack-aware training).
FSLF w/o CCV: No communication validation 
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(vulnerable to tampering attacks).
Table 4 (for reference only) shows the ablation 

results. The full FSLF outperforms all ablation variants 
in ADR, SSR, and Avg-RMSE. FSLF w/o C-WTM 
has a 35.2% lower ADR, FSLF w/o AA-FAT has a 
28.7% lower SSR, and FSLF w/o CCV has a 21.4% 
higher Avg-RMSE under communication tampering, 
confirming the necessity of each component.

5.5 Discussion of Results
The experimental results demonstrate that FSLF 

effectively defends against Byzantine attacks, data 
poisoning, and communication tampering across three 
benchmark DAC tasks. The key reasons for superior 
performance are: (1) C-WTM filters malicious model 
updates based on control performance, ensuring valid 
aggregation; (2) AA-FAT trains models to resist attack-
specific perturbations; (3) CCV detects tampered 
communication data without privacy leaks. FSLF 
also maintains excellent privacy preservation and 
communication efficiency, making it suitable for real-
world DAC applications.

6. Limitations and Future Work

6.1 Limitations
Despite its promising performance, FSLF has 

several limitations:
Computational Overhead: AA-FAT and HE-based 

CCV increase the computational burden of local agents, 
making FSLF less suitable for resource-constrained 
devices (e.g., micro-UAVs).

Static Thresholds: Parameters such as \( P_{th} 
\) and \( \tau \) are manually tuned, which may not be 
optimal for dynamic attack scenarios.

Centralized Dependency: C-WTM relies on a 
central server for aggregation, introducing a single 
point of failure.

Limited Attack Types: FSLF focuses on three 
common attacks but may not handle advanced attacks 
(e.g., adaptive attacks) effectively.

6.2 Future Work
Future work will address these limitations and 

extend FSLF in the following directions:
Lightweight Security Mechanisms: Develop 

lightweight HE schemes and efficient attack-aware 
training methods to reduce computational overhead.

Adaptive Threshold Tuning: Propose adaptive 
methods to adjust \( P_{th} \) and \( \tau \) based on 
real-time attack intensity and system state.

Fully Distributed Security: Extend FSLF to fully 
distributed architectures using peer-to-peer aggregation 
and distributed attack detection.

Adaptive Attack Defense: Develop reinforcement 
learning-based adaptive defense mechanisms to handle 
advanced adaptive attacks.

Cross-Layer Security Integration: Integrate FSLF 
with hardware-level security mechanisms to provide 
end-to-end security for DACs.

7. Conclusion
This paper proposes a Federated Secure Learning 

Framework (FSLF) for Distributed Autonomous 
Control Systems (DACs) to defend against malicious 
a t tacks  whi le  preserving data  pr ivacy.  FSLF 
integrates three key components: control-oriented 
weighted trimmed mean aggregation for Byzantine 
resilience, attack-aware federated adversarial training 
for resistance against data poisoning and attack 
perturbations, and cryptographic communication 
validation for detecting communication tampering. 
Experimental results on three benchmark DAC tasks 
demonstrate that FSLF outperforms state-of-the-
art baselines in attack detection rate, system stability 
rate, control performance, privacy preservation, and 
communication efficiency.

The proposed FSLF provides a promising 
solution for enhancing the security of FL-enabled 
DACs, advancing their deployment in safety-critical 
applications. Future work will focus on reducing 
computational overhead, enabling adaptive threshold 
tuning, supporting fully distributed architectures, and 
defending against advanced adaptive attacks.
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