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1. Introduction

1.1 Background and Motivation

Distributed Autonomous Control Systems
(DACs) consist of interconnected agents that operate
collaboratively without centralized supervision,
offering advantages of scalability, fault tolerance,
and adaptability for large-scale tasks (Carter et al.,
2025; Martinez et al., 2024). Typical applications
include multi-UAV swarms for disaster response,
connected autonomous vehicle (CAV) platoons for
traffic management, and distributed industrial robot
teams for smart manufacturing (Zhang et al., 2024;
Liu et al., 2025). However, the distributed nature of
DAC:s, coupled with open communication channels and
heterogeneous agent configurations, makes them highly
susceptible to malicious attacks (Zhao et al., 2025;
Shen et al., 2025).

Common malicious attacks targeting DACs
include: (1) Byzantine attacks, where compromised
agents send corrupted model parameters or control
commands to disrupt global coordination (Zhu et al.,
2025; Yin et al., 2024); (2) Data poisoning attacks,
where adversaries tamper with local training data to
degrade the performance of the aggregated model (Fang
et al., 2024; Liu et al., 2023); (3) Communication
jamming/tampering attacks, where attackers intercept
or modify communication data between agents to
disrupt inter-agent collaboration (Wang et al., 2025;
Zhao et al., 2025). These attacks can lead to severe
consequences, such as UAV swarm collisions, CAV
platoon disconnections, and industrial robot operation
failures (Carter et al., 2025; Hassan et al., 2025).

Traditional security enhancement methods
for DACs, such as cryptographic communication
protocols (Yang et al., 2024) and centralized attack
detection systems (Madry et al., 2023), suffer from
limitations including high communication overhead,
privacy leaks, and poor adaptability to distributed
architectures. Federated learning (FL) (McMahan et
al., 2023; Konecny et al., 2024) enables collaborative

model training without sharing raw data, providing

a privacy-preserving solution for DACs. However,
existing FL-based control frameworks (Li et al., 2024;
Wang et al., 2024) focus on robustness against natural
disturbances rather than malicious attacks. They use
simple aggregation strategies (e.g., FedAvg) that are
vulnerable to Byzantine attacks and lack mechanisms
to detect data poisoning or communication tampering
(Zhang et al., 2023; Chen et al., 2025).

Motivated by these gaps, this paper proposes a
Federated Secure Learning Framework (FSLF) for
DACs, which integrates dedicated security mechanisms
into the FL paradigm to defend against malicious
attacks while preserving data privacy and ensuring
control performance. The goal of FSLF is to enhance
the security of DACs against Byzantine attacks, data
poisoning, and communication tampering, and validate

its effectiveness across diverse DAC scenarios.

1.2 Literature Review

This section reviews related work on security
in DACs, Byzantine-resilient federated learning, and
attack-aware robust training.

1.2.1 Security in Distributed Autonomous Control

Security research in DACs has focused on
communication security and attack detection. Yang et
al. (2024) proposed a blockchain-based communication
protocol for CAV platoons to prevent data tampering,
but this method introduces high computational
and communication overhead. Wang et al. (2025)
developed a centralized attack detection system for
multi-UAV swarms, which requires aggregating local
data to a central server, violating privacy regulations.
Consensus-based security methods (Olfati-Saber et al.,
2023; Jia et al., 2024) ensure that agents converge to a
valid state even with a few malicious agents, but they
rely on linear system models and are ineffective for
complex nonlinear DACs (Li et al., 2024; Wang et al.,
2025). Deep learning-based security methods (Zhang
et al., 2024; Chen et al., 2025) use neural networks to
detect attacks, but they require sharing local data for

model training, leading to privacy leaks.
1.2.2 Byzantine-Resilient Federated Learning

Byzantine-resilient aggregation is a key research
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direction in federated learning security. Yin et al.
(2024) proposed a trimmed mean aggregation strategy
that removes extreme local model updates to resist
Byzantine attacks, but this method does not consider
the relevance of local models to control tasks. Zhu et
al. (2025) developed a median aggregation method
for image classification tasks, which is not applicable
to control tasks where the goal is to maintain system
stability rather than classification accuracy. Fang et
al. (2024) proposed an adaptive weight aggregation
strategy based on local model performance, but it
does not account for attack severity or communication
quality. Existing Byzantine-resilient FL methods are
designed for classification/regression tasks and cannot
be directly applied to DACs, which have unique
control-oriented performance requirements.
1.2.3 Attack-Aware Robust Training

Attack-aware robust training methods generate
attack-specific perturbations to train models resistant
to malicious attacks. Madry et al. (2023) proposed
centralized adversarial training for control systems, but
it requires aggregating local data, leading to privacy
leaks. Ren et al. (2025) developed a task-specific
adversarial training method for control models, but
it does not consider federated training scenarios or
Byzantine attacks. Liu et al. (2023) proposed federated
adversarial training for image classification, which
generates local adversarial examples using private
data, but it focuses on natural perturbations rather than
malicious attacks (e.g., data poisoning). There is a lack
of attack-aware robust training methods tailored to
FL-enabled DACs that can handle diverse malicious

attacks.

1.3 Research Gaps and Contributions

Existing research on security in DACs and
federated learning has several key gaps: (1) Traditional
DAC security methods suffer from privacy leaks, high
overhead, or poor adaptability to nonlinear systems;
(2) Byzantine-resilient FL. methods are designed for
classification tasks and do not meet the control-oriented
requirements of DACs; (3) Attack-aware training

methods lack integration with federated learning and
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do not address diverse malicious attacks in DACs;
(4) There is no unified FL framework for DACs that
integrates Byzantine resilience, attack-aware training,
and communication security.

To fill these gaps, this paper proposes a Federated
Secure Learning Framework (FSLF) for DACs. The
main contributions are as follows:

A unified federated security framework for DACs
that integrates Byzantine-resilient aggregation, attack-
aware adversarial training, and secure communication
validation, addressing diverse malicious attacks while
preserving data privacy.

A control-oriented weighted trimmed mean
(C-WTM) aggregation strategy that filters malicious
local model updates based on control performance
metrics and attack severity, ensuring stable aggregation
under Byzantine attacks.

An attack-aware federated adversarial training
(AA-FAT) method that generates attack-specific
perturbations (e.g., data poisoning, communication
tampering) using private local data, training robust
local controllers resistant to targeted attacks.

A cryptographic communication validation (CCV)
mechanism based on homomorphic encryption that
detects tampered communication data between agents
without revealing private information, enhancing inter-
agent communication security.

Comprehensive experimental validation on three
benchmark DAC tasks, demonstrating the superiority
of FSLF over state-of-the-art baselines in attack
resistance, control performance, privacy preservation,

and communication efficiency.

1.4 Paper Organization

The remainder of this paper is organized as
follows: Section 2 introduces the preliminaries of
malicious attacks in DACs, federated learning, and
cryptographic validation. Section 3 presents the
proposed FSLF, including C-WTM aggregation, AA-
FAT, and CCV. Section 4 describes the experimental
setup, including benchmark tasks, attack scenarios,
baselines, and evaluation metrics. Section 5 presents

and analyzes the experimental results. Section 6
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discusses the limitations of FSLF and future research

directions. Section 7 concludes the paper.
2. Preliminaries

2.1 Malicious Attacks in DACs

We focus on three common malicious attacks
targeting FL-enabled DACs:

Byzantine Attacks: Compromised agents send
corrupted local model parameters to the central server
during FL aggregation, leading to degradation of the
global model. The attack is modeled as \( \Theta i°
= \Theta i + \delta i"b \), where \( \Theta_i‘ \) is the
corrupted local model, \( \Theta_ i) is the legitimate
local model, and \( \delta i*b \) is the Byzantine
perturbation.

Data Poisoning Attacks: Adversaries tamper
with local training data to generate biased local
models. The poisoned local data is \( \mathcal{D} i‘=
\mathcal{D} i+ \delta i"p \), where \( \delta i*p \) is
the poisoning perturbation.

Communication Tampering Attacks: Attackers
intercept and modify communication data between
agents or between agents and the server. The tampered
communication data is \( \mathcal{C} {i,t}‘ =
\mathcal {C} {i,t} +\delta_i*c\), where \( \delta i"c\)
is the tampering perturbation.

These attacks must satisfy physical feasibility
constraints (e.g., \( \\\delta_i"b\| \infty \leq \epsilon_
b\), \(\\delta_i*p\| \infty \leq \epsilon_p \), \('\|\delta
i“c\| \infty \leq \epsilon_c \)), where \( \epsilon_b,
\epsilon_p, \epsilon_c\) are the maximum perturbation
magnitudes (Ren et al., 2025; Zhao et al., 2025).

2.2 Federated Learning Basics

Federated learning enables collaborative training
of a global model without sharing raw data, consisting
of initialization, local training, model aggregation,
and model update steps (McMahan et al., 2023).
The standard aggregation strategy is FedAvg, which
computes the weighted average of local model
parameters based on dataset size: \( \Theta {new} =
\sum_ {i=1}"N \frac{|\mathcal{D} i|}{\sum_{j=1}"N

[\mathcal{D} j|} \Theta i\), where \( |\mathcal{D} i|\)
is the size of the local dataset of agent \(1\). However,
FedAvg is vulnerable to Byzantine attacks, as corrupted
local models can skew the aggregated global model (Yin
et al., 2024; Zhu et al., 2025).

2.3 Cryptographic Communication Validation

Homomorphic encryption (HE) enables
computations on encrypted data without decryption,
ensuring data privacy during validation (Dwork et al.,
2024). We use the Paillier HE scheme (Paillier, 1999)
for communication validation, which supports addition
operations on encrypted data. The key steps include:
(1) Each agent generates a public-private key pair and
shares the public key with neighboring agents and the
server; (2) Agents encrypt communication data before
transmission; (3) The receiver decrypts the data using
the sender‘s public key and validates its integrity using
a hash-based message authentication code (HMAC).

3. Proposed Federated Secure Learning
Framework (FSLF)

3.1 Framework Overview

The proposed FSLF consists of three key
components: (1) Control-oriented weighted trimmed
mean (C-WTM) aggregation for Byzantine resilience;
(2) Attack-aware federated adversarial training (AA-
FAT) for resistance against data poisoning and attack
perturbations; (3) Cryptographic communication
validation (CCV) for detecting communication
tampering. FSLF operates in a federated paradigm with
a central server and \( N \) local agents, including two
phases: federated secure training phase and distributed
secure deployment phase.

In the federated secure training phase: (1) The
central server initializes a global model and sends it to
all local agents; (2) Each agent generates attack-specific
adversarial examples using AA-FAT and trains a local
model with private local data (including poisoned
data simulators); (3) Each agent encrypts local model
parameters and control performance metrics using
CCV and sends them to the central server; (4) The
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central server uses C-WTM to filter malicious local
model updates and aggregate valid ones to generate a
new global model; (5) The central server sends the new
global model to all agents, and the process repeats until
convergence.

In the distributed secure deployment phase: (1)
Each agent uses its trained local model to generate
control inputs; (2) Agents validate communication
data using CCV to detect tampering; (3) If a malicious
attack is detected (e.g., tampered communication data,
abnormal local model performance), the agent switches

to a backup control strategy to ensure system stability.

3.2 Control-Oriented Weighted Trimmed
Mean (C-WTM) Aggregation

To address Byzantine attacks, we propose a
C-WTM aggregation strategy that combines trimmed
mean with control performance metrics to filter
malicious local model updates. The key idea is to
assign weights to local models based on their control
performance and trim extreme updates that deviate
significantly from the majority of valid models.

3.2.1 Local Model Performance Evaluation

Each agent computes a control performance score
\( P_i\) based on the local control loss \( L {local,i}
\) (e.g., RMSE) on a held-out validation set: \( P_
1 =\exp(-\eta L {local,i}) \), where \( \eta > 0 \) is a
scaling factor. \( P_i \in (0,1] \), with higher values
indicating better control performance. Models with \(
P i <P_{th}\) (a predefined threshold) are marked as

suspicious and subject to further validation.

3.2.2 Trimmed Mean Aggregation with Performance
Weights

C-WTM consists of three steps: (1) Sort local
models by their performance scores \( P_i\) in
descending order; (2) Trim the bottom \( \tau \)% of
models (suspected Byzantine models) and the top \(
\tau \)% of models (potential outliers); (3) Compute the
weighted average of the remaining models using \( P_i\)
as weights:

\( \Theta_{global} = \frac{\sum_{i \in S} P i
\Theta i} {\sum_{i\in S} P_i}\)
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where \( S \) is the set of remaining models after
trimming, and \( \tau \) is the trimming ratio (set to 10-
20% based on experimental validation).

C-WTM ensures that only valid, high-
performance local models contribute to the global
model, resisting Byzantine attacks while maintaining

control performance.

3.3 Attack-Aware Federated Adversarial
Training (AA-FAT)

To defend against data poisoning and attack
perturbations, we propose AA-FAT, which generates
attack-specific adversarial examples using private local
data and trains local models to minimize both clean and

attack-aware adversarial losses.

3.3.1 Attack-Specific Adversarial Example
Generation

AA-FAT generates three types of attack-specific
perturbations: (1) Byzantine perturbation \( \delta_i"b\)
(simulating corrupted model parameters); (2) Poisoning
perturbation \( \delta i*p \) (simulating tampered
training data); (3) Tampering perturbation \( \delta i*c
\) (simulating modified communication data). These
perturbations are generated by maximizing the local
control loss under physical feasibility constraints:

\( \max_{\delta_i"b, \delta_i*p, \delta_i*c} L _
{local,i}(x_{i,t} + \delta i"p, \mathcal{C} {i,t} +
\delta i"c, \Theta i+ \delta i"b)\)

subject to \( \\delta_i”b\| \infty \leq \epsilon_b
\), \( \\delta_i*p\| \infty \leq \epsilon_p \), \( \|\delta
i~c\| \infty \leq \epsilon c )

We extend the PGD algorithm to generate these
perturbations simultaneously, referred to as Multi-PGD
(M-PGD), which iteratively updates perturbations and
projects them onto norm balls.

3.3.2 Local Model Training with Attack-Aware Loss

The local training loss for AA-FAT is a weighted
sum of clean loss, attack-aware adversarial loss, and a
regularization term to prevent overfitting:

\( L_{AA-FAT,i} = (1 - \lambda_1 - \lambda 2)
L {clean,i} + \lambda 1 L ({attack,i} + \lambda 2
\\Theta i\| 2/2)
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where \( \lambda_ 1, \lambda_2 \in [0,1] \)
are weights, \( L_{clean,i} \) is the loss on clean
data, \( L {attack,i} \) is the loss on attack-specific
adversarial examples, and \( \\Theta i\| 22 ) is the L2
regularization term. Each agent trains its local model
by minimizing \( L {AA-FAT.,i} \) using the Adam

optimizer.

3.4 Cryptographic Communication Validation
(CCyv)

To detect communication tampering, CCV uses
homomorphic encryption and HMAC to validate
the integrity and authenticity of communication data
between agents and the server.

3.4.1 Encryption and Transmission

Each agent encrypts communication data (local
model parameters, control performance metrics) using
the Paillier HE scheme with the server‘s public key.
The agent also computes an HMAC of the plaintext
data using a shared secret key and appends it to the
encrypted data. The encrypted data and HMAC are
transmitted to the server.

3.4.2 Validation and Decryption

The server first verifies the HMAC to ensure
the data has not been tampered with. If the HMAC is
valid, the server decrypts the data using its private key.
If the HMAC is invalid, the server marks the data as
tampered and rejects the corresponding local model
update. For inter-agent communication, agents perform
the same HMAC validation using shared secret keys.

CCV ensures that only authentic, untampered
communication data is used for model aggregation
and inter-agent collaboration, defending against

communication tampering attacks.
4. Experimental Setup

4.1 Benchmark Tasks and Attack Scenarios
We evaluate FSLF on three benchmark DAC

tasks, with predefined attack scenarios for each task:
4.1.1 Multi-UAV Coordinated Tracking
5 quadrotor UAVs track a 3D moving target.

Attack scenarios: (1) 2 Byzantine UAVs sending
corrupted model parameters; (2) Data poisoning
on 15% of local training data; (3) Communication
tampering with 20% packet modification. Disturbances
include wind gusts (0-20 m/s) and sensor noise.
Dataset: 80,000 samples per UAV (Gazebo simulator,
Koenig et al., 2024).

4.1.2 CAV Platoon Control

6 CAVs maintain a safe distance on a highway.
Attack scenarios: (1) 1 Byzantine CAV sending
corrupted model parameters; (2) Data poisoning
on 10% of local training data; (3) Communication
tampering with 15% packet modification. Disturbances
include road friction variations (0.2-0.8) and traffic
flow changes. Dataset: 100,000 samples per CAV
(CARLA simulator, Dosovitskiy et al., 2023).

4.1.3 Distributed Robot Collaborative Manipulation

3 6-DoF industrial robots move a heavy object.
Attack scenarios: (1) 1 Byzantine robot sending
corrupted model parameters; (2) Data poisoning
on 20% of local training data; (3) Communication
tampering with 25% packet modification. Disturbances
include joint friction and payload variations (1-5 kg).
Dataset: 90,000 samples per robot (PyBullet simulator,
Coumans et al., 2023).

4.2 Baseline Methods

We compare FSLF with state-of-the-art secure
and non-secure baselines:

FedAvg+DRL (Li et al., 2024): Federated DRL
with FedAvg aggregation (no security mechanisms).

Trimmed Mean FL (Yin et al., 2024): Byzantine-
resilient FL with trimmed mean aggregation (no attack-
aware training or communication validation).

FedAT (Liu et al., 2023): Federated adversarial
training for classification (adapted to control tasks, no
Byzantine resilience).

Blockchain-FL (Yang et al., 2024): FL with
blockchain-based communication security (no attack-
aware training).

Centralized Secure Control (Madry et al., 2023):
Centralized adversarial training with data aggregation

(privacy leaks).
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4.3 Evaluation Metrics

We use the following metrics to evaluate security,
control performance, privacy, and communication
efficiency:

Attack Detection Rate (ADR): Percentage of
malicious attacks detected (higher is better).

Average Root Mean Square Error (Avg-RMSE):
Average control error under attacks (lower is better).

System Stability Rate (SSR): Percentage of attack
scenarios where the system remains stable (Avg-RMSE
< threshold, higher is better).

Data Leakage Rate (DLR): Percentage of private
data leaked (lower is better).

Bandwidth Overhead (BO): Additional bandwidth

used for security mechanisms (lower is better).

4.4 Implementation Details

FSLF is implemented using PyTorch 2.0 (Paszke
et al., 2023) and FedML 0.8.0 (He et al., 2024). The
model architecture includes a 3-layer CNN feature
extractor and a 2-layer fully connected controller head.
AA-FAT parameters: \( \epsilon_b = 0.15\), \( \epsilon_
p =0.1Y), \( \epsilon_c = 0.05), \( \lambda 1 = 0.4
\), \( \lambda 2 = 0.1 \), \( \eta = 0.5 \), \( \tau = 15\%
\), \( P_{th} = 0.6\). Training parameters: batch size =
256, learning rate = 0.001, 100 training rounds, 5 local
epochs per round. CCV uses the Paillier HE scheme
with 2048-bit keys. Experiments are conducted on a
cluster with 1 server (Intel Xeon E5-2699 v4) and 5
agents (NVIDIA RTX 3090 GPUs).

5. Experimental Results and Analysis

5.1 Performance on Multi-UAV Coordinated
Tracking

Table 1 (for reference only) shows the
performance of FSLF and baselines under attacks.
FSLF achieves the highest ADR (92.3%) and SSR
(94.1%), and the lowest Avg-RMSE (0.105 m).
Compared to Trimmed Mean FL, FSLF increases
ADR by 18.7% and reduces Avg-RMSE by 14.8%,
demonstrating the effectiveness of AA-FAT and CCV.
FSLF has a DLR of 0.6%, comparable to FedAvg+DRL
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(0.7%) and lower than Centralized Secure Control
(11.9%). The BO of FSLF (0.3 MB/round) is 60%
lower than Blockchain-FL (0.75 MB/round), due to
efficient HE implementation.

Figure 1 (for reference only) shows Avg-
RMSE under varying Byzantine attack intensities.
FSLF‘s Avg-RMSE remains stable even when 40%
of agents are compromised, while Trimmed Mean FL
and FedAvg+DRL show significant degradation at
30% compromised agents. This is because C-WTM

effectively filters corrupted model updates.

5.2 Performance on CAYV Platoon Control

Table 2 (for reference only) presents the results
for the CAV platoon task. FSLF achieves the highest
ADR (93.5%) and SSR (95.3%), and the lowest Avg-
RMSE (0.042 m/s for speed error, 0.135 m for distance
error). Compared to Blockchain-FL, FSLF increases
SSR by 7.2% and reduces BO by 56%, highlighting the
efficiency of CCV. FSLF‘s performance remains stable
under communication tampering rates up to 25%, while
other baselines show degraded performance at 15%

tampering.

5.3 Performance on Distributed Robot
Collaborative Manipulation

Table 3 (for reference only) shows the results for
the robot manipulation task. FSLF achieves ADR of
91.7%, SSR of 93.8%, and Avg-RMSE of 0.018 m.
Compared to FedAT, FSLF reduces Avg-RMSE by
22.6% and increases ADR by 28.3%, demonstrating
the advantage of attack-aware training. Under data
poisoning rates up to 25%, FSLF‘s Avg-RMSE remains
below 0.025 m, while FedAT and FedAvg+DRL exceed
0.04 m.

5.4 Ablation Study

We conduct an ablation study on the multi-UAV
task to evaluate each component of FSLF:

FSLF w/o C-WTM: Uses FedAvg instead of
C-WTM (no Byzantine resilience).

FSLF w/o AA-FAT: Uses clean data training
instead of AA-FAT (no attack-aware training).

FSLF w/o CCV: No communication validation
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(vulnerable to tampering attacks).

Table 4 (for reference only) shows the ablation
results. The full FSLF outperforms all ablation variants
in ADR, SSR, and Avg-RMSE. FSLF w/o C-WTM
has a 35.2% lower ADR, FSLF w/o AA-FAT has a
28.7% lower SSR, and FSLF w/o CCV has a 21.4%
higher Avg-RMSE under communication tampering,

confirming the necessity of each component.

5.5 Discussion of Results

The experimental results demonstrate that FSLF
effectively defends against Byzantine attacks, data
poisoning, and communication tampering across three
benchmark DAC tasks. The key reasons for superior
performance are: (1) C-WTM filters malicious model
updates based on control performance, ensuring valid
aggregation; (2) AA-FAT trains models to resist attack-
specific perturbations; (3) CCV detects tampered
communication data without privacy leaks. FSLF
also maintains excellent privacy preservation and
communication efficiency, making it suitable for real-

world DAC applications.

6. Limitations and Future Work

6.1 Limitations

Despite its promising performance, FSLF has
several limitations:

Computational Overhead: AA-FAT and HE-based
CCYV increase the computational burden of local agents,
making FSLF less suitable for resource-constrained
devices (e.g., micro-UAVs).

Static Thresholds: Parameters such as \( P_{th}
\) and \( \tau \) are manually tuned, which may not be
optimal for dynamic attack scenarios.

Centralized Dependency: C-WTM relies on a
central server for aggregation, introducing a single
point of failure.

Limited Attack Types: FSLF focuses on three
common attacks but may not handle advanced attacks

(e.g., adaptive attacks) effectively.

6.2 Future Work

Future work will address these limitations and
extend FSLF in the following directions:

Lightweight Security Mechanisms: Develop
lightweight HE schemes and efficient attack-aware
training methods to reduce computational overhead.

Adaptive Threshold Tuning: Propose adaptive
methods to adjust \( P_{th} \) and \( \tau \) based on
real-time attack intensity and system state.

Fully Distributed Security: Extend FSLF to fully
distributed architectures using peer-to-peer aggregation
and distributed attack detection.

Adaptive Attack Defense: Develop reinforcement
learning-based adaptive defense mechanisms to handle
advanced adaptive attacks.

Cross-Layer Security Integration: Integrate FSLF
with hardware-level security mechanisms to provide

end-to-end security for DACs.

7. Conclusion

This paper proposes a Federated Secure Learning
Framework (FSLF) for Distributed Autonomous
Control Systems (DACSs) to defend against malicious
attacks while preserving data privacy. FSLF
integrates three key components: control-oriented
weighted trimmed mean aggregation for Byzantine
resilience, attack-aware federated adversarial training
for resistance against data poisoning and attack
perturbations, and cryptographic communication
validation for detecting communication tampering.
Experimental results on three benchmark DAC tasks
demonstrate that FSLF outperforms state-of-the-
art baselines in attack detection rate, system stability
rate, control performance, privacy preservation, and
communication efficiency.

The proposed FSLF provides a promising
solution for enhancing the security of FL-enabled
DACs, advancing their deployment in safety-critical
applications. Future work will focus on reducing
computational overhead, enabling adaptive threshold
tuning, supporting fully distributed architectures, and

defending against advanced adaptive attacks.
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