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ABSTRACT

This study investigates the effects of low-intensity magnetic fields and nanoplatelet incorporation on the structure
and transport behavior of polyacrylamide (PAAM) gel matrices. Gel nanocomposites containing environmentally benign
montmorillonite (MMT) nanoplatelets were prepared under controlled magnetic field orientations during gelation
and compared with pure PAAM reference gels. The resulting materials were characterized using polyacrylamide gel
electrophoresis (PAGE), scanning electron microscopy (SEM), and MATLAB®-based quantitative image analysis to
evaluate changes in pore morphology and connectivity. Relative to pure, non-magnetized PAAM gels, magnetically
treated PAAM-MMT nanocomposites exhibited more uniform microstructures with reduced characteristic pore sizes. In
comparison to nanocomposites prepared without magnetic-field exposure, magnetically treated gels displayed distinct
shifts in pore size distributions and corresponding changes in protein mobility, indicating that low-intensity magnetic
fields can modify gel microstructure through nanoplatelet redistribution or partial alignment. Orientation-dependent

effects were observed, with magnetic fields applied perpendicular to the direction of protein migration producing more
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pronounced microstructural and transport changes than parallel orientations. The magnitude of these effects increased

with nanoplatelet concentration, demonstrating a coupled dependence on filler loading and magnetic field orientation.

Overall, the results establish a relationship between nanoplatelet concentration, magnetic field orientation, gel

microstructure, and transport behavior in PAAM gels, demonstrating a materials-centric, low-field strategy for tuning

polymer gel structure without chemical modification.

Keywords: Polymer; Nanocomposite; Bentonite; Sodium Montmorillonite (MMT); Permanent Magnet

1. Introduction

Enhancing the efficacy of electrophoretic separa-
tions remains a vital pursuit for advancing numerous ap-
plications. The integration of relatively small amounts of
environmentally sustainable nanoclay material into the
polymer matrix has been shown to lead to macroscopic
changes in mechanical properties "', thermal stability *,
and other properties of the polymer. The use of laponite,
for example, has been demonstrated to enhance mechani-
cal strength, an effect attributed to the nanoparticle func-
tioning as a secondary crosslinking agent """,

A review of prior studies on magnetic-field-induced
alignment of nanostructured materials shows that several
block copolymer (BCP) systems—including poly(ethylene
oxide-b-methacrylate/liquid crystal) (PEO-b-PMA/LC),
polystyrene-based systems, Na-GA3Cl11, and butyl acry-

12-16

late—have been extensively investigated "> '\ At room

temperature, the system forms hexagonally packed cylin-
drical microdomains, which have been shown to be liable
using magnetic field of both high and low intensity """,
Prior studies demonstrate that magnetic fields can

. . . . 19,20
induce nano structural alignment in soft materials """,

typically requiring moderate to high field strengths *"**,
For instance, tetra-ethylene glycol dodecyl ether (C,,E,),
exhibits measurable orientation changes under fields of 1-2
T (tesla) ', while polystyrene and POE/LC systems often

require fields as high as ~3 T to achieve comparable align-
[17

the energetic cost associated with magnetic-field-directed
structuring of polymeric systems "* .

In this work, magnetically susceptible montmoril-
lonite (MMT) nanoplatelets are strategically incorporated
into polyacrylamide (PAAM) gels to enable nanostructural
control under relatively low magnetic field strength. By
aligning MMT nanoparticles prior to complete gel curing,
the resulting gel matrix exhibits tunable morphology with
implications for environmentally relevant applications
such as controlled drug delivery, catalyst immobiliza-
tion, and improved electrophoretic separation efficiency.
Using Native-PAGE as a probe, this study demonstrates
a low-energy, externally controlled strategy for tailoring
polymer nanocomposites, supporting the development of
sustainable, high-performance materials for analytical and

environmental protection applications.

2. Materials and Methods

The main materials used in the experiments dis-
cussed in this paper are presented in Table 1. Protogel, a
mixture of polyacrylamide/bis-acrylamide, with a pH of
6.5, was essential for forming the gel matrix The pH of 6.5
is important since factors affecting the mobility of protein
in Native-PAGE include shape, charge and size of protein
being separated . A T = 6% and C = 3.3% pure PAAM
gel was formulated using Equations 1 and 2. For PAAM

gel nanocomposite, nanoplatelets were prepared using the

ment """, These reports underscore both the feasibility and method presented by Ploehn and Liu 7.
Table 1. Reagents for Gel Fabrication.
Reagents Source Compound Properties
Protogel Themo Fisher Polyacrylamide/Bis-acrylamide pH 6.5
Running buffer BIO-RAD Tris/Glycine/(SDS) pH 8.3
Resolving buffer Thermo Fisher Tris pH 8.8
Stacking buffer Thermo Fisher Tris-HCI pH 6.8
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Table 1. Cont.

Reagents Source Compound Properties
Protein solvent Fisher Scientific PBS pH7.3
Protein MP, Themo Fisher, BIO-RAD Carbonic Anhydrase, Ovalbumin, Kaleidoscope Ladder -
Nanoparticle MP Biomedicals Bentonite/Na-MMT pH 10

To prepare the Na-MMT suspension, 1.0 g of MMT
was added to 100 mL of water. The suspension underwent
90 min of sonication, followed by 24 h of continuous stir-
ring, and another 30 min of sonication. After these steps,
the suspension was centrifuged at 1000 rpm, which corre-
sponds to 180 g for 1 h to eliminate any remaining large

particles or contaminants.

Mas S Acrvamide + Mass bisacrvalmide

%T= x100 ((ni)) (1)

Vo zumeSoluﬁon

Mass yisacryiamide

%C= %100 2)

Mass_‘lcr}'amfde + Mass bisacrvaimide

2.1. Protein Preparation

Proteins were prepared in phosphate-buffered saline
(PBS) with a pH of 7.3, acquired from Fisher Scientific, to
ensure they remained soluble and stable during the exper-
iments. The proteins used were carbonic anhydrase (CA)
and ovalbumin (OSA), which were sourced from MP and
Thermo Fisher respectively. Each protein solution was
carefully prepared to the required concentration of 1mg/
mL, ensuring consistency across experiments. Proteins
were stored at —20 °C until required for the experiments to

prevent degradation.

2.2. Magnetic Field Orientations

The application of magnetic fields during the gela-

Polymer gel
Magnetic field
Permanent magnet
—
—_
—
—
—p
—
—

(a)

tion of the polyacrylamide gels was achieved using Neo-
dymium rare earth permanent magnets (Grade N48), ac-
quired from Applied Magnets. Two configurations were
employed: one in which the magnetic field was perpendic-
ular to the direction of protein migration, and another in
which it was parallel, as shown in Figure 1.

These magnets generated a magnetic field with a
surface strength of 1.3 Tesla as specified by the supplier.
The expected magnetic field at different locations in the
gel was determined using BELL 640 Incremental Gauss-
meter. For each configuration, measurements were taken
at three positions across the gel region, and the average
field magnitude was calculated. The average magnitude
of the magnetic field for orientation 1 (Or_1) was found
to be 825 Gauss while the average magnitude of magnet-
ic field in orientation 2 (Or_2) was 1760 Gauss (Figure
2).

During the gel forming stage, the gels were posi-
tioned within the magnetic field. This involved placing the
casting setup relative to the magnets so that the desired
field orientation was maintained as the gel polymerized.
This ensured continuous magnetic influence during net-
work formation, supporting systematic evaluation of how
magnetic-field-directed nano structuring of the PAAM-
MMT hydrogel might affect gel morphology and subse-

quent protein migration during electrophoresis.

Polymer gel

Permanent magnet

Magnetic field

(b)
Figure 1. Illustration of magnetic field: (a) Orientation 1 (Or_1); (b) Orientation 2 (Or_2).
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Figure 2. Magnetic field variation along the direction of protein flow during electrophoresis.

2.3. Native Polyacrylamide Gel Electrophoresis

Native polyacrylamide gel electrophoresis (PAGE)
was performed using 6% polyacrylamide gels, with sodium
montmorillonite (Na-MMT) nanoplatelets incorporated at
concentrations of 0.109%, 0.216%, and 2.16% w/v to eval-
uate the effect of nanoparticle loading on gel performance.
Electrophoresis was conducted at a constant voltage of 100
V for 90 min, and 10 pL protein samples prepared with
Laemmli buffer were loaded into the gel wells using an
Invitrogen electrophoresis system, ensuring controlled and

reproducible separation conditions across all experiments.

2.4. Statistical Analysis

For the analysis of experimental data, a couple of
statistical methods were employed to ensure the accuracy
and significance of the results. First, an ANOVA (Analysis
of Variance) test was utilized. In cases where the ANOVA
test indicated significant differences, a post-hoc test was
conducted to identify which specific groups differed from
the rest. Statistical significance was defined at p < 0.05.
When significant differences were identified, post hoc
comparisons were conducted using the Bonferroni correc-
tion to control the family-wise Type I error rate associated

with multiple comparisons.

2.5. SEM Characterization and Image Analysis

Scanning electron microscopy (SEM) was utilized

to investigate the microstructural features of polyacryl-

amide (PAAM) hydrogels, both with and without sodium
montmorillonite (Na-MMT) nanoplatelet incorporation,
prepared under magnetic-field-assisted and non-field con-
ditions. Since SEM analysis requires samples to be com-
pletely dehydrated in its high-vacuum environment, the
hydrogels were chemically fixed, rinsed, and gradually de-
hydrated through a graded ethanol series. To maintain the
intrinsic porous architecture, specimens were subsequent-
ly dried using a critical point dryer (CPD). The dried gels
were affixed to carbon adhesive tape and sputter-coated
with a thin Au—Pt conductive layer to reduce charging ar-
tifacts during imaging. Microstructural observations were
carried out using a field-emission SEM (FE-SEM, Hitachi
SU7000) housed at Tennessee Technological University.
Elemental mapping and compositional verification of the
embedded MMT nanoplatelets were performed with the
integrated energy-dispersive X-ray spectroscopy (EDS)
system (Octane Elect) and APEX™ software (EDAX).
SEM micrographs were processed using MATLAB
to quantitatively assess gel microstructure. Images were
converted to grayscale and filtered using a Gaussian kernel
to reduce noise, followed by adaptive thresholding to seg-
ment porous domains and the polymer matrix. Quantitative
descriptors, including average pore size and porosity, were
extracted using MATLAB’s Image Processing Toolbox.
These metrics were used to correlate magnetic-field-in-
duced nanostructural changes with variations in protein
migration behavior during electrophoresis, thereby linking
microstructural alignment to functional performance in

polymer nanocomposite hydrogels.
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3. Results

Protein mobilities of ovalbumin (OSA) and carbonic
anhydrase (CA) were evaluated using Native-PAGE. Mag-
net orientations are denoted as Or_1 and Or_2, correspond-
ing to magnetic fields applied parallel and perpendicular,
respectively, to the direction of protein migration during
electrophoresis. Samples exposed to magnetic fields are la-
beled with the prefix “Mag—,” while field—free controls are
labeled “Unmag—,” and nanocomposite formulations are
identified by their Na-MMT content (e.g., 0.109% w/v).

3.1. Protein Mobility and Statistical Analysis

The influence of magnetic fields on protein mobility
(p-mobility) is summarized in Figure 3. In Orientation 1

(Figure 3a), a statistically significant difference in mobil-

ity among unmagnetized samples was observed only for
the 2.16% MMT gel relative to other formulations (post
hoc p < 0.0083), a trend that was mirrored in magnetized
samples. For gels containing 0.109% MMT, protein mo-
bility did not differ significantly between magnetized and
unmagnetized conditions (post hoc p > 0.0167). However,
a significant effect emerged when comparing the unmag-
netized pure PAAM gel to the magnetized 0.109% MMT
gel (post hoc p < 0.0167), indicating a coupled influence
of magnetic field application and nanoplatelet incorpora-
tion. This synergistic effect was further confirmed for the
0.216% MMT system, where statistically significant differ-
ences were observed between magnetized and unmagne-
tized nanocomposite gels, as well as between the unmag-
netized pure PAAM gel and the magnetized 0.216% MMT
gel (post hoc p <0.0167).

1.16 - 1.16 1
1.08 4 ¢ 1.08 ®
Z X z
= =
s 19 é E 14 é ;
g o =)
& X % é ‘
- . i
=—@®— Unmag_ =@ Unmag_
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T T T T 0.84 T T T T
Contro B 0-100IMMTIRG 2165 /MM TR 2 16 MM, Control  0.109% MMT  0.216% MMT  2.16% MMT
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(a) (b)
1.16 =
1.08 = é
e ® .
=
g X
S 0.92
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== Mag_Or 1
e=fe=Mag Or 2
0.84 L] L] L] L] L] L] L}
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Figure 3. Normalized p-mobility of ovalbumin and carbonic anhydrase in unmagnetized and magnetized sample at: (a) Orientation 1;

(b) Orientation 2; (c¢) Orientation 1 and 2.
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Post hoc analysis for the 2.16% MMT system re-
vealed a statistically significant difference in protein mo-
bility between unmagnetized pure PAAM gels and unmag-
netized 2.16% MMT gels (post hoc p < 0.0083). These
results indicate that under Orientation 1, MMT nanoplate-
lets at low concentrations do not significantly alter the
mobilities of ovalbumin and carbonic anhydrase. At higher
MMT loadings, magnetic-field-induced effects on protein
mobility become pronounced, supporting the hypothesis
that magnetically susceptible nanoparticles enable a mea-
surable gel response to external fields, manifested mac-
roscopically as altered protein mobility. This behavior is
consistent with prior reports by Thompson **', although the
magnetic field strength employed in the present study is
approximately an order of magnitude lower (~0.1 Tesla vs.
2 Tesla), highlighting the effectiveness of nanoparticle-as-
sisted, low-field structuring.

A distinguishing feature of this study is the use of a
low-intensity magnetic field to orient nanoparticles during
gelation, thereby modifying the resulting polymer matrix
without altering gel chemistry. Prior efforts to reduce the
magnetic field strength required for nano structural align-

1. "% relied on

ment, such as those by Gopinadhan et a
labile mesogens that plasticized the polymer system, ren-
dering the approach incompatible with polyacrylamide gel
electrophoresis. To mitigate limitations associated with
SEM imaging of fragile, low-concentration PAAM gels
and to better isolate magnetic-field-induced effects, mag-
netic alignment was investigated under multiple field ori-
entations. Orientation 2, in which the magnetic field was
applied perpendicular to the direction of protein migration,
was maintained throughout casting and curing (30 min), a
duration previously shown to be sufficient for nanoparticle
alignment in polymer gels "***. As shown in Figure 3b,
statistically significant magnetic-field effects on protein
mobility were observed only at the highest MMT load-
ing, consistent with trends in Orientation 1. The absence
of measurable effects at lower MMT concentrations is at-
tributed to a dilution effect, where the nanoplatelet popula-
tion is insufficient relative to the gel pore volume to induce
macroscale transport changes.

Figure 3¢ summarizes protein mobility as a function
of nanoplatelet concentration for both magnetic field ori-

entations. Increasing MMT loading enhances the magnet-

ic-field sensitivity of the nanocomposite gels, with mag-
netic field exposure generally resulting in reduced protein
mobility. The following sections examine this behavior in
greater detail by elucidating the post-treatment state and

organization of the nanoplatelets within the gel matrix.

3.2. Tracking Each Protein

Individual proteins were examined to assess the
changes in mobility. Figure 4a shows the mobility of car-
bonic anhydrase (CA) in gels cured under magnetic field
orientations 1 and 2, revealing an increasing difference in
CA mobility between the two orientations. This trend indi-
cates that nanoplatelet incorporation enhances the ability of
the magnetic field to modulate protein mobility. Although
the nanocomposite initially appears susceptible to magnet-
ic-field effects only up to a certain concentration in Orien-
tation 2, comparison of Figures 4a and 3¢ demonstrates
that Orientation 2 exerts a stronger influence on protein
mobility than Orientation 1. This orientation-dependent ef-
fect is further confirmed by the ovalbumin (OSA) mobility
results shown in Figure 4b.

Protein mobility in Native-PAGE is governed by
protein size, shape, and net charge " **) OSA and CA have
different isoelectric points such that OSA is more negative-
ly charged in the PBS buffer used for making the protein
solutions and in the buffers used in the gels and during

34,35

electrophoresis "***!. This charge disparity likely contrib-
utes to the differing sensitivities of the proteins to magnetic
field orientation (Figure 4). As shown in Figure 4, prepar-
ing PAAM-MMT nanocomposite gels using magnetically
assisted processing, with fields applied parallel or perpen-
dicular to protein migration, alters electrophoretic behavior
without chemical modification of the gel system. This low-
field, nanoparticle-enabled approach offers a materials-ef-
ficient strategy for tuning transport behaviour in polymer
matrices. While Orientation 1 produced no enhancement
in mobility separation between OSA and CA, Orientation
2 exhibited a concentration-dependent increase in mobili-
ty contrast (Figure 5b), attributable to magnetic-field-in-
duced changes in gel microstructure. Similar effects have
been reported under high-field conditions in the literature
(836371 supporting the interpretation that nanoplatelet reori-
entation or aggregation within the gel matrix governs the

observed mobility changes "*'.
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Because MMT is diamagnetic, definitive determi-
nation of its orientation within the PAAM nanocompos-
ite following magnetic-field exposure requires direct and
high-resolution imaging. Prior studies demonstrate orien-
tation-dependent behaviour: titanium nanosheets align per-
pendicular to applied magnetic fields due to diamagnetic
anisotropy ") whereas graphene oxide nanosheets align
parallel owing to m-electron ring-current effects, a behav-
ior later confirmed in graphene oxide—based hydrogels
(40411 Although the exact orientation of MMT cannot be

1.15+
1.1+ §
1.054 X
>
= 14 © ¢ A
E X X
IQ. 0.95 =
=¥==CA Or 1
0.9 = == CA_Or 2
=@— CA_Unmag
0.85 T T '
0.109%MMT  0.216%MMT  2.16%MMT
Sample
(a)

conclusively determined here, the consistent reduction in
protein mobility across all magnetized samples indicates
that magnetic-field exposure alters gel transport pathways.
These changes are most plausibly attributed to field-in-
duced modifications in pore geometry or connectivity
arising from nanoplatelet redistribution or partial align-
ment. Accordingly, the following section employs SEM
and quantitative image analysis to directly assess magnet-
ic-field-induced changes in gel microstructure and estab-

lish structure—transport relationships.

1.15+
1.1+
1.05 4 é
> X
=
E ° ‘ 4
£0.954 * X
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Figure 4. Protein mobility of model protein as a function of magnetic field orientation: (a) Carbonic Anhydrase; (b) Ovalbumin.
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Figure 5. Effect of magnetic field orientation on protein mobilities in composite gel: (a) Orientation 1; (b) Orientation 2.

3.3. Gel Pore Characterization

Table 2 summarizes pore characteristics of PAAM—

MMT nanocomposite gels as a function of MMT concen-

tration and magnetic field exposure Or_2, including pore

count, average pore size, weighted average pore size, and
porosity.

The control PAAM gel (Figure 6) exhibited a pore
count of 2430 with an average pore size of 132.83 nm and

a substantially larger weighted average pore size (531.83
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nm), indicating a broad pore-size distribution dominated
by a small population of large pores; the corresponding
porosity was 0.74. Incorporation of 0.109% MMT without
magnetic field exposure increased the pore count to 3376

while reducing both the average (82.48 nm) and weighted

average (69.02 nm) pore sizes, resulting in a modest in-
crease in porosity to 0.77 (Figure 7a). These changes are
consistent with the dispersive role of MMT nanoplatelets
in promoting the formation of a higher density of smaller

pores within the gel matrix **.

Table 2. Pore Characteristics in Magnetized (Orientation 2) and Unmagnetized PAAM-MMT Nanocomposite Samples.

S/N Sample  Magnetic Field Orientation 2 Pore Count Avg Pore Size (nm) Weighted Avg Pore Size (nm) Porosity

1 Control - 2430
Unmagnetized 3376

2 0.109% MMT .
Magnetized 1869
Unmagnetized 4138

3 0.216% MMT .
Magnetized 1090

132.83 531.83 0.74
82.48 69.02 0.77
220.47 607.64 0.67
71.41 173.40 0.76
350.88 365.08 0.69

. i i L LT
SU7000 8.00kV x8.00k PDBSE1(ALL) 30Pa 5.00pm

SU7000 5.00KV x8.00k UD 5.00um

(b)

Figure 7. SEM image of 0.109% MMT nanocomposite: (a) Unmagnetized nanocomposite gel; (b) Magnetized nanocomposite gel.

Exposure of the 0.109% MMT gel to a magnetic

field produced pronounced changes in pore architecture

(Figure 7b), with the pore count decreasing to 1869 and
both the average (220.47 nm) and weighted average (607.64

62



New Environmentally-Friendly Materials | Volume 04 | Issue 02 | November 2025

nm) pore sizes increasing substantially. The accompany-
ing reduction in porosity to 0.67 indicates the formation of
fewer, larger pores, consistent with magnetic-field-induced
nanoplatelet alignment or redistribution influencing gela-
tion and promoting pore coalescence.

In contrast, increasing the MMT content to 0.216%
under unmagnetized conditions (Figure 8a) further in-
creased the pore count to 4138 while reducing the average
and weighted average pore sizes to 71.41 nm and 173.40
nm, respectively, with porosity remaining high (0.76).
These trends suggest that higher MMT loadings enhance
pore nucleation density, yielding a finer pore network in
the absence of magnetic field effects "**”.

Magnetic field exposure of the 0.216% MMT gel
(Figure 8b) resulted in marked pore restructuring, with the
pore count decreasing to 1090 and the average and weight-
ed average pore sizes increasing to 350.88 nm and 365.08
nm, respectively. Despite the formation of larger pores,
overall porosity decreased to 0.69, indicating a transition
toward fewer, enlarged voids. These trends suggest that
magnetic-field exposure promotes nanoplatelet redistribu-
tion and partial alignment at higher MMT loadings, lead-
ing to pore coalescence and a shift toward a coarser pore
architecture ****,

Overall, the results demonstrate that MMT concen-

SU7000 8.00kV x7.00k PDBSE1(ALL) 30Pa
(a)

Figure 8. SEM image of 0.216% MMT nanocomposite: (a) Unmagnetized nanocomposite gel; (b) Magnetized nanocomposite gel.

4. Conclusions

This study establishes that montmorillonite (MMT)

concentration and magnetic field application play comple-

tration and magnetic field orientation jointly govern pore
architecture in PAAM-MMT nanocomposites . In un-
magnetized gels, increasing MMT loading produces a finer
and more uniform pore structure, evidenced by decreases
in average and weighted average pore sizes and a corre-
sponding increase in porosity. This behavior indicates that
higher MMT concentrations promote the formation of nu-
merous small pores, yielding a more homogeneous micro-
structure relative to the control gel.

In contrast, magnetic field exposure reduces pore
number while increasing pore size, with effects that be-
come more pronounced at higher MMT loadings “**™**],
For instance, magnetic treatment of the 0.109% MMT
gel in Orientation 2 resulted in an approximately 45%
decrease in pore count and a ~37% increase in pore size,
while the 0.216% MMT gel exhibited the strongest restruc-
turing, forming pores nearly twice as large as those in its
unmagnetized counterpart. These trends suggest that mag-
netic-field-induced nanoplatelet redistribution or partial

. 44,49
alignment promotes pore coalescence **”

, producing few-
er, larger, and more heterogeneous voids. Consequently,
the combined control of MMT content and magnetic field
application provides a versatile strategy for tailoring pore
structure to suit applications requiring either high surface

area or enhanced permeability ",

LT B

v
5.00pum

SU7000 5.00kV x8.00k UD

(b)

mentary roles in controlling pore architecture and protein
mobility in polyacrylamide (PAAM) gels. Increasing MMT
loading promotes the formation of a finer, more uniform

pore network with increased porosity and reduced average
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pore size, reflecting the dispersive and structure-directing
influence of nanoplatelets within the gel matrix. In con-
trast, exposure to a magnetic field during gelation drives a
transition toward fewer, larger porous domains, consistent
with magnetic-field-induced nanoplatelet redistribution
or partial alignment that modifies pore connectivity and
transport pathways. Together, these effects define a tun-
able structure—property relationship linking nanoparticle
content, magnetic field orientation, pore morphology, and
electrophoretic behavior. The findings highlight the po-
tential of low-field, nanoparticle-assisted processing as
an energy-efficient strategy for engineering PAAM-based
nanocomposite gels with tailored transport characteristics
for applications in biotechnology, environmental science,

and materials engineering.
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