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1. Introduction

Around 1967, and still today in specialized fields,
skilled and imaginative individuals in software engineering
essentially translate number-theoretic functions (specifica-
tions) into Turing machines (program texts). This form of
engineering!-?), a specialized subset of broader human-in-
the-loop industrial practices, should not be conflated with
functional programming*#. The latter, rooted in Kleene’s
computability theory, considers only such translations that
are automatable within a fixed symbolic framework.

The countably many automatable translations em-
ployed by functional programmers—or, similarly, by Kleene-
style computability theorists—barely scratch the surface
compared to the uncountably many translations available
to the creative software engineer in industry. Fundamentally,
engineering is not to be equated with automation, nor are
engineers mere automatons—Ilet alone tally-based Turing
machines—in disguise.

Yet in automata theory courses and Stephen Kleene’s
1967 Mathematical Logic'®, not only the rote technician—
who operates strictly within a fixed notation—but also the
creative engineer—who has the potential to engage with an
extensive range of notations—are implicitly replaced by the
tally-based Turing machine itself. This paper contends that
Kleene’s 1967 work embodies this substitution, arguing that,
even from a strictly academic standpoint, such a replace-
ment is unwarranted. It results in a form of impredicativity,
wherein the semantics of Turing computability are defined
in terms of the very construct (the Turing machine) whose
legitimacy is under scrutiny.

Our
acknowledged—both in practice and in theory. In the realm

overarching concern has already been
of computing practice, Peter Naur offered the following

assessment of software engineering as of 1985:

More generally, much current discussion of
programming seems to assume that program-
ming is similar to industrial production, the
programmer being regarded as a component
of that production, a component that has to be
controlled by rules of procedure and which can
be replaced easily. Another related view is that
human beings perform best if they act like ma-

chines, by following rules, with a consequent

stress on formal modes of expression, which
makes it possible to formulate certain argu-
ments in terms of rules of formal manipulation.
Such views agree well with the notion, seem-
ingly common among persons working with
computers, that the human mind works like a
computer. At the level of industrial manage-
ment, these views support treating program-
mers as workers of fairly low responsibility,
and only brief educationl®! (pp. 237-238, our
emphasis).

From a theoretical standpoint, Stewart Shapiro’s Ac-

[7l underscores the presence of non-

ceptable Notation
mathematical assumptions embedded in several steps of
Kleene-style computability proofs, culminating in what he
describes as “an extended version of Church’s thesis.” In
our interpretation, Shapiro—perhaps inadvertently—adds
weight to Naur’s broader critique of logico-mathematical
methods, a critique made explicit in a 2011 account!®],
Besides the work of Naur and Shapiro, other con-
tributions relevant to our project have recently come to
our attention, including those of Dale Jacquette>!%, Jean
Paul Van Bendegem!'!!, Luca San Mauro et al.['>!3], Paula

(14151 "and Henri Stephanou!'®). In this paper, how-

Quinon
ever, our focus is limited to Shapiro’s technical concerns,
albeit with a shift in emphasis from computability to incom-
putability. We argue that Kleene’s 1967 framework harbors
an assumption, reminiscent of the Church-Turing Thesis, that
subtly undermines the contemporary relevance of the Halting
Problem in modern computer science textbooks.

Named after Alonzo Church and Alan Turing, the
Church—Turing Thesis originates from Stephen Kleene’s de-
liberate conflation of (A) Church’s Thesis and (B) Turing’s
Thesis. Kleene elaborated on this in his Mathematical Logic,

as follows:

(A) Church proposed the thesis (published in
1936) that all functions which intuitively we
can regard as computable, or in his words “ef-
fectively calculable”, are A-definable, or equiv-
alently general recursive.

(B) A little later but independently, Turing’s
paper 19361937 appeared in which another
exactly defined class of intuitively computable

functions, which we shall call the “Turing com-
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putable functions”, was introduced, and the
same claim was made for this class; this claim
we call Turings thesis.

Turing’s and Church’s theses are equivalent.
We shall usually refer to them both as Church s
thesis, or in connection with that one of its
three versions ... deals with “Turing machines”

as the Church—Turing thesis.

Remark 1. The previous snippet is quoted from Kleene!*/
(p. 232), original italics, our boldface. We conjecture that
Church, acting as the sole reviewer of Turing s seminal pa-
per, requested Turing to establish a particular connection be-
tween the latter's automatic machines and his own functions.
In this regard, see Remark 1 in Lucas' historical overview 7,
For two distinct correspondences between raw syntactic ma-
chines and number-theoretic functions, see Burgin!'®! or
Daylight!"?/.

In 1982, Stewart Shapiro revised Kleene’s conflation of
(A) and (B) through his extended version of Church's thesis,
which we paraphrase!” (p. 17) thus:

A number-theoretic function is recursive iff it is
Turing machine computable relative to stroke

notation.

Shapiro’s emphasis on stroke notation involves using a
string of n strokes on the tape of a Turing machine (TM) to
denote the natural number n. Championing Kleene’s confla-
tion of (A) and (B) implies acceptance of Shapiro’s nuanced,

extended version of Church’s thesis.

Remark 2. A minor distinction between Shapiro and Kleene
is that Shapiro uses n strokes on a tape of a TM to denote
the natural number n, while Kleene uses n + 1 tallies to

represent n.

We argue that, while Shapiro’s corrective stipulation
regarding notation is a commendable start, it remains incom-
plete. To address this, we will delve deeper into Kleene’s
1967 exposition, particularly his incomputability theorem
concerning the Halting Problem. We contend that this theo-
rem requires a more substantial correction.

Our aim is to first scrutinize the mathematics of Shapiro
(1982) and then criticize that of Kleene (1967). We will

demonstrate that, at times, Kleene deliberately intertwines
his semantics with his syntax, such as the number 2 with its
notation on the tape of a TM, in accordance with Shapiro’s
explicit reference to an extended version of Church’s thesis.
However, we will also show that there are instances where
Kleene completely overlooks this conflation, necessitating a
technical amendment on our part.

We will conclude that Shapiro’s computability is sound,
whereas Kleene’s proof by contradiction regarding incom-
putability relies on an unstated assumption stemming from
his oversight. Upon reflection, we will clarify that Kleene’s
hidden assumption falls outside mathematics according to

his own criteria for what constitutes a proof.

Outline

Our purpose is not to prove a new theorem, but to
reassess modern incomputability theory through the lens
of Kleene’s 1967 framework. The remainder of this paper
is organized into five sections and an appendix. First, we
begin with an exemplum illustrating the diverse interpre-
tations of computability theory’s foundations (Section 2).
Certain strong statements in the exemplum do not represent
our personal views. Second, we introduce four tenets and a
synopsis to orient the reader (Section 3). Third, we scruti-
nize Shapiro’s seminal 1982 account of acceptable notation
(Section 4). Fourth, we criticize Kleene’s incomputability
theorem from 1967 (Section 5). Fifth, we present our con-
clusions (Section 6). Additionally, Appendix A clarifies
the distinction between ‘descriptive’ and ‘prescriptive’ as
they are used in this paper in relation to symbolic logic and
Chomskian automata.

Specialists in mathematical logic may begin with the
synopsis in Section 3.3, and then immediately proceed to
Section 5, where we isolate the internal error in Kleene’s

framework.

2. Exemplum

There we sit—my wife, our daughter, and I—in the
office of the toe surgeon. Meticulous measurements are
being taken of her 14-year-old toe, every angle noted with
precision, while the surgical plan unfolds in detail. It feels
reassuring, almost comforting: science, at its most elegant,

in action.
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We discuss a range of possible outcomes—both short-
term and long-term. Each scenario is laid out with clarity,
its advantages and drawbacks transparently explained. Even
the risks, including the rare but real chance of surgical error,
are addressed with refreshing honesty. Photographs of her
current toe are placed beside digital projections: simulations
of what it might look like right after the surgery, five years
down the road, and even two decades into the future.

My wife, who has some background in the field, oc-
casionally steers the conversation into technical territory.
Everything feels under control. Everything makes sense.

Until, that is, the head surgeon walks in.

With a calm but curious tone, he introduces a surprising
limitation. While he can adjust our daughter’s toe by 2.5
or 2.6 millimeters, an exact shift of 2.55 mm, he explains,
is unattainable. “It is because of an impossibility result in
logic,” he says. “The halting problem. That level of precision
would require an incomputable computation.”

He says this without a hint of irony.

And just like that, I stand up. Quietly, but with resolve,

I gather my wife and daughter, and we leave.

Remark 3. It is hard to imagine even a single reader taking

the side of the toe surgeon at this early point in the narrative.

“Wait, wait!” the toe surgeon calls after us.
“You do admit that there are computable and
incomputable functions, right? You studied
logic yourself, after all.”

“Yes,” I reply. “In theory, there are both. But
even computable functions are physically in-
computable.”

He squints. “Huh?”

“Take the identity function,” I say. “Totally
computable in theory. But try executing it on
an input that’s too large.”

“Huh?” he repeats. “Are you seriously suggest-
ing that a finite machine implies a fundamental
limitation? That’s absurd. If needed, I can sim-

ply build a bigger machine.”

Remark 4. At this point, it is easy to imagine multiple read-

ers siding with the surgeon.

“Not in the real world,” I say. “Physics won’t

let you.”

“Excuse me?”

At that moment, the surgeon’s teenage son strolls into
the room. He throws his father a sideways look, then, with a

calm but pointed tone, jumps in on my side:

“Any automaton from the Chomsky hierarchy
is (or, rather, resembles) a monolithic system,
tied to a global clock. When its state space gets
too large, modern physics pushes back.
General relativity, quantum mechanics—they
do not allow for arbitrarily large, synchronized
computation. As the size of the practical re-
alization of the automaton increases, signal
propagation would need to approach infinite
speed to maintain a coherent global state at
each clock tick. But physics caps that with the
speed of light.

So, any real-world implementation of a suf-
ficiently large logic engine has to use asyn-
chronous, distributed components—each with
its own local clock and state. There is no true
‘global’ state anymore. Scholars like Carl Petri
recognized this decades ago and proposed new
models of computation to deal with it[2%-211,
But most people—yourself included, dad—are
so enamored with the Universal Turing Ma-
chine, as if it were sacred. Turing himself was
more pragmatic.”

The surgeon glares. “Why must you always
be so difficult, son? I am not talking about
physics—I am talking about pure logic.”
“There is no problem, then,” the teenager and
I reply in unison. “But if you are referring to
real-world equipment—and toes—you cannot
pretend this is just a matter of logic.”

The surgeon stares in disbelief. “Are you se-
riously claiming that incomputable functions
can be computed?”

“We are saying that, in the physical world,
both computable and incomputable functions
are only ever approximated. Sometimes it
is useful to model your equipment’s behav-
ior as a Turing computable function. Other

times—especially in distributed systems—you
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will want to work with Turing incomputability,
too.”

The surgeon throws up his hands. “So what do
you want me to do? Operate on your daugh-
ter’s foot using a Turing machine or with the
incomputable gadget you are talking about?”
I smile calmly. “Neither is possible. You keep
equivocating physical computability and Tur-
ing computability. I believe we will be seeking
footcare elsewhere.”

“You fail to appreciate logic!” he shouts after
me.

Outside, as the door clicks shut behind us, my
daughter glances up and whispers, “Did that
argument with his dad really have to happen?
The son was kinda cute.”

I grin. “He is not just cute, sweetheart. He
also understands that his father confuses Aris-

totelian and Platonic reasoning.”

Remark 5. A4 gentle introduction to the interplay—and
tension—between Aristotelian and Platonic modes of reason-
ing in the context of computability is provided in Daylight!?*] .
The author acknowledges having confused both perspectives
and holds the view that many figures within computer science

do the same.

That night, my daughter dreamed of the words the sur-
geon’s son and I had spoken in unison:

“We argue that, in the real world, both com-
putable and incomputable functions can only
be approximated. In certain contexts, it is use-
ful to model your equipment’s operation as a
computable function; in others—particularly
with distributed, asynchronous components—
it is common to consider incomputable ones

as well.”

Earlier that month, she had studied Tony Hoare’s work
on formal verification, including his formalization of “fair-
ness” in distributed systems—a concept that, intriguingly,
ensures (mathematical) behavior beyond the reach of Turing
computability. She had begun to suspect that software engi-
neers sometimes rely on frameworks that quietly transcend
the limits of classical computability.

“

Remark 6. A technical synonym for “fairness” is finite

delay, discussed by Cardone!?3! .

And yet, something tugged at her mind. Through count-
less conversations with me, she had indeed come to regard
the Church-Turing Thesis (CTT) less as a law of nature and
more as a hypothesis about how humans conceptualize algo-
rithms. Even so, she found herself repeatedly drawn back to

a more physical interpretation:

“I cannot think of a single example of a non-
Turing-computable function f that can be reli-
ably computed by a physical process—at least
over a sufficiently broad domain. If someone
could provide such an example, I would be
genuinely intrigued. But if no one can, that in
itself is striking—perhaps the CTT does, in the
end, hold true after all.”

Is this reasoning sound? In her sleep, she murmured:

“On the one hand, I am more convinced than
ever that the CTT says nothing definitive about
physics. On the other hand, I find myself con-
tinually searching for a physical process—and
in its absence, I am tempted to accept the CTT
after all. Is that not a contradiction? Help!”

Just then, the surgeon’s son appeared in her dream and

whispered:

“Even the identity function cannot be reliably
translated into a physical process. Once we
accept this, the implication becomes clear: the
CTT says far less about physics than computer
scientists often suggest—and whether or not
it is mathematically disproven has no direct
impact on physics or engineering.”

Thrilled, she exclaimed: “So, the CTT could
have been quietly disproven many times—yet
mainstream computer scientists refuse to ac-
knowledge it?”

“Exactly,” he replied. “There is a long tradi-
tion of independent thinkers publishing on this.
See, e.g., the three papers 2726 for a small sam-
ple. I find Doukas Kapantais’ recent work es-
pecially intriguing?7?%]. He outlines a model

of computation that is irreducible to the Turing
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machine model, yet still satisfies Hilbert’s crite-
ria. But do not expect a revolution in physics—
because the CTT simply does not belong there.
However, engineers and physicists might still
find such conceptual advances relevant in the
long term.”

The next morning, my daughter asked me:
“The surgeon mentioned the ‘halting problem.’
But what does it actually mean according to
you?”

I smiled. “In the context of your toe? It is pure

intellectual self-gratification.”

I explained that the halting problem originates in
mathematical logic—often repurposed as intellectual win-
dow dressing. It gained prominence when logicians, long
marginalized, found relevance with the rise of computers
in the 1940s. They leveraged Turing’s work on symbolic
machines and computational limits to frame the emerging
field of computing as a theoretical achievement—much more

a triumph of logic than of engineering. I continued:

“In subsequent decades, the first generation
of ‘computer scientists’ rewrote the history of
their field. (Compare, for instance, Davis his-
tory building*”! with that of Priestley**! or
Daylight ') Today, computers are often pre-
sented as logic engines, much like dice are re-
garded as purely mathematical objects, or plan-
etary motion as mere differential equations.”
“But isn’t that way of thinking useful? You said
so yourself last week,” my daughter pointed
out.

“True,” I conceded, “but only if you recog-
nize that it is not always applicable. When dis-
cussing computability, the surgeon frequently
conflates the model with the thing-in-itself.
Now, if he explicitly insists on blurring the
categorical realms of mathematics and physics,
then I propose he advocates for an Aristotelian
realist philosophy of mathematics. The best
guidance I can offer is to direct him to James
Franklin’s work 3], However, as Franklin clar-
ified to me in correspondence, this would re-
quire abandoning core tenets of Platonist set

theory. And without that framework, the diago-

nal argument underpinning the incomputability
of the Halting Problem collapses.”

Remark 7. Linnebo and Shapiro’s argument®¥ may chal-
lenge this line of reasoning, yet our forthcoming work aims
to expose its limitations—even in light of further develop-
ments akin to those presented by Cook3¥. These ongoing
dialogues underscore the contested and continually evolving

;

status of computer science’s so-called “fundamentals.’

I continued: “So, either you embrace a
neo-Aristotelian guise of philosophy with-
out preaching impossibility results (as we
teach them today), or you follow Hilbert and
emancipate mathematics from physics. These
thoughts are, on my reading, crisply formu-
lated by Paul Henry:”

The machines we have considered here, the
combination of the Euclidean straightedge and
compasses, Descartes’ machine, and the Tur-
ing machines, have all of them had something
to do with the foundations of mathematics. 1
have insisted upon the fact that those machines
have had a theoretical function and that there
was no need to materially construct them for
them to be operational from that point of view.
Furthermore, I said that in reality, they can
not be constructed. Now, I can add that it is
precisely as “machines impossible to materi-
ally construct” that they give rise to impossible
problems'™®] (p. 121, our italics).

The next day, on their first date: “Still, you sh-
ould be careful with that,” Marcus—the surg-
eon’s son—cautioned my daughter when, ins-
tead of watching a movie on their first date, they
ended up debating logic and computer science.
“Careful with what?” Helena asked.

“If you view the CTT more as a hy-
pothesis about how humans conceptualize
algorithms—rather than a claim about phys-
ical computation—you are still circling back
to physics,” he cautioned.

“Oh, I see, because a conceptualizing person
quickly brings us to the person’s brain, and

thus back to physics,” my daughter exclaimed.
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“Perhaps that is why computer scientists equate
not just computers, but also human brains, to
Turing machines. How convenient. So much
for open-mindedness [3¢).”

“The irony,” Marcus continued, “is that nei-
ther Turing nor Godel, upon closer inspec-
tion, valued such extreme algorithmic think-
ing[37-38]_Jet alone today’s cognitive scien-
tists. The human brain (including a software
engineer’s) is not necessarily a Chomsky au-
tomaton, though contemplating such an equiv-
alence can be useful in well-defined contexts.
Stanislas Dehaene’s books are worth reading

on this.”

Remark 8. In this regard, Peter Kugel advocates for
Putnam-Gold machines (and even more powerful machines)
rather than standard TMs in the study of the mind s machin-
ery. On the one hand, he aligns himself with the intellectual
positions of Turing and Godel and cites Stanislas Dehaene
as a potential contemporary supporter. For two other cases
in point, see Bringsjord and Arkoudas3° and Longo™". On
the other hand, Kugel also recognizes that many colleagues

in computer science do indeed favor the standard TM!*#2]

3. Four Tenets and a Synopsis

The preceding exemplum is intentionally tangential to
the main content of this paper; it underscores the potential for
strong disagreement among our readers regarding the foun-
dations of modern logic and theoretical computer science.
For instance, consider the very notion of the Turing machine.
As Curtis-Trudel highlights in a recent survey, perspectives
diverge sharply on this matter*3. Piccinini, for example,

asserts:

The tape [of the TM] and processing device
are explicitly defined as spatiotemporal com-
ponents“ (pp. 119-120).

Curtis-Trudel further examines the “Turing-machine
realisism” advocated by Copeland and Shagrir, who posit an
“extra ontological level ... with Turing machines ‘having’
causal features” ] (p. 234). In stark contrast, others inter-
pret the TM as a purely abstract model. Rescorla articulates

this view clearly:

To describe a physical system’s computational
activity, scientists typically offer a computa-
tional model, such as a Turing machine or a
finite state machine. Computational models
are abstract entities. They are not located in
space or time, and they do not participate in

causal interactions ! (p. 1277).

In short, there is no consensus on whether a TM is
Aristotelian, Platonic, or something else entirely. Given this
divergence, it is hardly surprising that scholars might project
differing interpretations onto historical figures like Turing,
Church, and Kleene.

Moreover, since our audience spans logicians and en-
gineers, we recognize that not all readers will readily accept
the four tenets underlying this paper. For transparency, we

state these tenets at the outset.

3.1. Two Direct Tenets

To frame our first tenet via the following proposition—
where an “infinite abstraction” is best understood as the
mathematical idealization of an infinitely long tape—it is
helpful to recall that Putnam-Gold machines (whose details
we can set aside) compute a wider class of number-theoretic

functions than standard Turing machines.

Proposition 1. No finite experiment in the real world can fal-
sify all the beliefs underlying X, where X refers to a model
of computation that relies on an infinite abstraction such as
Putnam-Gold machines and standard TMs.

The reader should note that we are not suggesting that
a finite state machine (FSM) is computable while a Turing
machine (TM) is not. Our point is rather that in the physi-
cal world of engineering, infinite abstractions are only ever
approximated with finite precision.

Two detailed remarks can now be made in connection
with Proposition 1. First, Peter Kugel correctly cautions that
no finite experiment can demonstrate that human minds are
equivalent to, say, Putnam-Gold machines rather than stan-
dard TMs. In this regard, he paraphrases Marvin Minsky as
follows: “There is no evidence for this, for how could you
decide whether the mind or a physical device computes an
uncomputable predicate?”*’! (p. 175). Second, Kugel then
responds to Minsky, thus:

109



Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

You can’t. But that does not mean that one
might not choose uncomputable models any-
way, much as one might choose the infinite
(Turing Machine) models, to which most of
Minsky’s (1967) book is devoted, over the
more finite (Finite Automaton) models, even
though one cannot prove, on the basis of finite
evidence, that any given physical system is not
one of the latter*’! (p. 175).

Regarding our second tenet, we ask our audience to
be skeptical of historical claims promoted by key figures in
the field and open-minded about those written by historians.
For instance, Kleene, a prominent member of the Princeton
school, offers an interpretation of Alan Turing, whom he did

not know personally. Kleene writes thus:

Turing’s machine concept arises from a direct
effort to analyze computation procedures as
we know them intuitively into elementary op-
erations. Turing argued that repetitions of his
elementary operations would suffice for any
possible computation (p. 233, our empha-

sis).

However, writing as a historian, the present author
proposes a markedly different perspective on Alan Turing’s

broader views on computing during the period 1932—-1948:

While computer science takes Turing’s univer-
sal machine as the limit of all achievable forms
of computability, it was explicitly perceived as
banal by Turing in 1948. From his perspective,
a creative person is significantly more than that
which a fixed symbolic logic or a universal Tur-

ing machine can offer*! (p. 546).

Our evolving personal understanding suggests that Tur-
ing may have become open to advocating for what would
later be known as Putnam-Gold machines over standard TMs
in relation to the human mind and/or engineered computers,
whereas Kleene would not have.

In this paper, we do not seek to advocate for any par-
ticular stance—though our personal biases may occasionally
surface—when examining the expositions of Shapiro and
Kleene, in Sections 4 and 5, respectively. Instead, our central
assertion is simply that if Kleene did equate the human mind

(such as that of a software engineer or the director of a com-
puting laboratory) with a tally-based TM, then this should
be explicitly reflected in his theoretical framework.

3.2. Two Surprising Tenets

Closely related to our second tenet are our two final
tenets. In general terms, we urge our audience to be cautious
of universal claims made by theorists about engineering. We
posit that engineers who are well versed in logic are likely
to disagree with Kleene’s assertion that the societal “sig-
nificance” of an incomputable number-theoretic function

() “comes from the Church-Turing thesis,” by which:

“computability in Turing’s sense agrees with
the intuitive notion of computability. Accept-
ing the thesis, as most workers in [maths’]
foundations do, the director of a computing
laboratory must fail if he undertakes to design
a procedure to be followed, or to build a ma-

chine, to compute this function ¥(a).”

These words are quoted from Kleenel (p. 245).
Kleene’s perspective on the incomputability of the function
() will be scrutinized in Section 5.

Let us zoom in on our third tenet, potentially the most
surprising for logicians and theoretical computer scientists.

Software engineering, we assert, operates beyond a
countable realm of mathematical discourse. The uncountable
realm of creative engineering is central to Francky Catthoor
and his collaborators 849 and is revisited in Section 4.5.
For now, it suffices to highlight that there are uncountably
many ways for an engineer to represent a number-theoretic
function with a machine. Only two such possibilities (ar-
rows) are depicted in the following diagram with regard to

function ¢, ().

®;0
7\

M;

semantics

syntax Ny,

In other words, engineers are inclined to examine a
broad family of listings, including listing {M},_, and list-
ing {N, },,- While the first listing fits in Kleene’s tally-
based account of TMs, the second listing fits in, say, a nar-
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rative in which numbers are represented with bits 0 and 1.
There are uncountably many such listings. Each member in
a listing is a machine specification (or a program text). Each
arrow in the diagram represents a sequence of consistent
design choices.

Crucially, only after the engineer selects specific ma-
chines M; and Ny, (and, hence, specific notations) can the
theorist describe the translation from M; to Ny, using, say,
a tally-based Turing machine (TM). However, the theorist
cannot prescribe—cannot exhaustively predetermine, via
one of his countably many tally-based TMs—the choices
available to the engineer in future software development.
The ensemble of all tally-based TMs fails to fully encompass
the engineer’s design space, which includes uncountably
many arrows—of which only two are shown in the diagram.
Readers who consider ‘descriptive’ and ‘prescriptive’ syn-
onymous at this point are encouraged to consult Appendix
A for a clarification of this distinction.

The essence of mathematical engineering lies in pre-
diction, control, and anticipation of the engineering activity
at hand. Kleene’s immediate focus on a single notation—
tally-based notation—stands in stark contrast to the practical
demands of engineering practice. More importantly, this
paper argues that Kleene’s incomputability result requires
substantial qualification to maintain logical coherence, much
less engineering applicability.

Hence, coming back to the theorist, he must explic-
itly stipulate whether to permit or exclude an uncountable
number of functions mapping semantics onto syntax. Subse-
quent reasoning heavily relies on this assumption, especially
when employing a proof by contradiction. It will turn out
that, as theorists, both Shapiro and Kleene adopt a mathe-
matical perspective on industrial practice that is inherently
tally-based and algorithmic. In their view, the creative en-
gineer, who bridges number-theoretic functions (semantics)
and program texts (syntax), is an automaton, operating me-
thodically within a tally-based realm. Only the director of
such a methodical laboratory must indeed fail when attempt-
ing to compute Kleene’s incomputable function ().

Finally, we present our fourth tenet—the elephant in
the room: the notion, reminiscent of 21st-century analytic
philosophy, that semantics and syntax are 100% separable,
as assumed in the previous diagram. Let us suppose that

all of software engineering can be captured a priori within

a countable realm of symbolism after all. Even then, we
take issue with Kleene’s interpretation of his incomputable
function (). Kleene believes that his function () is in-
computable regardless of the syntactic choices made by an
engineer. However, we will argue that the mathematical sig-
nificance of Kleene’s function () only emerges when his
own syntactic conventions, Ry and C'x, are explicitly ad-
hered to, as opposed to those employed by one of his equally
algorithmic-minded colleagues.

Remark 9. Kleenes conventions, Ry and Cx—denoted
by “K” for “Kleene "—are detailed in Section 5. For now,
it suffices to associate Ry with a mapping that relates the
natural number n to n + 1 tallies on a TM s tape, while the
coding method C'i; corresponds to Kleene's specific choice

of Godel coding, ensuring compliance with R.

Kleene defines his function ¢() in terms of his fa-
mous predicate T'(i, a, x). This predicate does not convey
Kleene’s intended meaning unless the reader consistently
applies Kleene’s conventions, Ry and Ck, to the natural
numbers ¢, a, and z. The key point is that Kleene s semantics
hinges on his specific choices regarding syntactic TMs. The
director of a computing laboratory is unlikely to endorse
Kleene’s interpretation of incomputability unless his engi-
neers function merely as rote technicians, adhering strictly
to the conventions Ry and Ck.

To summarize, while Shapiro emphasizes that number-
theoretic computability is relative to notation (i.e., syntax),
we will argue, contrary to Kleene, that number-theoretic
incomputability is also merely a notation-dependent con-
cept. The notion of absolute incomputability, as presented in

Kleene’s Mathematical Logic, is an illusion.

3.3. Synopsis

We close this overview with a synopsis aimed at read-
ers thoroughly familiar with Kleene’s computability theory.
Those taking a first pass through the paper may comfortably
skip it.

On a comparison between Cantor’s diagonal argument
and Kleene’s “proof,” we posit that Cantor does not rely
on any specific ordering of the number-theoretic functions.
Cantor proves that there are more such functions than natural

numbers. For his reductio, assume an ordering of them—any
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ordering—say, ¢, ¢1, P2, . . ., and then define the function

$(n) = ¢n(n) + 1.

The function () cannot be among the ordered func-
tions. Change the ordering, and a function with the same
property pops up again. Ergo, no mapping from natural
numbers to all number-theoretic functions exists.

Compared to Cantor’s line of reasoning, Kleene’s 1967
proof introduces a subtle but crucial difference: Kleene’s
choice of notation for numbers (and consequently, Godel
numbers and codes for TMs too) appears essential to the in-
computable function constructed. This stems from Kleene’s
bijection between partial recursive functions and TMs, which
proceeds by first fixing an ordering of TMs and then assign-
ing partial functions to them. The resulting incomputable
function 1 ()—defined via the predicate T'(¢, a, x)—arises
specifically from Kleene’s representational conventions Ry
and C'k.

The fact that it is this specific function ¢)()—a seman-
tically independent Platonic function that, in itself, is not a
“function” of any method of representation of it—that comes
out incomputable depends on the specific way Kleene repre-
sents natural numbers. Adopt one of infinitely many other (in
fact, uncountably many other) methods on how to represent
natural numbers, and () might turn out to be computable.
Of course, another function will come out incomputable rel-
ative to the new method, but does this matter? For the lab
director, the answer is no. His goal is to obtain an effective
method to compute ().

To recapitulate, the set of ordered pairs that corresponds
to the Platonic function () remains the same no matter how
we choose to refer to the function(s) that generate it. The
implication is that the lab director is free to endorse another
method for representing natural numbers and hopefully ef-
fectively compute ().

In retrospect however, is there no caveat to the line of
reasoning just presented? Recall that Kleene’s normal form
theorem states that every partial computable function can be
expressed using primitive recursive predicates together with
one application of the Minimization operator. Might, then,
Kleene’s normal form theorem not undermine the preceding
discussion? After all, the class of computable functions is
rigorously defined, is it not? Yet we appear to be suggest-
ing that Minimization could make the very same function

computable under one notation while incomputable under
another.

To appreciate why there is no caveat, it is essential to
recognize that Kleene’s normal form theorem—and, more
broadly, his entire notion of computability—is formulated
within his framework of tally-based TMs. Although theorists
frequently invoke the normal form theorem to justify sweep-
ing claims about Turing computation, such claims tacitly
depend on an elision between Church’s and Turing’s the-
ses: the natural number n is silently identified with its tally
representation of n + 1 tallies. In other words, the result con-
cerning Minimization does not apply uniformly across the
uncountably many possible notations. Thus, any preference
for a specific countable subclass of notations over others re-
quires an explicit declaration. This declaration—often tacitly
assumed by logicians—ought to be clearly acknowledged by
our critics when pressed, and made explicit from the outset of
any reductio ad absurdum argument concerning Kleene-style

incomputability.

Remark 10. Our position aligns with, and extends, San
Mauro’s exposition!'?]. Although we endorse Cantorian
mathematics in this article, it should be noted that Jacquette s
critique!’! extends even to Cantor. We are currently not in a
position to engage with Jacquette s arguments in technical
detail.

4. Shapiro (1982)

Shapiro’s research interests overlap with the distinction
between theoretical computability and physical computabil-
ity. His concern is that “mechanical devices engaged in com-
putation and humans following algorithms do not encounter
numbers themselves, but rather physical objects such as ink
marks on paper”[”l (p. 14). Shapiro continues by asserting
that a distinction must be made between natural numbers

(semantics) and their string representations (syntax):

[S]tricly speaking, computability applies only
to string-theoretic functions and not to number-
theoretic functions. That is, a string-theoretic
function is said to be computable iff there is an

algorithm that computes it!’! (p. 14).

We discuss Shapiro’s definitions in Section 4.1, some
of his theorems in Section 4.2 and Section 4.3, and scruti-
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nize his notion of “knowing a notation” in Section 4.4. We
pivot from Shapiro to Kleene in Section 4.5. Despite our
various critical comments from an engineering perspective,
we regard Shapiro’s theory-building as an exemplar par ex-

cellence.

4.1. Buildup

An example of notation is stroke notation, in which
a numeral n is a finite sequence of strokes, i.e., a string of
strokes. It denotes the natural number, n, of strokes it con-
tains. Shapiro defines a “notation d” with Definition 1. To
begin our discussion, we emphasize a seemingly innocuous

adjective in bold.

Definition 1. A notation d consists of a finite alphabet, a
solvable class of strings on this alphabet, called the class of
numerals, and a convention which assigns to each numeral x
a natural number d x, called the denotation of x. Shapiro!”
(p. 14), our boldface.

While Shapiro’s current buildup aligns with the mathe-
matics used in many engineering disciplines, we contend—
merely for the sake of argument—that its applicability to

modern internet encryption may be limited.

Example 1. The internet company Cloudflare believes it
generates random strings via a physically indeterminate pro-
cess, involving lava lamps. A news update from Cloudflare

reads as follows:

As one might expect, lava lamps are consis-
tently random. The “lava” in a lava lamp
never takes the same shape twice, and as a
result, observing a group of lava lamps is a
great source of random data. To collect this
data, Cloudflare has arranged about 100 lava
lamps on one of the walls in the lobby of the
Cloudflare headquarters and mounted a cam-
era pointing at the lamps. The camera takes
photos of the lamps at regular intervals and
sends the images to Cloudflare servers. All
digital images are really stored by computers
as a series of numbers, with each pixel having
its own numerical value, and so each image

becomes a string of totally random numbers

that the Cloudflare servers can then use as a
starting point for creating secure encryption
keys3Y.

Problem 1. Internet cryptographers at Cloudflare do use
a class of strings from a finite alphabet that, arguably, is
not solvable—at least within our evolving understanding of
what ‘solvable’ means according to Shapiro. As the previous
example illustrates, the cryptographers cannot effectively
enumerate any non-zero number of strings a priori; that is,
without first carrying out the corresponding enumeration in

the real world of lava lamps (i.e., a posteriori).

The translation—from n strokes to the random string
generated by the n-th lava lamp, with n < 100—can only be
provided after the physical process at hand has been carried
out on a specific day at Cloudflare. A cryptographer can
describe this translation, but cannot prescribe it, with one of
countably many predefined Chomskian automata.

Also, when we allow the parameter n to be replaced
with any natural number, thereby embracing an infinite ab-
straction akin to that of TMs, Cloudflare activity on any
given day remains indeterminate until the day concludes. A
precise symbolic description can only be established once
the process in question has actually been carried out.

While at least one of countably many stroke-based TMs
can both prescribe and describe the addition of any two (prop-
erly encoded) numbers, or compute the shortest path in any
given (finite) graph, the same does not hold in general for
Cloudflare’s activities related to lava lamps. This is why we
assert that Cloudflare operates with a class of strings from a
finite alphabet that remains unsolvable within our reading of
Shapiro’s stipulations.

Putting aside Shapiro’s innocuous adjective “solvable”
and Problem 1 for now, let us continue to follow Shapiro’s
theory building. His next step is to define a number-theoretic
function f; based on notation d and to establish a bijection

between numerals and numbers.

Definition 2. Let S be the numeral class for a notation d; let
N be the class of natural numbers. Each string-theoretic
function f . S — S has a number-theoretic counter-
part fq : N = N relative to d, such that fq(d x) = d f(x).
Shapiro!”l (p. 15).
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“Notice that if the convention of d is not one
to one, then f; may not be well-defined and
that if the convention of d is not onto then fy
may not be defined at every number. /¢ is as-
sumed, therefore, that a notation convention is
a bijection from S to N.”—Shapiro!”! (p. 15,
our emphasis).

Alas, the professional engineer will, more often than
not, want redundancy built into the notation, resulting in the

following problem.

Problem 2. A4 natural number n should have more than one
string representation, rendering the notation d non-bijective.
This fault-tolerant property, which prevails in Shannon's in-
formation theory and coding theory in particular, counters

Shapiro’s assumption.

However, in this paper, we shall fully adhere to
Shapiro’s assumption that a bijection is operational. There-
fore, we set aside Problem 2 as well. Consequently, we can
appreciate Shapiro’s next move in which he introduces the

inverse of notation d, as follows:

Definition 3. Let d : N —S be the inverse of the conven-
tion of d. If F' : N — N is a number-theoretic function, let
Fd .S — S be its string-theoretic counterpart relative to
d; thatis: F4(d X) = d F(X). Shapiro!” (p. 15).

All of this effort is directed towards achieving mathe-
matical elegance (in a non-pejorative sense) in the form of
two commuting diagrams, presented in the following figure,

which is of our making.

fa

dx —>

f Ty ’

f _
x —* f()|d

The top row represents natural numbers, while the bot-
tom row shows their corresponding numerals.
Accompanied by Definition 4, Shapiro’s endeavor al-

lows for the derivation of powerful theorems in the next

section.

Definition 4. If F' is a number-theoretic function, we say
that F is computable relative to d iff the string-theoretic F*
is computable—iff there is a string-theoretic algorithm that
computes F?. Shapiro!”l (p. 15).

4.2. Theorem Proving

When it comes to his theorems, Shapiro initially makes
three insightful observations. First, each constant function is
computable relative to every notation. Second, the identity
function is computable relative to every notation. Third, each
function that differs from one of these at only a finite num-
ber of arguments is computable relative to every notation.
Shapiro then proves the completeness of this list, culminating

in:

Theorem 1. The only number-theoretic functions which are
computable relative to every notation are almost constant
functions and almost identity functions. Shapiro!” (p. 15),

our emphasis.

Theorem 1 aligns with what we expect will be the intu-
itive position for many readers. We include it here to ensure
comprehensive treatment of the subject matter. More interest-
ing for the purpose of this paper is Shapiro’s second theorem
(Theorem 2) and the subsequent commentary, which leads
to his third theorem (Theorem 3).

Theorem 2. Let F' be a number-theoretic function. There
is a notation d such that F® is computable iff there is a per-
mutation T of the natural numbers such that T~' F T is

computable relative to stroke notation. Shapiro!”! (p. 17).

“If one accepts Church's thesis in the form (sim-
ilar to that given by Turing) that a number-
theoretic function is recursive iff it is com-
putable relative to stroke notation, then The-
orem 2 can be more concisely formulated as
Theorem 3.”—Shapiro!”! (p. 17), our empha-

sis.

Theorem 3. There is a notation d such that F® is computable
iff there is a permutation T such that T~Y F T is recursive.
Shapiro!”! (p. 17).
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Starting our discussion with Theorem 2, it is important
to note that uncountably many permutations 7" are under
consideration, meaning there are correspondingly uncount-
ably many notations d. The acceptance of Church’s thesis in
the extended form, which brings us to Theorem 3, does not
collapse the uncountable setting into a countable arena of
mathematical discourse. Instead, it highlights stroke notation
as one viable way for us, theorists and mathematical engi-
neers alike, to bridge the semantic realm of number-theoretic
functions and the syntactic realm of string-theoretic func-
tions. For further reference, we present Shapiro’s extension

of Church’s thesis as a separate definition:

Definition 5. The extended version of Church's thesis states
that, a number-theoretic function is recursive iff it is TM

computable relative to stroke notation.

4.3. Towards Incomputability

As we now examine Shapiro’s brief exposition on in-

computability, we convey the following result:

Theorem 4. There is a number-theoretic function which is

not computable relative to any notation. Shapiro!” (p. 18).

Concerning Shapiro’s proof of Theorem 4, we only
distil a rigorous part that matters to us as an exemplar for the
remainder of this paper. To start, Shapiro provides a simple

definition and a trivial lemma, as follows.

Definition 6. For each number-theoretic function F, let
S(F) be the set of natural number {n | n # 0 and there is
a natural number which has exactly n preimages under F}.
Shapirol”! (p. 18).

Lemma 1. If'T is a permutation of the natural numbers,
then S(F) = S(T~1 F T). Shapiro!” (p. 18).

Shapiro’s proof of Theorem 4 relies, once again, on the

extension of Church’s thesis:

(*) “Note also, by an extended version of
Church’s thesis, that if F' is computable rel-
ative to stroke notation then S(F’) is re-
cursively enumerable in the halting prob-
lem.”—Shapiro["! (p. 18).

The extension of the thesis is crucial, allowing Shapiro
to swiftly transition from stroke notation (syntax) to nat-
ural numbers (semantics), and back again. Subsequently,
Shapiro takes the contraposition of (*) and uses his Theorem
2 to derive the following implication, which we present as a

separate lemma for later reference in this paper.

Lemma 2. [f one accepts the extended version of Church's
thesis (see Definition 5), then we have: if S(F) is not re-
cursively enumerable in the halting problem, then F is not

computable relative to any notation. Shapiro!”! (p. 18).

In contrast to Shapiro-style accounts, which are crafted
with nuance, we will argue in Section 5 and beyond that
Kleene-style narratives fail to consistently mention Church’s
thesis or an extended version of it, in otherwise similar dis-

course pertaining to incomputability.

4.4. Knowing a Notation

After having proved multiple theorems in an uncount-
able setting, Shapiro remarks that several notations consid-
ered so far are “clearly ... not acceptable.” Therefore, “fur-
ther restrictions must be placed on notations,” which, as we
shall see shortly, provide for a countable arena of discourse.
Shapiro expects “the computist” to be able “to write” and “to
read” numbers in the notation at hand. If this is not the case,
then we cannot speak of an “acceptable notation”[’! (p. 18).

Considering our example of the lava lamps once more,
Shapiro’s following stipulation regarding the “use” of the

notation does not sit well with us.

“If a computist does not know a particular no-
tation, then it is hard to see a sense in which
she understands the number-theoretic goal of
an algorithm that employs the notation. If, for
example, an algorithm for addition uses a no-
tation which is not known by a computist and
she is given two numerals in the notation, she
could not know that the algorithm determines
the sum of the denoted numbers. That is, the
computist could not use the algorithm to add
numbers.”—Shapiro! (p. 19, our emphasis).

A cryptographer might initially adopt stroke notation
(or, more realistically, binary notation), which she can indeed
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“use” in Shapiro’s sense. However, her immediate goal is to
swiftly transition, leveraging the inherent unpredictability of
her lava lamps, from original strings (of strokes) to random
strings (of strokes). Subsequently, she applies an algorithm
for addition to various strings, including some of her ran-
dom ones. We submit that the cryptographer does not fully
“know” what she is doing based on our analytical reading
of Shapiro’s postulates on “knowing a notation.” However,
Shapiro’s proponents might argue that the cryptographer re-
tains the ability to manipulate all her strings, understanding
their underlying meaning. Instead of attempting to refute
this point, we continue reading Shapiro’s paper until we find
a stipulation that does not align with the practices of the
cryptographer, according to both Shapiro’s proponents and
ourselves. This leads us to:

Lemma 3. A person knows (or can easily be taught) notation
d iff she knows (or can easily be taught) either an effective
procedure to translate d into stroke notation or an effective
procedure to translate stroke notation into d. Shapiro!’! (p.
19).

Lemma 3 is part of Shapiro’s repertoire of stipulations,
which, in our understanding, serves to collapse the uncount-
able setting of “notations” into a countable arena of “accept-
able notations.” We view Shapiro’s appeal to Lemma 3 as
a technically apt way of endorsing a strong version of logi-
cal determinacy: an individual acquires new notation if and
only if she comes to possess an effective—i.e., a logically
determinate—procedure that takes her to or from the familiar
land of strokes, where n strokes denote the number n. We hy-
pothesize that Shapiro’s computational framework of human
inventiveness qua notation starkly contrasts Alan Turing’s
perspective 361,

At Cloudflare, the translation from n strokes to the
random string generated by the n-th lava lamp is due to an
uncountable-countable collapse: from analogue (lava) to
digital (strings). The central problem lies in the absence
of a symbolic prescription—i.e., an effective procedure in
Shapiro’s sense—to anticipate what a physical computation
of the n-th lava lamp would entail if it were to be actually
carried out. We believe that Shapiro’s proponents concur
with us on the following point: The cryptographer knows
her lava-generated notation—i.e., she knows the translation

from n strokes to the random string generated by the n-th

lava lamp after the process has been carried out—but not in

adherence to Lemma 3.

4.5. Pivoting from Shapiro to Kleene

More importantly, even regarding engineering practices
totally unrelated to cryptography, such as Catthoor et al.’s
work on inventing energy-efficient data structures for multi-

media applications running on hand-held devices!!->48]

, We
interpret Shapiro’s theory as oversimplified. While symbolic
logic may encompass the dos and don’ts of routine engi-
neering procedures, it falls short in an uncountable world of
professional engineering. The theorist must first observe spe-
cific engineering choices within a given spatiotemporal con-
text, made by creative individuals and high-tech equipment,
before proving theorems whose prescriptive force applies,

without further contemplation, only within that context.

Remark 11. In our reading, Ethan Brauer puts it, in a
slightly adjacent setting, as follows: “What can be done
efficiently depends on the technology available, and it is not
a failing of the theory to recognize that dependence” ' (pp.
10507-10508).

To clarify, researchers in the field of energy-efficient
software development are inclined to explore parts of a
panorama of uncountably many notations. This includes
>0 and {N,}, . While the
first listing fits in Shapiro’s stroke-based account of TMs
My, M, ..

which numbers are represented with bits.

various listings, such as {)M, }
., the second listing fits in, say, a narrative in

Each member in a listing is a program text (i.e., a ma-
chine specification). Each arrow in the following diagram
represents a sequence of consistent design choices; that is,
meta-consistent design choices to be more precise, since we
are now in the business of studying multiple ways of how to
transgress the semantic-syntactic divide. Set theoretically,

there are uncountably many such arrows.

specification

<Pj()
PN

program text M; Ny,
Specific machines M; and N}, are functionally incom-

parable in syntactic terms alone, yet they can be compared

116



Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

functionally at the semantical level by specialists—i.e., hu-
mans in the loop—who grasp the conventions of the engi-
neering practice at hand. Both machines compute the same
partial function ¢; () in syntactically incompatible ways.

Consider, for example, a shortest path problem, ¢; ().
On the one hand, this problem is implemented with a two-
dimensional array data structure, cf. M;. On the other hand,
it is also implemented with a linked list data structure, cf. Ny.
The crux is that M; and Ny cannot be compared number-
theoretically without human involvement, i.e., without fur-
ther stipulation from the engineers. For outsiders, this stipu-
lation always comes a posteriori because the design space of
functionally equivalent data structures is uncountably large.

Some carefully selected stroke-based TM can describe,
but cannot prescribe, the conversion from program text M;
into program text Ny. A theorist cannot, in advance, specify
a stroke-based TM that anticipates the engineering choices
Catthoor and his team will make tomorrow. To assume other-
wise is misguided, as the countably many stroke-based TMs
are inherently inadequate compared to the uncountably many
design options available to a creative engineer.

Our broader argument stands: predefined Chomskian
models of computation lack prescriptive authority. The theo-
rist must rely on empirical feedback from engineers to bridge
the gap between uncountable and countable realms of dis-

course.

Remark 12. The assumption that a key activity of Catthoor s
engineering—undertaken by a potentially immortal and cre-
ative human being, and partially illustrated in the previous
diagram—can, in principle, be subsumed under a single
stroke-based TM, reflects a neo-Russellian stance commonly
encountered in theoretical computer science textbooks, a

position we respectfully reject.

We now invite the critic, if not Shapiro himself, to com-
pare the uncountable-countable collapse observed in creative
engineering with Kleene’s comparatively facile line of rea-
soning. Kleene moves from one countable realm to another,
isomorphic one; that is, from recursion theory (semantics)
to Turing machinery (syntax), exemplified by the shift from
a natural number n to its representation of n + 1tallies. The
following excerpt—from Kleene!™ (p. 238), our boldface—

makes this clear:

The business of finding machines can be sys-
tematized by starting from the theory of re-
cursive functions. ... This theory deals with
recursive definitions of functions ... The func-
tions commonly used in number theory are de-
finable by use of such recursions, and proceed-
ing from the recursive definition one can in
a systematic way find corresponding Tur-
ing machines, after first setting up Turing ma-
chines for such simple operations as filling in
with tallies all but the rightmost of a sequence
of blank squares preceded and followed by a

tally, copying a sequence of tallies, etc.

Is it fair to suggest that Shapiro and Kleene share a
common intellectual ground, in that they both assume, at
least implicitly, that Catthoor’s engineering—if not software
engineering fout court—operates within a countable, even
algorithmic, realm (Remark 12)?

Moving beyond these reflections for now, it is Shapiro’s
carefully crafted non-mathematical stipulations, such as
those found, via Definition 5, in the precondition of his
Lemma 2, that we wish to carry forward. Shapiro’s rigor is
precisely what we need to criticize Kleene’s theory building.
Our discord with Kleene is mathematical, not philosophi-
cal, and will become relevant once we enter the realm of

incomputability.

5. Kleene (1967)

In his Mathematical Logic, Stephen Kleene distin-
guishes between number-theoretic functions on one side
(semantics) and TMs on the other (syntax). Therefore, fol-
lowing Shapiro’s commuting diagrams in Section 4.1, we
continue to depict the first category (semantics) at the top and
the second category (syntax) at the bottom in our discourse.

Instead of total functions, Kleene relies on the more
general concept of a partial number-theoretic function. He
treats each “argument” for a partial function as a natural
number, which he “represents” with his “tally marks” ! (p.
235).

Claim 1. The terms “denote” and “represent,” employed by

Shapiro and Kleene, respectively, are synonymous. Likewise

>

for the words “notation” and “representation.’
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Another minor distinction between both authors is note-
worthy. Recall that Shapiro uses n strokes on a tape of a TM
to denote the natural number n. (He uses the null string to
denote 0.) Kleene, however, uses n + 1 tallies on a tape of a
TM to represent n. By sequentially counting all n + 1 tallies
on the tape, the concept of n is then derived within Kleene’s
realm of number theory.

We capture Kleene’s representation with a function,
Ry N —S, where S denotes the set of strings of tally marks.
Schematically, we depict the situation, thus:

natural number 2

RKl

string of tallies 1]

Remark 13. Function Ry is only slightly different from
Shapiro’s d: N —S, i.e., the inverse of the convention of
Shapiro s notation d, where S denotes the set of strings of
strokes (cf. Section 4.1).

Taking a broader view, Kleene’s central query is as

follows:

For what number-theoretic functions are
there computation procedures (or algorithms)?
Briefly: What is the class of “computable”
functions? %! (p. 230).

Although the Platonic undertones in this and other ex-
cerpts from Kleene should not go unnoticed, our concern will
be with Kleene’s reductio ad absurdum proof pertaining to
incomputability. As an informal introduction, Kleene writes
thus:

This intuitive notion of a computation proce-
dure ... is vague when we try to extract from
it a picture of the totality of all possible com-
putable functions. And we must have such a
picture, in exact terms, before we can hope
to prove that there is no computation proce-
dure at all for a certain function, or briefly to
prove that a certain function is uncomputable.
Something more is needed for this™! (p. 231).

What is additionally needed is the notion of a tally-
based TM. To build up toward his tally-based TMs, Kleene

continues:

Hereafter, we may say that something can be
done “effectively”, or that an operation or pro-
cess is “effective”, as a brief way of saying that
there is an algorithm for it (i.e. a decision or

computation procedure) ™! (p. 231).

Altogether, Kleene adopts a methodical two-stage rea-
soning process. Initially, he shifts from natural numbers (top)
to a representation based on tallies (bottom). Subsequently,
he engages in a bottom-up approach, progressing from enu-
merating his tally-based TMs to deriving a corresponding
listing of partial computable functions.

All of this will be necessary for Kleene to make a claim
about incomputability at large. On the one hand, we shall
peruse Kleene’s reasoning with the following question in
mind:

Problem 3. Does a proof of incomputability in Kleene's
countable, tally-based setting have any prescriptive implica-

tions for software engineers?

On the other hand, we will disagree with Kleene’s line
of reasoning on his very own terms.

We are now ready to zoom in on Kleene’s informal com-
mentary and formal buildup. We peruse parts of Kleene’s
prelude (Section 5.1), and highlight his top-down (Section
5.2) and bottom-up (Section 5.3) reasoning. We examine
Kleene’s famous 7" predicate (Section 5.4), which he uses
in his reductio ad absurdum proof (Section 5.5). Finally, we
object to Kleene’s incomputability proof on purely techni-
cal grounds and amend it (Section 5.6). We shall answer

Problem 3 in our discussion (also in Section 5.6).

5.1. Prelude

Kleene, in 1967, and many computability theorists to
date, intentionally merge the following four categories of

theoretical discourse:

1 Computable partial functions
2 Lambda-definable functions

3. General recursive functions
4

Turing computable functions

In order to streamline our forthcoming critique, we will
adopt Kleene’s approach of merging Categories 1-3. How-

ever, we will contest Kleene’s amalgamation of Categories 1
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and 4.

Category | contains number theory (semantics), while
Category 4 contains string-theoretic functions (syntax). In
this regard, recall Shapiro’s explicit reference—e.g., in
Lemma 2—to an extended version of Church’s thesis, i.e.,
Definition 5.

Based on Kleene’s commentary on the status of
Church’s thesis—presented next, from! (p. 232)—we con-
clude with Claim 2.

... Church proposed the thesis (published in
1936) that all functions which intuitively we
can regard as computable, or in his words “ef-
fectively calculable”, are A-definable, or equiv-
alently general recursive. This is a thesis rather
than a theorem, in as much as it proposes to
identify a somewhat vague intuitive concept
with a concept phrased in exact mathematical
terms, and thus is not susceptible of proof. But
very strong evidence was adduced by Church,
and subsequently by others, in support of the
thesis.

Claim 2. On Kleene's own terms, any reliance on Church’s

thesis renders the argument at hand non-mathematical.

5.2. Top-Down

Coming to Kleene’s top-down transition, from natural
numbers to tally marks on the tape of a TM, we emphasize
specific words in bold to accentuate the human element of

the mathematical engineer within his theory building:

[W]e must agree how the argument(s) ... are
to be represented on the tape, and how the
machine is to give us the resulting value of the
function. We shall make the supposition that
all machines to be considered have among their
symbols the tally mark “|”; say it is s;. We
shall represent natural numbers by sequences
of tallies, “|” for 0, “||” for 1, “|||” for 2, ... To
set up the machine and tape to compute for a
given argument a, we shall arrange that: at
the moment 0 the system consisting of a ma-
chine and tape is started off so that the leftmost
square of the tape is blank, a is represented

by tallies on the next a + 1 squares, ...

Continuing from the previous excerpt!®! (pp. 234-235,
our boldface), Kleene writes®! (p. 235, original emphasis)
thus:

In this situation, we say the machine is applied
to a as argument. We say the machine com-
putes a value c for a as argument, if, starting
from this situation at Moment 0, the machine at
some later moment assumes the passive state 0
(“stops”) with a blank and ¢ + 1 tallies printed
on the tape after the a + 1 tallies representing
the argument a, the tape being otherwise blank,

A given machine may compute a value for each
natural number a as argument, or for some a’s
but for others, or for no a’s. If, for each a, it
computes a value ¢ where ¢ = f(a), we say
that the machine computes the function f(a),
and that f(a) is Turing computable.

The crux is that Kleene blends natural numbers (seman-
tics) and tallies (syntax), which explains why Church’s thesis
and Turing’s thesis are the same for him.

To accommodate Kleene’s 1967 exposition and to com-
pare with Shapiro’s extended version of Church’s thesis (Def-
inition 5), which refers to stroke notation, we introduce an

alternative formulation using tallies:

Definition 7. The extended version of Church s thesis states
that, a number-theoretic function is recursive iff it is TM
computable relative to Kleene's convention, Ry, which is
based on tally marks. (Recall Remark 13.)

Additionally, Kleene posits the “fact” that “we get no
larger class of computable functions” when contemplating
TMs that utilize more symbols than merely the tally mark %!
(p. 238). Kleene refers to Chapter XIII in his 1952 treatise 5!
for the mathematical proof. However, here too, Kleene is
implicitly yet crucially depending on an assertion (Definition
7), which is non-mathematical (Claim 2). The implication is

now clear:

Claim 3. Shapiro in 1982 explicitly, and Kleene in 1967
implicitly, rely on an extended version of Church’s thesis

(see Definition 5 and Definition 7, respectively) in their com-
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putability theory. Their outlook on software engineering is

countable by design, in fact, it is even algorithmic.

Our claim is unsurprising, given that Shapiro addresses
precisely this point, albeit without mentioning Kleene in

particular. From Claims 2-3, we also infer:

Claim 4. In retrospect, Kleene's 1967 computability theory

is, on his own terms, not purely mathematical.

We posit that Claim 4 is well known among philoso-
phers of logic, though perhaps not exactly as we present it.

5.3. Bottom-Up

Kleene reasons from his tally-based TMs back to num-
ber theory. In this regard, he introduces another convention,
Ck , which allows him to recast each Turing machine (say,

M;) with a unique machine index (say, 7).

Claim 5. With Kleene's convention Ry for tallies fixed from
the outset, numerous methods exist to consistently generate
a machine index for a function, such as the successor func-
tion f(a) = a + 1. Kleene's specific design choices, which
lead to his particular outcome—index i—constitute only one

coding method, C'r, among several possible methods.

To substantiate Claim 5, we present Kleene’s own
desiderata, which rely on a Turing machine G that com-
putes the successor function®! (pp. 236-237). The letter
“@” presumably stands for “Gddel,” given that the following
exposition is reminiscent of Gddel coding®! (pp. 242243,

original italics, our boldface):

We have seen that the pattern of behavior of
a given Turing machine is determined by the
table for it ...

Rewriting the table for our machine G in this

manner, it becomes:

Machine state Scanned square condition

0 1
1 0C0 1R2
2 0R3 1R9
3 1L4 1R3
10 0Co OR11
11 1C0 1R11

The table for a machine can be written in code
form. Consider the table for G ... let us insert
semicolons at the end of each row of entries,
and commas separating entries within a row,
and then string the entire body of the table
along as one sequence of symbols:

000, 1R2; 0R3, 1RY; 1 L4, L R3;
...;0C0,0R11;1C0, 1R11

This sequence of symbols is the code for the
machine G.

The code for any machine [relative to the cho-
sen representation] can thus be written on a

typewriter with the following 15 symbols:
LCR,;0123456789

Such a code does not begin with the symbol
L. By reinterpreting these symbols [relative
to the chosen representation] as the digits of
a number in the number system based on 15,
we get a positive integer which describes [to
us] the machine table and thence the pattern of
behavior of the machine; call this number the

index of the machine...

Once again, we see Kleene blending Turing machinery
(syntax) and number theory (semantics), but this time he does
so0 via his concocted 15-symbol system and his other design
choices. He chooses, just like Godel, one specific coding
convention, C', instead of entertaining, like the creative
engineer, a family of two or more conventions.

Hinging upon his conventions Ry and Ck, Kleene
is now finally in a position to define a listing of his TMs,
{M},. > accompanied by the assertion that each machine
M; computes a partial function ¢;(). Schematically, we
depict the situation thus:

Y1 ©2
RK and CK | ‘ |
My Mo,

Fact 1. Relying on conventions Ry and C'i, Kleene defines
a listing {M},_, of his TMs and, next, a corresponding
listing {;}, o of his computable partial functions; that is,

each machine M; computes a partial function p;().
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All of this effort aims to achieve mathematical elegance
by creating a mirror image between functions (semantics)
and machines (syntax). Unfortunately, this pursuit will ulti-

mately prove mistaken.

5.4. Kleene’s T Predicate

With conventions Ry and Ck fixed at the outset,
Kleene defines his famous 7'(¢, a, ) predicate in 1. and

his specific number-theoretic function () in 2. as follows:

1. i is the index of a Turing machine (call it “Machine
M;”’) which, when applied to a as an argument, will at
Moment x (but not earlier) have completed the com-
putation of a value (call that value “p;(a)”).

) ¥(a) = wala)+1  if (Ex)T(a,a,x)
' Y= 0 otherwise

These two items are quoted respectively from pages
243 and 245 in Kleenell.

Observe that argument a and moment x are natural num-
bers and that machine indices ¢ and a are Godel numbers
in particular. More importantly, note that Kleene evaluates
his T'(4, a, z) predicate in 1. above as either true or false,
subject to the proviso that machine index ¢ is interpreted in
adherence to Rx and Ck.

For instance, in contrast to a statement such as Pythago-
ras’ theorem, the predicate 7°(100, 200, 300) may hold true
in Kleene’s work but could be false in a treatise in which
TMs operate based on bits instead of tallies. The implication
is that ¢)(a), defined above in 2., strongly depends on Rx
and C'i, even though these syntactic conventions are not
mentioned.

This brings us to the elephant in the room, namely, the

very idea that semantics and syntax are 100% separable:

Claim 6. Kleenes predicate semantics hinges on specific
choices pertaining to his syntax. The T(i,a,x) predicate
does not convey any meaningful information unless specific
syntactic conventions, such as Ry and C, are consistently

employed for the natural numbers at hand.

Using T'(4, a, =) in theoretical discourse requires accep-
tance of an extended version of Church’s thesis (Definition
7). In Kleene’s 1967 exposition, this dependence specifically

amounts to embracing syntactic conventions Rx and Ck.

5.5. Reductio ad Absurdum

Reaching the climax, Kleene then proves, via his list-
ing {M,}, , of TMs and by reductio ad absurdum, that his
concocted function () is not computable. He writes:

Theorem 5. The function v(a) defined [in 2. above] is not
computable. Kleenel® (p. 245).

Kleene’s proof—which, in modern terms, demonstrates
the incomputability of the Halting Problem—proceeds as
follows:

Proof. Suppose 1)(a) were computable; say, machine M,
computes it, so that ¢(a) = ¢p(a) for all a. Substituting
p for a, we have: ¥ (p) = ¢,(p). But since M,, computes
¥(a), we have, for all a, (Ex)T(p, a, z), and in particular
(Ex)T(p,p, ). Using this in the definition of ¢(a), we
obtain: ¢(p) = ¢,(p) + 1. The two displayed equations
contradict each other. O

This proof is quoted almost literally from Kleene!!
(p. 245), but we have added the words “we have” and “we
obtain” to improve the readability.

Consequently, Kleene concludes that () is incom-
putable.

5.6. Anti-Climax

Our disagreement is that Kleene’s proof solely estab-
lishes the incomputability of () within his practice of Rx
and C'x. Recall Claims 4-6. We therefore propose to amend
Kleene’s Theorem 5 as follows:

Theorem 6. The function v (a) defined in 2. above is not
computable relative to Kleene's practice, which is character-

ized by his conventions Ry and C.

To fully appreciate our amendment (Theorem 6), con-
sider one of the uncountably many antagonists of Kleene.
Let us refer to her as Antagonist A. Suppose that Antagonist
A favors using bits to represent numbers on the tape of a TM.
She therefore chooses her own representation, denoted as
R 4, in contrast to Kleene’s tally-based representation Ry .
Her coding convention, C' 4, naturally differs from Kleene’s
convention Cg.

Consequently, she establishes an alternative listing
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{N,} w>o Of machines, accompanied by a corresponding
listing {p },-, of partial functions. Each TM Nj, based
on the binary system, computes some partial function py (),
meaning that each py () is computable relative to conventions
R4 and Cy4.

Pl P2 P3 p1241 18 Y
R4 and Cy \ \ \ |
N1 No N3 Ni241

Besides deriving some incomputable function relative
to representation R 4 and coding Cly, it is conceivable that
some machine, say Ni241, computes Kleene’s own “incom-
putable” function ¢ () relative to R 4 and C 4. This particular
possibility is not invalidated by Kleene’s proof of Theorem

5, as presented earlier. The crux is as follows:

Claim 7. Kleene only proves incomputability relative to
his practice (Theorem 6) instead of practice-independent

incomputability (Kleene's alleged Theorem 5).

Kleene mistakenly believes that his semantics is en-
tirely divorced from his syntactic choices. He firmly embeds
his proclaimed equivalence between Church’s thesis and
Turing’s thesis within his meta-mathematics, as exemplified
by the mirrored relationship between his listing of all com-
putable partial functions and his listing of all tally-based
TMs in his proof of Theorem 5. To be technically correct, he
should mention, like Shapiro, his dependence on an extended
version of Church’s thesis (Definition 7). Likewise, by pro-
jecting a similar mirrored image onto the Antagonist’s ma-
chine listing (a common reaction among computer scientists
upon encountering our critique), Kleene or his protagonist
inevitably invokes an extended version of Church’s thesis
(Definition 7) yet again. Alas, Kleene does not mention this
assumption anywhere in his proof. To be precise, he fails to
acknowledge his reliance on Rx and Ck, thereby rendering
his semantics ambiguous.

Let us now revisit Problem 3: Does a proof of incom-
putability in Kleene’s countable, tally-based setting have any
prescriptive implications for software engineers? The answer
is affirmative if the engineers rigorously follow Kleene’s
facile reasoning, adhering strictly to his practice (cf. Ry and
Ck). However, in even slightly less routine settings, such
as combining Ry and C'x with R4 and C4, the answer is
negative.

For Kleene’s incomputability theorem to hold practi-

cal relevance, the engineer must adhere to the precision and
consistency characteristic of a tally-based automaton, rather
than relying on the creativity and skill prevalent in industry.
Certainly, a theorist can retrospectively describe the do’s
and don’ts of a combined practice, like integrating Ry and
Ck with R4 and C4. However, it is inherently impossi-
ble to a priori prescribe an arbitrary engineering practice,

considering the uncountably many possibilities that exist.

6. Conclusions

The director of a computing laboratory is unlikely to
embrace Kleene’s perspective on incomputability unless he
believes that the mind of an engineer functions like a tally-
based Turing machine. While such a belief is admissible,
Kleene did not explicitly state it as an assumption in his re-
ductio ad absurdum proof. Given that many engineers reject
this assumption, even an amendment to Kleene’s proof lacks
the societal significance that Kleene attributes to it.

For several engineers, notation pertaining to com-
putability in the real world is context-dependent. Conse-
quently, they typically disagree with Shapiro’s 2017 senti-

ment:

It would, however, be unfortunate if ‘accept-
able notation’ itself were context-sensitive and
interest-relative. That would make computabil-
ity, over numbers, a context-sensitive and

interest-relative matter[>3! (p. 276).

The crux is that engineers are hesitant to accept a uni-
fying thesis without scrutiny from industry; while mathemat-
ical aesthetics has a role, it may not come at the expense
of modeling the real world. In this regard, our findings re-
late to Brauer®'l, We have complemented his philosophical
critique by delving into the uncountable realm of software
engineering and challenging Kleene’s mathematics as such.

Mathematically, Kleene aimed to establish a theorem
concerning an incomputable function independent of human
involvement, such as how to represent numbers on a Turing
machine tape. Alas, Kleene’s proof applies only within the
context of his tally-based representation, R, and his coding
convention, C'i. To address this limitation, it is necessary to
introduce an extended version of Church’s thesis as an addi-
tional assumption, alongside Kleene’s initial assumption that

the function in question is computable. Consequently, a cor-
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rected version of Kleene’s reductio ad absurdum proof only
demonstrates that at least one of these two assumptions is
incorrect, rather than proving that the function is necessarily
incomputable.

Although Kleene, like Shapiro, would likely have ac-
cepted the additional assumption as valid, it is important
to note that he believed he was reasoning solely within the
realm of mathematics, with references to Church’s thesis aris-
ing only in the aftermath. He was unaware that his chain of
reasoning inherently relied on Church’s thesis from the out-
set. Since Church’s thesis is non-mathematical by Kleene’s
own terms, it follows that both his proof and our amendment

to it are also non-mathematical.
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Appendix A. Descriptive vs. Prescrip-
tive

In discussing the attribution of law, symbolic logic, or
program text in prescriptive and descriptive terms, the author

offers a three-part classification in his recent Think Piece *!:

1. Governing laws—Prescriptive but not necessarily de-
scriptive; these are authoritative recommendations or
rules intended to guide behavior, though they are not
necessarily followed in the real world.

2. Natural laws—Both prescriptive and descriptive; here
symbolic representations not only prescribe what ought
to occur but also accurately reflect what does occur in
the physical world.

3. Historical trends—Primarily descriptive and, at most,
secondarily prescriptive; they characterize patterns ob-
served over time, with any prescriptive force arising

only retrospectively or incidentally.

Different historical figures have assigned symbolic
logic to distinct conceptual categories. The author sug-
gests that Eddington regarded logic as falling under the first
category—governing laws. Turing, at least temporarily and
particularly in his exchanges with Wittgenstein, aligned with
Russell’s intellectual position and treated symbolic logic as
belonging to the second category—natural laws. Wittgen-
stein, in contrast, rejected both of these views, arguing that
symbolic logic should instead be understood as part of the
third category—historical trends.

Some anonymous readers of a draft version of this pa-
per do not clearly distinguish between the prescriptive and
the descriptive, frequently treating them as interchangeable.
As aresult—and consistent with what the author identifies as
the mainstream view in computer science—they implicitly
adopt the second category: symbolic logic is seen as both
prescriptive and descriptive, the Church-Turing Thesis is

effectively treated as a natural law (cf. the daughter, Helena,
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in the Exemplum), and no substantial distinction is drawn— [12] San Mauro, L., 2018. Church—Turing Thesis, in Prac-

at least in principle—between functional programming and
superficially similar approaches within software engineering.

The standard position rests on an implicit, unac-
knowledged assumption—a neo-Russellian tenet: the be-
lief in an isomorphism between symbolic logic and the
essence of physical reality, between a Chomskian au-
tomaton and the essence of what it is to be a creative
human engineer (see Remark 12), or—closely related—
between notation-independent lambda-definable functions
and notation-dependent Turing machines. This latter con-
flation, between one mathematical realm and another one,
amounts to an equivocation between Church’s Thesis and
Turing’s Thesis, an elision notably made by Kleene in 1967

and by several theoretical computer scientists today.
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