
Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

Philosophy and Realistic Reflection

https://ojs.bilpub.com/index.php/prr

ARTICLE

ACase against Stephen Kleene’s Incomputability

Edgar Graham Daylight

Department of Computer Science, KU Leuven, Box 2402, 3001 Leuven, Belgium

ABSTRACT

In Mathematical Logic (1967), Stephen Kleene addresses a central activity of software engineering through his

introduction of tally-based Turing machines. Yet in doing so, he inadvertently builds a subtle form of impredicativity

into his theory: he implicitly defines the semantics of Turing computability by appealing to the very construct—the

Turing machine—whose legitimacy is simultaneously under examination. Stewart Shapiro, in Acceptable Notation, draws

attention to this tension by uncovering the non-mathematical assumptions that tend to enter Kleene-style computability

proofs, ultimately grounding his critique in what he terms “an extended version of Church’s thesis.” In this paper, we

revisit Shapiro’s concerns but shift the focus to incomputability. We argue that Kleene’s framework relies on a latent

assumption that complicates the contemporary presentation of the Halting Problem. Specifically, Kleene begins with a

notation-dependent foundation: his tally-based Turing machines provide genuine evidence of a limitation internal to that

particular representational system. However, he then moves rapidly from this narrow result to a broad, notation-independent

claim of incomputability. Our critique is that Kleene’s account lacks the necessary conceptual transition from notation-

dependent reasoning to notation-independent conclusions. Once this gap is made explicit, what remains is not a universal

incomputability theorem but an incomputability claim relative to a specific representational choice. This reframing invites

a more careful reconsideration of how the Halting Problem—and, more generally, the notion of incomputability—should

be understood within the contemporary sciences.

Keywords: Kleene; Halting Problem; Notation

*CORRESPONDINGAUTHOR:

Edgar Graham Daylight, Department of Computer Science, KU Leuven, Box 2402, 3001 Leuven, Belgium; Email: egdaylight@dijkstrascry.com

ARTICLE INFO

Received: 4 August 2025 | Revised: 26 December 2025 | Accepted: 6 January 2026 | Published Online: 29 January 2026

DOI: https://doi.org/10.55121/prr.v3i1.658

CITATION

Daylight, E.G., 2026. A Case against Stephen Kleene’s Incomputability. Philosophy and Realistic Reflection. 3(1): 103–125.

DOI: https://doi.org/10.55121/prr.v3i1.658

COPYRIGHT

Copyright © 2026 by the author(s). Published by Japan Bilingual Publishing Co. This is an open access article under the Creative Commons

Attribution-NonCommercial 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0).

103

https://orcid.org/0000-0002-9815-3966

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

1. Introduction

Around 1967, and still today in specialized fields,

skilled and imaginative individuals in software engineering

essentially translate number-theoretic functions (specifica-

tions) into Turing machines (program texts). This form of

engineering [1,2], a specialized subset of broader human-in-

the-loop industrial practices, should not be conflated with

functional programming [3,4]. The latter, rooted in Kleene’s

computability theory, considers only such translations that

are automatable within a fixed symbolic framework.

The countably many automatable translations em-

ployed by functional programmers—or, similarly, by Kleene-

style computability theorists—barely scratch the surface

compared to the uncountably many translations available

to the creative software engineer in industry. Fundamentally,

engineering is not to be equated with automation, nor are

engineers mere automatons—let alone tally-based Turing

machines—in disguise.

Yet in automata theory courses and Stephen Kleene’s

1967Mathematical Logic [5], not only the rote technician—

who operates strictly within a fixed notation—but also the

creative engineer—who has the potential to engage with an

extensive range of notations—are implicitly replaced by the

tally-based Turing machine itself. This paper contends that

Kleene’s 1967 work embodies this substitution, arguing that,

even from a strictly academic standpoint, such a replace-

ment is unwarranted. It results in a form of impredicativity,

wherein the semantics of Turing computability are defined

in terms of the very construct (the Turing machine) whose

legitimacy is under scrutiny.

Our overarching concern has already been

acknowledged—both in practice and in theory. In the realm

of computing practice, Peter Naur offered the following

assessment of software engineering as of 1985:

More generally, much current discussion of

programming seems to assume that program-

ming is similar to industrial production, the

programmer being regarded as a component

of that production, a component that has to be

controlled by rules of procedure and which can

be replaced easily. Another related view is that

human beings perform best if they act like ma-

chines, by following rules, with a consequent

stress on formal modes of expression, which

makes it possible to formulate certain argu-

ments in terms of rules of formal manipulation.

Such views agree well with the notion, seem-

ingly common among persons working with

computers, that the human mind works like a

computer. At the level of industrial manage-

ment, these views support treating program-

mers as workers of fairly low responsibility,

and only brief education [6] (pp. 237–238, our

emphasis).

From a theoretical standpoint, Stewart Shapiro’s Ac-

ceptable Notation [7] underscores the presence of non-

mathematical assumptions embedded in several steps of

Kleene-style computability proofs, culminating in what he

describes as “an extended version of Church’s thesis.” In

our interpretation, Shapiro—perhaps inadvertently—adds

weight to Naur’s broader critique of logico-mathematical

methods, a critique made explicit in a 2011 account [8].

Besides the work of Naur and Shapiro, other con-

tributions relevant to our project have recently come to

our attention, including those of Dale Jacquette [9,10], Jean

Paul Van Bendegem [11], Luca San Mauro et al. [12,13], Paula

Quinon [14,15], and Henri Stephanou [16]. In this paper, how-

ever, our focus is limited to Shapiro’s technical concerns,

albeit with a shift in emphasis from computability to incom-

putability. We argue that Kleene’s 1967 framework harbors

an assumption, reminiscent of the Church-Turing Thesis, that

subtly undermines the contemporary relevance of the Halting

Problem in modern computer science textbooks.

Named after Alonzo Church and Alan Turing, the

Church–Turing Thesis originates from Stephen Kleene’s de-

liberate conflation of (A) Church’s Thesis and (B) Turing’s

Thesis. Kleene elaborated on this in hisMathematical Logic,

as follows:

(A) Church proposed the thesis (published in

1936) that all functions which intuitively we

can regard as computable, or in his words “ef-

fectively calculable”, are λ-definable, or equiv-

alently general recursive.

(B) A little later but independently, Turing’s

paper 1936–1937 appeared in which another

exactly defined class of intuitively computable

functions, which we shall call the “Turing com-

104

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

putable functions”, was introduced, and the

same claim was made for this class; this claim

we call Turing’s thesis.

Turing’s and Church’s theses are equivalent.

We shall usually refer to them both as Church’s

thesis, or in connection with that one of its

three versions ... deals with “Turing machines”

as the Church–Turing thesis.

Remark 1. The previous snippet is quoted from Kleene [5]

(p. 232), original italics, our boldface. We conjecture that

Church, acting as the sole reviewer of Turing’s seminal pa-

per, requested Turing to establish a particular connection be-

tween the latter's automatic machines and his own functions.

In this regard, see Remark 1 in Lucas' historical overview [17].

For two distinct correspondences between raw syntactic ma-

chines and number-theoretic functions, see Burgin [18] or

Daylight [19].

In 1982, Stewart Shapiro revised Kleene’s conflation of

(A) and (B) through his extended version of Church’s thesis,

which we paraphrase [7] (p. 17) thus:

Anumber-theoretic function is recursive iff it is

Turing machine computable relative to stroke

notation.

Shapiro’s emphasis on stroke notation involves using a

string of n strokes on the tape of a Turing machine (TM) to

denote the natural number n. Championing Kleene’s confla-

tion of (A) and (B) implies acceptance of Shapiro’s nuanced,

extended version of Church’s thesis.

Remark 2. A minor distinction between Shapiro and Kleene

is that Shapiro uses n strokes on a tape of a TM to denote

the natural number n, while Kleene uses n + 1 tallies to

represent n.

We argue that, while Shapiro’s corrective stipulation

regarding notation is a commendable start, it remains incom-

plete. To address this, we will delve deeper into Kleene’s

1967 exposition, particularly his incomputability theorem

concerning the Halting Problem. We contend that this theo-

rem requires a more substantial correction.

Our aim is to first scrutinize the mathematics of Shapiro

(1982) and then criticize that of Kleene (1967). We will

demonstrate that, at times, Kleene deliberately intertwines

his semantics with his syntax, such as the number 2 with its

notation on the tape of a TM, in accordance with Shapiro’s

explicit reference to an extended version of Church’s thesis.

However, we will also show that there are instances where

Kleene completely overlooks this conflation, necessitating a

technical amendment on our part.

We will conclude that Shapiro’s computability is sound,

whereas Kleene’s proof by contradiction regarding incom-

putability relies on an unstated assumption stemming from

his oversight. Upon reflection, we will clarify that Kleene’s

hidden assumption falls outside mathematics according to

his own criteria for what constitutes a proof.

Outline

Our purpose is not to prove a new theorem, but to

reassess modern incomputability theory through the lens

of Kleene’s 1967 framework. The remainder of this paper

is organized into five sections and an appendix. First, we

begin with an exemplum illustrating the diverse interpre-

tations of computability theory’s foundations (Section 2).

Certain strong statements in the exemplum do not represent

our personal views. Second, we introduce four tenets and a

synopsis to orient the reader (Section 3). Third, we scruti-

nize Shapiro’s seminal 1982 account of acceptable notation

(Section 4). Fourth, we criticize Kleene’s incomputability

theorem from 1967 (Section 5). Fifth, we present our con-

clusions (Section 6). Additionally, Appendix A clarifies

the distinction between ‘descriptive’ and ‘prescriptive’ as

they are used in this paper in relation to symbolic logic and

Chomskian automata.

Specialists in mathematical logic may begin with the

synopsis in Section 3.3, and then immediately proceed to

Section 5, where we isolate the internal error in Kleene’s

framework.

2. Exemplum

There we sit—my wife, our daughter, and I—in the

office of the toe surgeon. Meticulous measurements are

being taken of her 14-year-old toe, every angle noted with

precision, while the surgical plan unfolds in detail. It feels

reassuring, almost comforting: science, at its most elegant,

in action.

105

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

We discuss a range of possible outcomes—both short-

term and long-term. Each scenario is laid out with clarity,

its advantages and drawbacks transparently explained. Even

the risks, including the rare but real chance of surgical error,

are addressed with refreshing honesty. Photographs of her

current toe are placed beside digital projections: simulations

of what it might look like right after the surgery, five years

down the road, and even two decades into the future.

My wife, who has some background in the field, oc-

casionally steers the conversation into technical territory.

Everything feels under control. Everything makes sense.

Until, that is, the head surgeon walks in.

With a calm but curious tone, he introduces a surprising

limitation. While he can adjust our daughter’s toe by 2.5

or 2.6 millimeters, an exact shift of 2.55 mm, he explains,

is unattainable. “It is because of an impossibility result in

logic,” he says. “The halting problem. That level of precision

would require an incomputable computation.”

He says this without a hint of irony.

And just like that, I stand up. Quietly, but with resolve,

I gather my wife and daughter, and we leave.

Remark 3. It is hard to imagine even a single reader taking

the side of the toe surgeon at this early point in the narrative.

“Wait, wait!” the toe surgeon calls after us.

“You do admit that there are computable and

incomputable functions, right? You studied

logic yourself, after all.”

“Yes,” I reply. “In theory, there are both. But

even computable functions are physically in-

computable.”

He squints. “Huh?”

“Take the identity function,” I say. “Totally

computable in theory. But try executing it on

an input that’s too large.”

“Huh?” he repeats. “Are you seriously suggest-

ing that a finite machine implies a fundamental

limitation? That’s absurd. If needed, I can sim-

ply build a bigger machine.”

Remark 4. At this point, it is easy to imagine multiple read-

ers siding with the surgeon.

“Not in the real world,” I say. “Physics won’t

let you.”

“Excuse me?”

At that moment, the surgeon’s teenage son strolls into

the room. He throws his father a sideways look, then, with a

calm but pointed tone, jumps in on my side:

“Any automaton from the Chomsky hierarchy

is (or, rather, resembles) a monolithic system,

tied to a global clock. When its state space gets

too large, modern physics pushes back.

General relativity, quantum mechanics—they

do not allow for arbitrarily large, synchronized

computation. As the size of the practical re-

alization of the automaton increases, signal

propagation would need to approach infinite

speed to maintain a coherent global state at

each clock tick. But physics caps that with the

speed of light.

So, any real-world implementation of a suf-

ficiently large logic engine has to use asyn-

chronous, distributed components—each with

its own local clock and state. There is no true

‘global’ state anymore. Scholars like Carl Petri

recognized this decades ago and proposed new

models of computation to deal with it [20,21].

But most people—yourself included, dad—are

so enamored with the Universal Turing Ma-

chine, as if it were sacred. Turing himself was

more pragmatic.”

The surgeon glares. “Why must you always

be so difficult, son? I am not talking about

physics—I am talking about pure logic.”

“There is no problem, then,” the teenager and

I reply in unison. “But if you are referring to

real-world equipment—and toes—you cannot

pretend this is just a matter of logic.”

The surgeon stares in disbelief. “Are you se-

riously claiming that incomputable functions

can be computed?”

“We are saying that, in the physical world,

both computable and incomputable functions

are only ever approximated. Sometimes it

is useful to model your equipment’s behav-

ior as a Turing computable function. Other

times—especially in distributed systems—you

106

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

will want to work with Turing incomputability,

too.”

The surgeon throws up his hands. “So what do

you want me to do? Operate on your daugh-

ter’s foot using a Turing machine or with the

incomputable gadget you are talking about?”

I smile calmly. “Neither is possible. You keep

equivocating physical computability and Tur-

ing computability. I believe we will be seeking

footcare elsewhere.”

“You fail to appreciate logic!” he shouts after

me.

Outside, as the door clicks shut behind us, my

daughter glances up and whispers, “Did that

argument with his dad really have to happen?

The son was kinda cute.”

I grin. “He is not just cute, sweetheart. He

also understands that his father confuses Aris-

totelian and Platonic reasoning.”

Remark 5. A gentle introduction to the interplay—and

tension—between Aristotelian and Platonic modes of reason-

ing in the context of computability is provided in Daylight [22].

The author acknowledges having confused both perspectives

and holds the view that many figures within computer science

do the same.

That night, my daughter dreamed of the words the sur-

geon’s son and I had spoken in unison:

“We argue that, in the real world, both com-

putable and incomputable functions can only

be approximated. In certain contexts, it is use-

ful to model your equipment’s operation as a

computable function; in others—particularly

with distributed, asynchronous components—

it is common to consider incomputable ones

as well.”

Earlier that month, she had studied Tony Hoare’s work

on formal verification, including his formalization of “fair-

ness” in distributed systems—a concept that, intriguingly,

ensures (mathematical) behavior beyond the reach of Turing

computability. She had begun to suspect that software engi-

neers sometimes rely on frameworks that quietly transcend

the limits of classical computability.

Remark 6. A technical synonym for “fairness” is finite

delay, discussed by Cardone [23].

And yet, something tugged at her mind. Through count-

less conversations with me, she had indeed come to regard

the Church-Turing Thesis (CTT) less as a law of nature and

more as a hypothesis about how humans conceptualize algo-

rithms. Even so, she found herself repeatedly drawn back to

a more physical interpretation:

“I cannot think of a single example of a non-

Turing-computable function f that can be reli-

ably computed by a physical process—at least

over a sufficiently broad domain. If someone

could provide such an example, I would be

genuinely intrigued. But if no one can, that in

itself is striking—perhaps the CTT does, in the

end, hold true after all.”

Is this reasoning sound? In her sleep, she murmured:

“On the one hand, I am more convinced than

ever that the CTT says nothing definitive about

physics. On the other hand, I find myself con-

tinually searching for a physical process—and

in its absence, I am tempted to accept the CTT

after all. Is that not a contradiction? Help!”

Just then, the surgeon’s son appeared in her dream and

whispered:

“Even the identity function cannot be reliably

translated into a physical process. Once we

accept this, the implication becomes clear: the

CTT says far less about physics than computer

scientists often suggest—and whether or not

it is mathematically disproven has no direct

impact on physics or engineering.”

Thrilled, she exclaimed: “So, the CTT could

have been quietly disproven many times—yet

mainstream computer scientists refuse to ac-

knowledge it?”

“Exactly,” he replied. “There is a long tradi-

tion of independent thinkers publishing on this.

See, e.g., the three papers [24–26] for a small sam-

ple. I find Doukas Kapantaïs’ recent work es-

pecially intriguing [27,28]. He outlines a model

of computation that is irreducible to the Turing

107

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

machinemodel, yet still satisfies Hilbert’s crite-

ria. But do not expect a revolution in physics—

because the CTT simply does not belong there.

However, engineers and physicists might still

find such conceptual advances relevant in the

long term.”

The next morning, my daughter asked me:

“The surgeon mentioned the ‘halting problem.’

But what does it actually mean according to

you?”

I smiled. “In the context of your toe? It is pure

intellectual self-gratification.”

I explained that the halting problem originates in

mathematical logic—often repurposed as intellectual win-

dow dressing. It gained prominence when logicians, long

marginalized, found relevance with the rise of computers

in the 1940s. They leveraged Turing’s work on symbolic

machines and computational limits to frame the emerging

field of computing as a theoretical achievement—much more

a triumph of logic than of engineering. I continued:

“In subsequent decades, the first generation

of ‘computer scientists’ rewrote the history of

their field. (Compare, for instance, Davis his-

tory building [29] with that of Priestley [30] or

Daylight [31].) Today, computers are often pre-

sented as logic engines, much like dice are re-

garded as purely mathematical objects, or plan-

etary motion as mere differential equations.”

“But isn’t that way of thinking useful? You said

so yourself last week,” my daughter pointed

out.

“True,” I conceded, “but only if you recog-

nize that it is not always applicable. When dis-

cussing computability, the surgeon frequently

conflates the model with the thing-in-itself.

Now, if he explicitly insists on blurring the

categorical realms of mathematics and physics,

then I propose he advocates for an Aristotelian

realist philosophy of mathematics. The best

guidance I can offer is to direct him to James

Franklin’s work [32]. However, as Franklin clar-

ified to me in correspondence, this would re-

quire abandoning core tenets of Platonist set

theory. And without that framework, the diago-

nal argument underpinning the incomputability

of the Halting Problem collapses.”

Remark 7. Linnebo and Shapiro’s argument [33] may chal-

lenge this line of reasoning, yet our forthcoming work aims

to expose its limitations—even in light of further develop-

ments akin to those presented by Cook [34]. These ongoing

dialogues underscore the contested and continually evolving

status of computer science’s so-called “fundamentals.”

I continued: “So, either you embrace a

neo-Aristotelian guise of philosophy with-

out preaching impossibility results (as we

teach them today), or you follow Hilbert and

emancipate mathematics from physics. These

thoughts are, on my reading, crisply formu-

lated by Paul Henry:”

The machines we have considered here, the

combination of the Euclidean straightedge and

compasses, Descartes’ machine, and the Tur-

ing machines, have all of them had something

to do with the foundations of mathematics. I

have insisted upon the fact that those machines

have had a theoretical function and that there

was no need to materially construct them for

them to be operational from that point of view.

Furthermore, I said that in reality, they can

not be constructed. Now, I can add that it is

precisely as “machines impossible to materi-

ally construct” that they give rise to impossible

problems [35] (p. 121, our italics).
The next day, on their first date: “Still, you sh-
ould be careful with that,” Marcus—the surg-

daughter when, ins-
on their first date, they

and computer science.

“Careful with what?” Helena asked.

“If you view the CTT more as a hy-

pothesis about how humans conceptualize

algorithms—rather than a claim about phys-

ical computation—you are still circling back

to physics,” he cautioned.

“Oh, I see, because a conceptualizing person

quickly brings us to the person’s brain, and

thus back to physics,” my daughter exclaimed.

108

eon’s son—cautioned my

ended up debating logic

tead of watching a movie

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

“Perhaps that is why computer scientists equate

not just computers, but also human brains, to

Turing machines. How convenient. So much

for open-mindedness [36].”

“The irony,” Marcus continued, “is that nei-

ther Turing nor Gödel, upon closer inspec-

tion, valued such extreme algorithmic think-

ing [37,38]—let alone today’s cognitive scien-

tists. The human brain (including a software

engineer’s) is not necessarily a Chomsky au-

tomaton, though contemplating such an equiv-

alence can be useful in well-defined contexts.

Stanislas Dehaene’s books are worth reading

on this.”

Remark 8. In this regard, Peter Kugel advocates for

Putnam-Gold machines (and even more powerful machines)

rather than standard TMs in the study of the mind’s machin-

ery. On the one hand, he aligns himself with the intellectual

positions of Turing and Gödel and cites Stanislas Dehaene

as a potential contemporary supporter. For two other cases

in point, see Bringsjord and Arkoudas [39] and Longo [40]. On

the other hand, Kugel also recognizes that many colleagues

in computer science do indeed favor the standard TM [41,42].

3. Four Tenets and a Synopsis

The preceding exemplum is intentionally tangential to

the main content of this paper; it underscores the potential for

strong disagreement among our readers regarding the foun-

dations of modern logic and theoretical computer science.

For instance, consider the very notion of the Turing machine.

As Curtis-Trudel highlights in a recent survey, perspectives

diverge sharply on this matter [43]. Piccinini, for example,

asserts:

The tape [of the TM] and processing device

are explicitly defined as spatiotemporal com-

ponents [44] (pp. 119–120).

Curtis-Trudel further examines the “Turing-machine

realisism” advocated by Copeland and Shagrir, who posit an

“extra ontological level … with Turing machines ‘having’

causal features” [45] (p. 234). In stark contrast, others inter-

pret the TM as a purely abstract model. Rescorla articulates

this view clearly:

To describe a physical system’s computational

activity, scientists typically offer a computa-

tional model, such as a Turing machine or a

finite state machine. Computational models

are abstract entities. They are not located in

space or time, and they do not participate in

causal interactions [46] (p. 1277).

In short, there is no consensus on whether a TM is

Aristotelian, Platonic, or something else entirely. Given this

divergence, it is hardly surprising that scholars might project

differing interpretations onto historical figures like Turing,

Church, and Kleene.

Moreover, since our audience spans logicians and en-

gineers, we recognize that not all readers will readily accept

the four tenets underlying this paper. For transparency, we

state these tenets at the outset.

3.1. Two Direct Tenets

To frame our first tenet via the following proposition—

where an “infinite abstraction” is best understood as the

mathematical idealization of an infinitely long tape—it is

helpful to recall that Putnam-Gold machines (whose details

we can set aside) compute a wider class of number-theoretic

functions than standard Turing machines.

Proposition 1. No finite experiment in the real world can fal-

sify all the beliefs underlying X , where X refers to a model

of computation that relies on an infinite abstraction such as

Putnam-Gold machines and standard TMs.

The reader should note that we are not suggesting that

a finite state machine (FSM) is computable while a Turing

machine (TM) is not. Our point is rather that in the physi-

cal world of engineering, infinite abstractions are only ever

approximated with finite precision.

Two detailed remarks can now be made in connection

with Proposition 1. First, Peter Kugel correctly cautions that

no finite experiment can demonstrate that human minds are

equivalent to, say, Putnam-Gold machines rather than stan-

dard TMs. In this regard, he paraphrases Marvin Minsky as

follows: “There is no evidence for this, for how could you

decide whether the mind or a physical device computes an

uncomputable predicate?” [47] (p. 175). Second, Kugel then

responds to Minsky, thus:

109

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

You can’t. But that does not mean that one

might not choose uncomputable models any-

way, much as one might choose the infinite

(Turing Machine) models, to which most of

Minsky’s (1967) book is devoted, over the

more finite (Finite Automaton) models, even

though one cannot prove, on the basis of finite

evidence, that any given physical system is not

one of the latter [47] (p. 175).

Regarding our second tenet, we ask our audience to

be skeptical of historical claims promoted by key figures in

the field and open-minded about those written by historians.

For instance, Kleene, a prominent member of the Princeton

school, offers an interpretation of Alan Turing, whom he did

not know personally. Kleene writes thus:

Turing’s machine concept arises from a direct

effort to analyze computation procedures as

we know them intuitively into elementary op-

erations. Turing argued that repetitions of his

elementary operations would suffice for any

possible computation [5] (p. 233, our empha-

sis).

However, writing as a historian, the present author

proposes a markedly different perspective on Alan Turing’s

broader views on computing during the period 1932–1948:

While computer science takes Turing’s univer-

sal machine as the limit of all achievable forms

of computability, it was explicitly perceived as

banal by Turing in 1948. From his perspective,

a creative person is significantly more than that

which a fixed symbolic logic or a universal Tur-

ing machine can offer [36] (p. 546).

Our evolving personal understanding suggests that Tur-

ing may have become open to advocating for what would

later be known as Putnam-Gold machines over standard TMs

in relation to the human mind and/or engineered computers,

whereas Kleene would not have.

In this paper, we do not seek to advocate for any par-

ticular stance—though our personal biases may occasionally

surface—when examining the expositions of Shapiro and

Kleene, in Sections 4 and 5, respectively. Instead, our central

assertion is simply that if Kleene did equate the human mind

(such as that of a software engineer or the director of a com-

puting laboratory) with a tally-based TM, then this should

be explicitly reflected in his theoretical framework.

3.2. Two Surprising Tenets

Closely related to our second tenet are our two final

tenets. In general terms, we urge our audience to be cautious

of universal claims made by theorists about engineering. We

posit that engineers who are well versed in logic are likely

to disagree with Kleene’s assertion that the societal “sig-

nificance” of an incomputable number-theoretic function

ψ() “comes from the Church-Turing thesis,” by which:

“computability in Turing’s sense agrees with

the intuitive notion of computability. Accept-

ing the thesis, as most workers in [maths’]

foundations do, the director of a computing

laboratory must fail if he undertakes to design

a procedure to be followed, or to build a ma-

chine, to compute this function ψ(a).”

These words are quoted from Kleene [5] (p. 245).

Kleene’s perspective on the incomputability of the function

ψ() will be scrutinized in Section 5.

Let us zoom in on our third tenet, potentially the most

surprising for logicians and theoretical computer scientists.

Software engineering, we assert, operates beyond a

countable realm of mathematical discourse. The uncountable

realm of creative engineering is central to Francky Catthoor

and his collaborators [1,48,49] and is revisited in Section 4.5.

For now, it suffices to highlight that there are uncountably

many ways for an engineer to represent a number-theoretic

function with a machine. Only two such possibilities (ar-

rows) are depicted in the following diagram with regard to

function ϕj().

In other words, engineers are inclined to examine a

broad family of listings, including listing {M i}i>0
and list-

ing {Nk}k>0
. While the first listing fits in Kleene’s tally-

based account of TMs, the second listing fits in, say, a nar-

110

semantics 𝜑𝑗()

syntax 𝑀𝑖 𝑁𝑘

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

rative in which numbers are represented with bits 0 and 1.

There are uncountably many such listings. Each member in

a listing is a machine specification (or a program text). Each

arrow in the diagram represents a sequence of consistent

design choices.

Crucially, only after the engineer selects specific ma-

chinesMi and Nk (and, hence, specific notations) can the

theorist describe the translation fromMi to Nk using, say,

a tally-based Turing machine (TM). However, the theorist

cannot prescribe—cannot exhaustively predetermine, via

one of his countably many tally-based TMs—the choices

available to the engineer in future software development.

The ensemble of all tally-based TMs fails to fully encompass

the engineer’s design space, which includes uncountably

many arrows—of which only two are shown in the diagram.

Readers who consider ‘descriptive’ and ‘prescriptive’ syn-

onymous at this point are encouraged to consultAppendix

A for a clarification of this distinction.

The essence of mathematical engineering lies in pre-

diction, control, and anticipation of the engineering activity

at hand. Kleene’s immediate focus on a single notation—

tally-based notation—stands in stark contrast to the practical

demands of engineering practice. More importantly, this

paper argues that Kleene’s incomputability result requires

substantial qualification to maintain logical coherence, much

less engineering applicability.

Hence, coming back to the theorist, he must explic-

itly stipulate whether to permit or exclude an uncountable

number of functions mapping semantics onto syntax. Subse-

quent reasoning heavily relies on this assumption, especially

when employing a proof by contradiction. It will turn out

that, as theorists, both Shapiro and Kleene adopt a mathe-

matical perspective on industrial practice that is inherently

tally-based and algorithmic. In their view, the creative en-

gineer, who bridges number-theoretic functions (semantics)

and program texts (syntax), is an automaton, operating me-

thodically within a tally-based realm. Only the director of

such a methodical laboratory must indeed fail when attempt-

ing to compute Kleene’s incomputable function ψ().

Finally, we present our fourth tenet—the elephant in

the room: the notion, reminiscent of 21st-century analytic

philosophy, that semantics and syntax are 100% separable,

as assumed in the previous diagram. Let us suppose that

all of software engineering can be captured a priori within

a countable realm of symbolism after all. Even then, we

take issue with Kleene’s interpretation of his incomputable

function ψ(). Kleene believes that his function ψ() is in-

computable regardless of the syntactic choices made by an

engineer. However, we will argue that the mathematical sig-

nificance of Kleene’s function ψ() only emerges when his

own syntactic conventions, RK and CK , are explicitly ad-

hered to, as opposed to those employed by one of his equally

algorithmic-minded colleagues.

Remark 9. Kleene’s conventions, RK and CK—denoted

by “K” for “Kleene”—are detailed in Section 5. For now,

it suffices to associate RK with a mapping that relates the

natural number n to n+ 1 tallies on a TM’s tape, while the

coding method CK corresponds to Kleene’s specific choice

of Gödel coding, ensuring compliance with RK .

Kleene defines his function ψ() in terms of his fa-

mous predicate T (i, a, x). This predicate does not convey

Kleene’s intended meaning unless the reader consistently

applies Kleene’s conventions, RK and CK , to the natural

numbers i, a, and x. The key point is that Kleene’s semantics

hinges on his specific choices regarding syntactic TMs. The

director of a computing laboratory is unlikely to endorse

Kleene’s interpretation of incomputability unless his engi-

neers function merely as rote technicians, adhering strictly

to the conventions RK and CK .

To summarize, while Shapiro emphasizes that number-

theoretic computability is relative to notation (i.e., syntax),

we will argue, contrary to Kleene, that number-theoretic

incomputability is also merely a notation-dependent con-

cept. The notion of absolute incomputability, as presented in

Kleene’s Mathematical Logic, is an illusion.

3.3. Synopsis

We close this overview with a synopsis aimed at read-

ers thoroughly familiar with Kleene’s computability theory.

Those taking a first pass through the paper may comfortably

skip it.

On a comparison between Cantor’s diagonal argument

and Kleene’s “proof,” we posit that Cantor does not rely

on any specific ordering of the number-theoretic functions.

Cantor proves that there are more such functions than natural

numbers. For his reductio, assume an ordering of them—any

111

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

ordering—say, φ0, φ1, φ2, . . ., and then define the function

ψ(n) = φn(n) + 1.

The function ψ() cannot be among the ordered func-

tions. Change the ordering, and a function with the same

property pops up again. Ergo, no mapping from natural

numbers to all number-theoretic functions exists.

Compared to Cantor’s line of reasoning, Kleene’s 1967

proof introduces a subtle but crucial difference: Kleene’s

choice of notation for numbers (and consequently, Gödel

numbers and codes for TMs too) appears essential to the in-

computable function constructed. This stems from Kleene’s

bijection between partial recursive functions and TMs, which

proceeds by first fixing an ordering of TMs and then assign-

ing partial functions to them. The resulting incomputable

function ψ()—defined via the predicate T (i, a, x)—arises

specifically from Kleene’s representational conventions RK

and CK .

The fact that it is this specific function ψ()—a seman-

tically independent Platonic function that, in itself, is not a

“function” of any method of representation of it—that comes

out incomputable depends on the specific way Kleene repre-

sents natural numbers. Adopt one of infinitely many other (in

fact, uncountably many other) methods on how to represent

natural numbers, and ψ() might turn out to be computable.

Of course, another function will come out incomputable rel-

ative to the new method, but does this matter? For the lab

director, the answer is no. His goal is to obtain an effective

method to compute ψ().

To recapitulate, the set of ordered pairs that corresponds

to the Platonic function ψ() remains the same no matter how

we choose to refer to the function(s) that generate it. The

implication is that the lab director is free to endorse another

method for representing natural numbers and hopefully ef-

fectively compute ψ().

In retrospect however, is there no caveat to the line of

reasoning just presented? Recall that Kleene’s normal form

theorem states that every partial computable function can be

expressed using primitive recursive predicates together with

one application of the Minimization operator. Might, then,

Kleene’s normal form theorem not undermine the preceding

discussion? After all, the class of computable functions is

rigorously defined, is it not? Yet we appear to be suggest-

ing that Minimization could make the very same function

computable under one notation while incomputable under

another.

To appreciate why there is no caveat, it is essential to

recognize that Kleene’s normal form theorem—and, more

broadly, his entire notion of computability—is formulated

within his framework of tally-based TMs. Although theorists

frequently invoke the normal form theorem to justify sweep-

ing claims about Turing computation, such claims tacitly

depend on an elision between Church’s and Turing’s the-

ses: the natural number n is silently identified with its tally

representation of n+1 tallies. In other words, the result con-

cerning Minimization does not apply uniformly across the

uncountably many possible notations. Thus, any preference

for a specific countable subclass of notations over others re-

quires an explicit declaration. This declaration—often tacitly

assumed by logicians—ought to be clearly acknowledged by

our critics when pressed, and made explicit from the outset of

any reductio ad absurdum argument concerning Kleene-style

incomputability.

Remark 10. Our position aligns with, and extends, San

Mauro’s exposition [12]. Although we endorse Cantorian

mathematics in this article, it should be noted that Jacquette’s

critique [9] extends even to Cantor. We are currently not in a

position to engage with Jacquette’s arguments in technical

detail.

4. Shapiro (1982)

Shapiro’s research interests overlap with the distinction

between theoretical computability and physical computabil-

ity. His concern is that “mechanical devices engaged in com-

putation and humans following algorithms do not encounter

numbers themselves, but rather physical objects such as ink

marks on paper” [7] (p. 14). Shapiro continues by asserting

that a distinction must be made between natural numbers

(semantics) and their string representations (syntax):

[S]tricly speaking, computability applies only

to string-theoretic functions and not to number-

theoretic functions. That is, a string-theoretic

function is said to be computable iff there is an

algorithm that computes it [7] (p. 14).

We discuss Shapiro’s definitions in Section 4.1, some

of his theorems in Section 4.2 and Section 4.3, and scruti-

112

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

nize his notion of “knowing a notation” in Section 4.4. We

pivot from Shapiro to Kleene in Section 4.5. Despite our

various critical comments from an engineering perspective,

we regard Shapiro’s theory-building as an exemplar par ex-

cellence.

4.1. Buildup

An example of notation is stroke notation, in which

a numeral n is a finite sequence of strokes, i.e., a string of

strokes. It denotes the natural number, n, of strokes it con-

tains. Shapiro defines a “notation d” with Definition 1. To

begin our discussion, we emphasize a seemingly innocuous

adjective in bold.

Definition 1. A notation d consists of a finite alphabet, a

solvable class of strings on this alphabet, called the class of

numerals, and a convention which assigns to each numeral x

a natural number d x, called the denotation of x. Shapiro [7]

(p. 14), our boldface.

While Shapiro’s current buildup aligns with the mathe-

matics used in many engineering disciplines, we contend—

merely for the sake of argument—that its applicability to

modern internet encryption may be limited.

Example 1. The internet company Cloudflare believes it

generates random strings via a physically indeterminate pro-

cess, involving lava lamps. A news update from Cloudflare

reads as follows:

As one might expect, lava lamps are consis-

tently random. The “lava” in a lava lamp

never takes the same shape twice, and as a

result, observing a group of lava lamps is a

great source of random data. To collect this

data, Cloudflare has arranged about 100 lava

lamps on one of the walls in the lobby of the

Cloudflare headquarters and mounted a cam-

era pointing at the lamps. The camera takes

photos of the lamps at regular intervals and

sends the images to Cloudflare servers. All

digital images are really stored by computers

as a series of numbers, with each pixel having

its own numerical value, and so each image

becomes a string of totally random numbers

that the Cloudflare servers can then use as a

starting point for creating secure encryption

keys [50].

Problem 1. Internet cryptographers at Cloudflare do use

a class of strings from a finite alphabet that, arguably, is

not solvable—at least within our evolving understanding of

what ‘solvable’means according to Shapiro. As the previous

example illustrates, the cryptographers cannot effectively

enumerate any non-zero number of strings a priori; that is,

without first carrying out the corresponding enumeration in

the real world of lava lamps (i.e., a posteriori).

The translation—from n strokes to the random string

generated by the n-th lava lamp, with n ≤ 100—can only be

provided after the physical process at hand has been carried

out on a specific day at Cloudflare. A cryptographer can

describe this translation, but cannot prescribe it, with one of

countably many predefined Chomskian automata.

Also, when we allow the parameter n to be replaced

with any natural number, thereby embracing an infinite ab-

straction akin to that of TMs, Cloudflare activity on any

given day remains indeterminate until the day concludes. A

precise symbolic description can only be established once

the process in question has actually been carried out.

While at least one of countably many stroke-based TMs

can both prescribe and describe the addition of any two (prop-

erly encoded) numbers, or compute the shortest path in any

given (finite) graph, the same does not hold in general for

Cloudflare’s activities related to lava lamps. This is why we

assert that Cloudflare operates with a class of strings from a

finite alphabet that remains unsolvable within our reading of

Shapiro’s stipulations.

Putting aside Shapiro’s innocuous adjective “solvable”

and Problem 1 for now, let us continue to follow Shapiro’s

theory building. His next step is to define a number-theoretic

function fd based on notation d and to establish a bijection

between numerals and numbers.

Definition 2. Let S be the numeral class for a notation d; let

N be the class of natural numbers. Each string-theoretic

function f : S → S has a number-theoretic counter-

part fd : N → N relative to d, such that fd(d x) = d f(x).

Shapiro [7] (p. 15).

113

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

“Notice that if the convention of d is not one

to one, then fd may not be well-defined and

that if the convention of d is not onto then fd

may not be defined at every number. It is as-

sumed, therefore, that a notation convention is

a bijection from S to N.”—Shapiro [7] (p. 15,

our emphasis).

Alas, the professional engineer will, more often than

not, want redundancy built into the notation, resulting in the

following problem.

Problem 2. A natural number n should have more than one

string representation, rendering the notation d non-bijective.

This fault-tolerant property, which prevails in Shannon’s in-

formation theory and coding theory in particular, counters

Shapiro’s assumption.

However, in this paper, we shall fully adhere to

Shapiro’s assumption that a bijection is operational. There-

fore, we set aside Problem 2 as well. Consequently, we can

appreciate Shapiro’s next move in which he introduces the

inverse of notation d, as follows:

Definition 3. Let d : N →S be the inverse of the conven-

tion of d. If F : N → N is a number-theoretic function, let

F d : S → S be its string-theoretic counterpart relative to

d; that is: F d(d X) = d F (X). Shapiro [7] (p. 15).

All of this effort is directed towards achieving mathe-

matical elegance (in a non-pejorative sense) in the form of

two commuting diagrams, presented in the following figure,

which is of our making.

The top row represents natural numbers, while the bot-

tom row shows their corresponding numerals.

Accompanied by Definition 4, Shapiro’s endeavor al-

lows for the derivation of powerful theorems in the next

section.

Definition 4. If F is a number-theoretic function, we say

that F is computable relative to d iff the string-theoretic F d

is computable—iff there is a string-theoretic algorithm that

computes F d. Shapiro [7] (p. 15).

4.2. Theorem Proving

When it comes to his theorems, Shapiro initially makes

three insightful observations. First, each constant function is

computable relative to every notation. Second, the identity

function is computable relative to every notation. Third, each

function that differs from one of these at only a finite num-

ber of arguments is computable relative to every notation.

Shapiro then proves the completeness of this list, culminating

in:

Theorem 1. The only number-theoretic functions which are

computable relative to every notation are almost constant

functions and almost identity functions. Shapiro [7] (p. 15),

our emphasis.

Theorem 1 aligns with what we expect will be the intu-

itive position for many readers. We include it here to ensure

comprehensive treatment of the subject matter. More interest-

ing for the purpose of this paper is Shapiro’s second theorem

(Theorem 2) and the subsequent commentary, which leads

to his third theorem (Theorem 3).

Theorem 2. Let F be a number-theoretic function. There

is a notation d such that F d is computable iff there is a per-

mutation T of the natural numbers such that T−1 F T is

computable relative to stroke notation. Shapiro [7] (p. 17).

“If one acceptsChurch’s thesis in the form (sim-

ilar to that given by Turing) that a number-

theoretic function is recursive iff it is com-

putable relative to stroke notation, then The-

orem 2 can be more concisely formulated as

Theorem 3.”—Shapiro [7] (p. 17), our empha-

sis.

Theorem 3. There is a notation d such thatF d is computable

iff there is a permutation T such that T−1 F T is recursive.

Shapiro [7] (p. 17).

114

𝑑 𝑥
 𝑓𝑑

√

𝑋
 𝐹

𝐹(𝑋)

𝑥
 𝑓

𝑓(𝑥)

𝑑 𝑋
 𝐹𝑑

√

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

Starting our discussion with Theorem 2, it is important

to note that uncountably many permutations T are under

consideration, meaning there are correspondingly uncount-

ably many notations d. The acceptance of Church’s thesis in

the extended form, which brings us to Theorem 3, does not

collapse the uncountable setting into a countable arena of

mathematical discourse. Instead, it highlights stroke notation

as one viable way for us, theorists and mathematical engi-

neers alike, to bridge the semantic realm of number-theoretic

functions and the syntactic realm of string-theoretic func-

tions. For further reference, we present Shapiro’s extension

of Church’s thesis as a separate definition:

Definition 5. The extended version of Church’s thesis states

that, a number-theoretic function is recursive iff it is TM

computable relative to stroke notation.

4.3. Towards Incomputability

As we now examine Shapiro’s brief exposition on in-

computability, we convey the following result:

Theorem 4. There is a number-theoretic function which is

not computable relative to any notation. Shapiro [7] (p. 18).

Concerning Shapiro’s proof of Theorem 4, we only

distil a rigorous part that matters to us as an exemplar for the

remainder of this paper. To start, Shapiro provides a simple

definition and a trivial lemma, as follows.

Definition 6. For each number-theoretic function F , let

S(F) be the set of natural number {n | n 6= 0 and there is

a natural number which has exactly n preimages under F}.

Shapiro [7] (p. 18).

Lemma 1. If T is a permutation of the natural numbers,

then S(F) = S(T−1 F T). Shapiro [7] (p. 18).

Shapiro’s proof of Theorem 4 relies, once again, on the

extension of Church’s thesis:

(*) “Note also, by an extended version of

Church’s thesis, that if F is computable rel-

ative to stroke notation then S(F) is re-

cursively enumerable in the halting prob-

lem.”—Shapiro [7] (p. 18).

The extension of the thesis is crucial, allowing Shapiro

to swiftly transition from stroke notation (syntax) to nat-

ural numbers (semantics), and back again. Subsequently,

Shapiro takes the contraposition of (*) and uses his Theorem

2 to derive the following implication, which we present as a

separate lemma for later reference in this paper.

Lemma 2. If one accepts the extended version of Church’s

thesis (see Definition 5), then we have: if S(F) is not re-

cursively enumerable in the halting problem, then F is not

computable relative to any notation. Shapiro [7] (p. 18).

In contrast to Shapiro-style accounts, which are crafted

with nuance, we will argue in Section 5 and beyond that

Kleene-style narratives fail to consistently mention Church’s

thesis or an extended version of it, in otherwise similar dis-

course pertaining to incomputability.

4.4. Knowing a Notation

After having proved multiple theorems in an uncount-

able setting, Shapiro remarks that several notations consid-

ered so far are “clearly … not acceptable.” Therefore, “fur-

ther restrictions must be placed on notations,” which, as we

shall see shortly, provide for a countable arena of discourse.

Shapiro expects “the computist” to be able “to write” and “to

read” numbers in the notation at hand. If this is not the case,

then we cannot speak of an “acceptable notation” [7] (p. 18).

Considering our example of the lava lamps once more,

Shapiro’s following stipulation regarding the “use” of the

notation does not sit well with us.

“If a computist does not know a particular no-

tation, then it is hard to see a sense in which

she understands the number-theoretic goal of

an algorithm that employs the notation. If, for

example, an algorithm for addition uses a no-

tation which is not known by a computist and

she is given two numerals in the notation, she

could not know that the algorithm determines

the sum of the denoted numbers. That is, the

computist could not use the algorithm to add

numbers.”—Shapiro [7] (p. 19, our emphasis).

A cryptographer might initially adopt stroke notation

(or, more realistically, binary notation), which she can indeed

115

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

“use” in Shapiro’s sense. However, her immediate goal is to

swiftly transition, leveraging the inherent unpredictability of

her lava lamps, from original strings (of strokes) to random

strings (of strokes). Subsequently, she applies an algorithm

for addition to various strings, including some of her ran-

dom ones. We submit that the cryptographer does not fully

“know” what she is doing based on our analytical reading

of Shapiro’s postulates on “knowing a notation.” However,

Shapiro’s proponents might argue that the cryptographer re-

tains the ability to manipulate all her strings, understanding

their underlying meaning. Instead of attempting to refute

this point, we continue reading Shapiro’s paper until we find

a stipulation that does not align with the practices of the

cryptographer, according to both Shapiro’s proponents and

ourselves. This leads us to:

Lemma 3. A person knows (or can easily be taught) notation

d iff she knows (or can easily be taught) either an effective

procedure to translate d into stroke notation or an effective

procedure to translate stroke notation into d. Shapiro [7] (p.

19).

Lemma 3 is part of Shapiro’s repertoire of stipulations,

which, in our understanding, serves to collapse the uncount-

able setting of “notations” into a countable arena of “accept-

able notations.” We view Shapiro’s appeal to Lemma 3 as

a technically apt way of endorsing a strong version of logi-

cal determinacy: an individual acquires new notation if and

only if she comes to possess an effective—i.e., a logically

determinate—procedure that takes her to or from the familiar

land of strokes, where n strokes denote the number n. We hy-

pothesize that Shapiro’s computational framework of human

inventiveness qua notation starkly contrasts Alan Turing’s

perspective [36].

At Cloudflare, the translation from n strokes to the

random string generated by the n-th lava lamp is due to an

uncountable-countable collapse: from analogue (lava) to

digital (strings). The central problem lies in the absence

of a symbolic prescription—i.e., an effective procedure in

Shapiro’s sense—to anticipate what a physical computation

of the n-th lava lamp would entail if it were to be actually

carried out. We believe that Shapiro’s proponents concur

with us on the following point: The cryptographer knows

her lava-generated notation—i.e., she knows the translation

from n strokes to the random string generated by the n-th

lava lamp after the process has been carried out—but not in

adherence to Lemma 3.

4.5. Pivoting from Shapiro to Kleene

More importantly, even regarding engineering practices

totally unrelated to cryptography, such as Catthoor et al.’s

work on inventing energy-efficient data structures for multi-

media applications running on hand-held devices [1,2,48], we

interpret Shapiro’s theory as oversimplified. While symbolic

logic may encompass the dos and don’ts of routine engi-

neering procedures, it falls short in an uncountable world of

professional engineering. The theorist must first observe spe-

cific engineering choices within a given spatiotemporal con-

text, made by creative individuals and high-tech equipment,

before proving theorems whose prescriptive force applies,

without further contemplation, only within that context.

Remark 11. In our reading, Ethan Brauer puts it, in a

slightly adjacent setting, as follows: “What can be done

efficiently depends on the technology available, and it is not

a failing of the theory to recognize that dependence” [51] (pp.

10507–10508).

To clarify, researchers in the field of energy-efficient

software development are inclined to explore parts of a

panorama of uncountably many notations. This includes

various listings, such as {M i}i>0
and {Nk}k>0

. While the

first listing fits in Shapiro’s stroke-based account of TMs

M1, M2, …, the second listing fits in, say, a narrative in

which numbers are represented with bits.

Each member in a listing is a program text (i.e., a ma-

chine specification). Each arrow in the following diagram

represents a sequence of consistent design choices; that is,

meta-consistent design choices to be more precise, since we

are now in the business of studying multiple ways of how to

transgress the semantic-syntactic divide. Set theoretically,

there are uncountably many such arrows.

Specific machinesMi and Nk are functionally incom-

parable in syntactic terms alone, yet they can be compared

116

specification 𝜑𝑗()

program text 𝑀𝑖 𝑁𝑘

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

functionally at the semantical level by specialists—i.e., hu-

mans in the loop—who grasp the conventions of the engi-

neering practice at hand. Both machines compute the same

partial function ϕj() in syntactically incompatible ways.

Consider, for example, a shortest path problem, ϕj().

On the one hand, this problem is implemented with a two-

dimensional array data structure, cf. Mi. On the other hand,

it is also implemented with a linked list data structure, cf. Nk.

The crux is that Mi and Nk cannot be compared number-

theoretically without human involvement, i.e., without fur-

ther stipulation from the engineers. For outsiders, this stipu-

lation always comes a posteriori because the design space of

functionally equivalent data structures is uncountably large.

Some carefully selected stroke-based TM can describe,

but cannot prescribe, the conversion from program textMi

into program text Nk. A theorist cannot, in advance, specify

a stroke-based TM that anticipates the engineering choices

Catthoor and his team will make tomorrow. To assume other-

wise is misguided, as the countably many stroke-based TMs

are inherently inadequate compared to the uncountably many

design options available to a creative engineer.

Our broader argument stands: predefined Chomskian

models of computation lack prescriptive authority. The theo-

rist must rely on empirical feedback from engineers to bridge

the gap between uncountable and countable realms of dis-

course.

Remark 12. The assumption that a key activity of Catthoor’s

engineering—undertaken by a potentially immortal and cre-

ative human being, and partially illustrated in the previous

diagram—can, in principle, be subsumed under a single

stroke-based TM, reflects a neo-Russellian stance commonly

encountered in theoretical computer science textbooks, a

position we respectfully reject.

We now invite the critic, if not Shapiro himself, to com-

pare the uncountable-countable collapse observed in creative

engineering with Kleene’s comparatively facile line of rea-

soning. Kleene moves from one countable realm to another,

isomorphic one; that is, from recursion theory (semantics)

to Turing machinery (syntax), exemplified by the shift from

a natural number n to its representation of n+ 1tallies. The

following excerpt—from Kleene [5] (p. 238), our boldface—

makes this clear:

The business of finding machines can be sys-

tematized by starting from the theory of re-

cursive functions. … This theory deals with

recursive definitions of functions … The func-

tions commonly used in number theory are de-

finable by use of such recursions, and proceed-

ing from the recursive definition one can in

a systematic way find corresponding Tur-

ing machines, after first setting up Turing ma-

chines for such simple operations as filling in

with tallies all but the rightmost of a sequence

of blank squares preceded and followed by a

tally, copying a sequence of tallies, etc.

Is it fair to suggest that Shapiro and Kleene share a

common intellectual ground, in that they both assume, at

least implicitly, that Catthoor’s engineering—if not software

engineering tout court—operates within a countable, even

algorithmic, realm (Remark 12)?

Moving beyond these reflections for now, it is Shapiro’s

carefully crafted non-mathematical stipulations, such as

those found, via Definition 5, in the precondition of his

Lemma 2, that we wish to carry forward. Shapiro’s rigor is

precisely what we need to criticize Kleene’s theory building.

Our discord with Kleene is mathematical, not philosophi-

cal, and will become relevant once we enter the realm of

incomputability.

5. Kleene (1967)

In his Mathematical Logic, Stephen Kleene distin-

guishes between number-theoretic functions on one side

(semantics) and TMs on the other (syntax). Therefore, fol-

lowing Shapiro’s commuting diagrams in Section 4.1, we

continue to depict the first category (semantics) at the top and

the second category (syntax) at the bottom in our discourse.

Instead of total functions, Kleene relies on the more

general concept of a partial number-theoretic function. He

treats each “argument” for a partial function as a natural

number, which he “represents” with his “tally marks” [5] (p.

235).

Claim 1. The terms “denote” and “represent,” employed by

Shapiro and Kleene, respectively, are synonymous. Likewise

for the words “notation” and “representation.”

117

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

Another minor distinction between both authors is note-

worthy. Recall that Shapiro uses n strokes on a tape of a TM

to denote the natural number n. (He uses the null string to

denote 0.) Kleene, however, uses n+ 1 tallies on a tape of a

TM to represent n. By sequentially counting all n+1 tallies

on the tape, the concept of n is then derived within Kleene’s

realm of number theory.

We capture Kleene’s representation with a function,

RK: N →S, where S denotes the set of strings of tally marks.

Schematically, we depict the situation, thus:

Remark 13. Function RK is only slightly different from

Shapiro’s d:N →S, i.e., the inverse of the convention of

Shapiro’s notation d, where S denotes the set of strings of

strokes (cf. Section 4.1).

Taking a broader view, Kleene’s central query is as

follows:

For what number-theoretic functions are

there computation procedures (or algorithms)?

Briefly: What is the class of “computable”

functions? [5] (p. 230).

Although the Platonic undertones in this and other ex-

cerpts from Kleene should not go unnoticed, our concern will

be with Kleene’s reductio ad absurdum proof pertaining to

incomputability. As an informal introduction, Kleene writes

thus:

This intuitive notion of a computation proce-

dure ... is vague when we try to extract from

it a picture of the totality of all possible com-

putable functions. And we must have such a

picture, in exact terms, before we can hope

to prove that there is no computation proce-

dure at all for a certain function, or briefly to

prove that a certain function is uncomputable.

Something more is needed for this [5] (p. 231).

What is additionally needed is the notion of a tally-

based TM. To build up toward his tally-based TMs, Kleene

continues:

Hereafter, we may say that something can be

done “effectively”, or that an operation or pro-

cess is “effective”, as a brief way of saying that

there is an algorithm for it (i.e. a decision or

computation procedure) [5] (p. 231).

Altogether, Kleene adopts a methodical two-stage rea-

soning process. Initially, he shifts from natural numbers (top)

to a representation based on tallies (bottom). Subsequently,

he engages in a bottom-up approach, progressing from enu-

merating his tally-based TMs to deriving a corresponding

listing of partial computable functions.

All of this will be necessary for Kleene to make a claim

about incomputability at large. On the one hand, we shall

peruse Kleene’s reasoning with the following question in

mind:

Problem 3. Does a proof of incomputability in Kleene’s

countable, tally-based setting have any prescriptive implica-

tions for software engineers?

On the other hand, we will disagree with Kleene’s line

of reasoning on his very own terms.

We are now ready to zoom in on Kleene’s informal com-

mentary and formal buildup. We peruse parts of Kleene’s

prelude (Section 5.1), and highlight his top-down (Section

5.2) and bottom-up (Section 5.3) reasoning. We examine

Kleene’s famous T predicate (Section 5.4), which he uses

in his reductio ad absurdum proof (Section 5.5). Finally, we

object to Kleene’s incomputability proof on purely techni-

cal grounds and amend it (Section 5.6). We shall answer

Problem 3 in our discussion (also in Section 5.6).

5.1. Prelude

Kleene, in 1967, and many computability theorists to

date, intentionally merge the following four categories of

theoretical discourse:

1. Computable partial functions

2. Lambda-definable functions

3. General recursive functions

4. Turing computable functions

In order to streamline our forthcoming critique, we will

adopt Kleene’s approach of merging Categories 1–3. How-

ever, we will contest Kleene’s amalgamation of Categories 1

118

natural number 2

 𝑅𝐾

string of tallies |||

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

and 4.

Category 1 contains number theory (semantics), while

Category 4 contains string-theoretic functions (syntax). In

this regard, recall Shapiro’s explicit reference—e.g., in

Lemma 2—to an extended version of Church’s thesis, i.e.,

Definition 5.

Based on Kleene’s commentary on the status of

Church’s thesis—presented next, from [5] (p. 232)—we con-

clude with Claim 2.

… Church proposed the thesis (published in

1936) that all functions which intuitively we

can regard as computable, or in his words “ef-

fectively calculable”, are λ-definable, or equiv-

alently general recursive. This is a thesis rather

than a theorem, in as much as it proposes to

identify a somewhat vague intuitive concept

with a concept phrased in exact mathematical

terms, and thus is not susceptible of proof. But

very strong evidence was adduced by Church,

and subsequently by others, in support of the

thesis.

Claim 2. On Kleene’s own terms, any reliance on Church’s

thesis renders the argument at hand non-mathematical.

5.2. Top-Down

Coming to Kleene’s top-down transition, from natural

numbers to tally marks on the tape of a TM, we emphasize

specific words in bold to accentuate the human element of

the mathematical engineer within his theory building:

[W]e must agree how the argument(s) … are

to be represented on the tape, and how the

machine is to give us the resulting value of the

function. We shall make the supposition that

all machines to be considered have among their

symbols the tally mark “|”; say it is s1. We

shall represent natural numbers by sequences

of tallies, “|” for 0, “||” for 1, “|||” for 2, … To

set up the machine and tape to compute for a

given argument a, we shall arrange that: at

the moment 0 the system consisting of a ma-

chine and tape is started off so that the leftmost

square of the tape is blank, a is represented

by tallies on the next a+ 1 squares, …

Continuing from the previous excerpt [5] (pp. 234–235,

our boldface), Kleene writes [5] (p. 235, original emphasis)

thus:

In this situation, we say the machine is applied

to a as argument. We say the machine com-

putes a value c for a as argument, if, starting

from this situation at Moment 0, the machine at

some later moment assumes the passive state 0

(“stops”) with a blank and c+ 1 tallies printed

on the tape after the a+ 1 tallies representing

the argument a, the tape being otherwise blank,

…

Agiven machine may compute a value for each

natural number a as argument, or for some a’s

but for others, or for no a’s. If, for each a, it

computes a value c where c = f(a), we say

that the machine computes the function f(a),

and that f(a) is Turing computable.

The crux is that Kleene blends natural numbers (seman-

tics) and tallies (syntax), which explains why Church’s thesis

and Turing’s thesis are the same for him.

To accommodate Kleene’s 1967 exposition and to com-

pare with Shapiro’s extended version of Church’s thesis (Def-

inition 5), which refers to stroke notation, we introduce an

alternative formulation using tallies:

Definition 7. The extended version of Church’s thesis states

that, a number-theoretic function is recursive iff it is TM

computable relative to Kleene’s convention, RK , which is

based on tally marks. (Recall Remark 13.)

Additionally, Kleene posits the “fact” that “we get no

larger class of computable functions” when contemplating

TMs that utilize more symbols than merely the tally mark [5]

(p. 238). Kleene refers to Chapter XIII in his 1952 treatise [52]

for the mathematical proof. However, here too, Kleene is

implicitly yet crucially depending on an assertion (Definition

7), which is non-mathematical (Claim 2). The implication is

now clear:

Claim 3. Shapiro in 1982 explicitly, and Kleene in 1967

implicitly, rely on an extended version of Church’s thesis

(see Definition 5 and Definition 7, respectively) in their com-

119

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

putability theory. Their outlook on software engineering is

countable by design; in fact, it is even algorithmic.

Our claim is unsurprising, given that Shapiro addresses

precisely this point, albeit without mentioning Kleene in

particular. From Claims 2–3, we also infer:

Claim 4. In retrospect, Kleene’s 1967 computability theory

is, on his own terms, not purely mathematical.

We posit that Claim 4 is well known among philoso-

phers of logic, though perhaps not exactly as we present it.

5.3. Bottom-Up

Kleene reasons from his tally-based TMs back to num-

ber theory. In this regard, he introduces another convention,

CK , which allows him to recast each Turing machine (say,

Mi) with a unique machine index (say, i).

Claim 5. With Kleene’s conventionRK for tallies fixed from

the outset, numerous methods exist to consistently generate

a machine index for a function, such as the successor func-

tion f(a) = a+ 1. Kleene’s specific design choices, which

lead to his particular outcome—index i—constitute only one

coding method, CK , among several possible methods.

To substantiate Claim 5, we present Kleene’s own

desiderata, which rely on a Turing machine G that com-

putes the successor function [5] (pp. 236–237). The letter

“G” presumably stands for “Gödel,” given that the following

exposition is reminiscent of Gödel coding [5] (pp. 242–243,

original italics, our boldface):

We have seen that the pattern of behavior of

a given Turing machine is determined by the

table for it …

Rewriting the table for our machine G in this

manner, it becomes:

Machine state Scanned square condition

0 1
1 0C0 1R2
2 0R3 1R9
3 1L4 1R3
… … …

10 0C0 0R11
11 1C0 1R11

The table for a machine can be written in code

form. Consider the table for G… let us insert

semicolons at the end of each row of entries,

and commas separating entries within a row,

and then string the entire body of the table

along as one sequence of symbols:

0C0, 1R2; 0R3, 1R9; 1L4, 1R3;

. . . ; 0C0, 0R11; 1C0, 1R11

This sequence of symbols is the code for the

machine G.

The code for any machine [relative to the cho-

sen representation] can thus be written on a

typewriter with the following 15 symbols:

L C R , ; 0 1 2 3 4 5 6 7 8 9

Such a code does not begin with the symbol

L. By reinterpreting these symbols [relative

to the chosen representation] as the digits of

a number in the number system based on 15,

we get a positive integer which describes [to

us] the machine table and thence the pattern of

behavior of the machine; call this number the

index of the machine...

Once again, we see Kleene blending Turing machinery

(syntax) and number theory (semantics), but this time he does

so via his concocted 15-symbol system and his other design

choices. He chooses, just like Gödel, one specific coding

convention, CK , instead of entertaining, like the creative

engineer, a family of two or more conventions.

Hinging upon his conventions RK and CK , Kleene

is now finally in a position to define a listing of his TMs,

{M i}i>0
, accompanied by the assertion that each machine

Mi computes a partial function ϕi(). Schematically, we

depict the situation thus:

ϕ1 ϕ2 ϕ3 …

RK and CK | | |
M1 M2 M3 …

Fact 1. Relying on conventionsRK and CK , Kleene defines

a listing {M i}i>0
of his TMs and, next, a corresponding

listing {ϕi}i>0
of his computable partial functions; that is,

each machineMi computes a partial function ϕi().

120

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

All of this effort aims to achieve mathematical elegance

by creating a mirror image between functions (semantics)

and machines (syntax). Unfortunately, this pursuit will ulti-

mately prove mistaken.

5.4. Kleene’s T Predicate

With conventions RK and CK fixed at the outset,
Kleene defines his famous T (i, a, x) predicate in 1. and
his specific number-theoretic function ψ() in 2. as follows:

1. i is the index of a Turing machine (call it “Machine

Mi”) which, when applied to a as an argument, will at

Moment x (but not earlier) have completed the com-

putation of a value (call that value “ϕi(a)”).

2. ψ(a) =

{
ϕa(a) + 1

0

if (Ex)T (a, a, x)

otherwise

These two items are quoted respectively from pages

243 and 245 in Kleene [5].

Observe that argument a andmomentx are natural num-

bers and that machine indices i and a are Gödel numbers

in particular. More importantly, note that Kleene evaluates

his T (i, a, x) predicate in 1. above as either true or false,

subject to the proviso that machine index i is interpreted in

adherence to RK and CK .

For instance, in contrast to a statement such as Pythago-

ras’ theorem, the predicate T (100, 200, 300) may hold true

in Kleene’s work but could be false in a treatise in which

TMs operate based on bits instead of tallies. The implication

is that ψ(a), defined above in 2., strongly depends on RK

and CK , even though these syntactic conventions are not

mentioned.

This brings us to the elephant in the room, namely, the

very idea that semantics and syntax are 100% separable:

Claim 6. Kleene’s predicate semantics hinges on specific

choices pertaining to his syntax. The T (i, a, x) predicate

does not convey any meaningful information unless specific

syntactic conventions, such as RK and CK , are consistently

employed for the natural numbers at hand.

Using T (i, a, x) in theoretical discourse requires accep-

tance of an extended version of Church’s thesis (Definition

7). In Kleene’s 1967 exposition, this dependence specifically

amounts to embracing syntactic conventions RK and CK .

5.5. Reductio ad Absurdum

Reaching the climax, Kleene then proves, via his list-

ing {M i}i>0
of TMs and by reductio ad absurdum, that his

concocted function ψ() is not computable. He writes:

Theorem 5. The function ψ(a) defined [in 2. above] is not

computable. Kleene [5] (p. 245).

Kleene’s proof—which, in modern terms, demonstrates

the incomputability of the Halting Problem—proceeds as

follows:

Proof. Suppose ψ(a) were computable; say, machineMp

computes it, so that ψ(a) = ϕp(a) for all a. Substituting

p for a, we have: ψ(p) = ϕp(p). But sinceMp computes

ψ(a), we have, for all a, (Ex)T (p, a, x), and in particular

(Ex)T (p, p, x). Using this in the definition of ψ(a), we

obtain: ψ(p) = ϕp(p) + 1. The two displayed equations

contradict each other.

This proof is quoted almost literally from Kleene [5]

(p. 245), but we have added the words “we have” and “we

obtain” to improve the readability.

Consequently, Kleene concludes that ψ() is incom-

putable.

5.6. Anti-Climax

Our disagreement is that Kleene’s proof solely estab-

lishes the incomputability of ψ() within his practice of RK

and CK . Recall Claims 4–6. We therefore propose to amend

Kleene’s Theorem 5 as follows:

Theorem 6. The function ψ(a) defined in 2. above is not

computable relative to Kleene’s practice, which is character-

ized by his conventions RK and CK .

To fully appreciate our amendment (Theorem 6), con-

sider one of the uncountably many antagonists of Kleene.

Let us refer to her as Antagonist A. Suppose that Antagonist

A favors using bits to represent numbers on the tape of a TM.

She therefore chooses her own representation, denoted as

RA, in contrast to Kleene’s tally-based representation RK .

Her coding convention, CA, naturally differs from Kleene’s

convention CK .

Consequently, she establishes an alternative listing

121

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

{Nk}k>0
of machines, accompanied by a corresponding

listing {ρk}k>0
of partial functions. Each TM Nk, based

on the binary system, computes some partial function ρk(),

meaning that each ρk() is computable relative to conventions

RA and CA.

ρ1 ρ2 ρ3 … ρ1241 is ψ …

RA and CA | | | |
N1 N2 N3 … N1241 …

Besides deriving some incomputable function relative

to representation RA and coding CA, it is conceivable that

some machine, say N1241, computes Kleene’s own “incom-

putable” function ψ() relative toRA andCA. This particular

possibility is not invalidated by Kleene’s proof of Theorem

5, as presented earlier. The crux is as follows:

Claim 7. Kleene only proves incomputability relative to

his practice (Theorem 6) instead of practice-independent

incomputability (Kleene’s alleged Theorem 5).

Kleene mistakenly believes that his semantics is en-

tirely divorced from his syntactic choices. He firmly embeds

his proclaimed equivalence between Church’s thesis and

Turing’s thesis within his meta-mathematics, as exemplified

by the mirrored relationship between his listing of all com-

putable partial functions and his listing of all tally-based

TMs in his proof of Theorem 5. To be technically correct, he

should mention, like Shapiro, his dependence on an extended

version of Church’s thesis (Definition 7). Likewise, by pro-

jecting a similar mirrored image onto the Antagonist’s ma-

chine listing (a common reaction among computer scientists

upon encountering our critique), Kleene or his protagonist

inevitably invokes an extended version of Church’s thesis

(Definition 7) yet again. Alas, Kleene does not mention this

assumption anywhere in his proof. To be precise, he fails to

acknowledge his reliance on RK and CK , thereby rendering

his semantics ambiguous.

Let us now revisit Problem 3: Does a proof of incom-

putability in Kleene’s countable, tally-based setting have any

prescriptive implications for software engineers? The answer

is affirmative if the engineers rigorously follow Kleene’s

facile reasoning, adhering strictly to his practice (cf. RK and

CK). However, in even slightly less routine settings, such

as combining RK and CK with RA and CA, the answer is

negative.

For Kleene’s incomputability theorem to hold practi-

cal relevance, the engineer must adhere to the precision and

consistency characteristic of a tally-based automaton, rather

than relying on the creativity and skill prevalent in industry.

Certainly, a theorist can retrospectively describe the do’s

and don’ts of a combined practice, like integrating RK and

CK with RA and CA. However, it is inherently impossi-

ble to a priori prescribe an arbitrary engineering practice,

considering the uncountably many possibilities that exist.

6. Conclusions

The director of a computing laboratory is unlikely to

embrace Kleene’s perspective on incomputability unless he

believes that the mind of an engineer functions like a tally-

based Turing machine. While such a belief is admissible,

Kleene did not explicitly state it as an assumption in his re-

ductio ad absurdum proof. Given that many engineers reject

this assumption, even an amendment to Kleene’s proof lacks

the societal significance that Kleene attributes to it.

For several engineers, notation pertaining to com-

putability in the real world is context-dependent. Conse-

quently, they typically disagree with Shapiro’s 2017 senti-

ment:

It would, however, be unfortunate if ‘accept-

able notation’ itself were context-sensitive and

interest-relative. That would make computabil-

ity, over numbers, a context-sensitive and

interest-relative matter [53] (p. 276).

The crux is that engineers are hesitant to accept a uni-

fying thesis without scrutiny from industry; while mathemat-

ical aesthetics has a role, it may not come at the expense

of modeling the real world. In this regard, our findings re-

late to Brauer [51]. We have complemented his philosophical

critique by delving into the uncountable realm of software

engineering and challenging Kleene’s mathematics as such.

Mathematically, Kleene aimed to establish a theorem

concerning an incomputable function independent of human

involvement, such as how to represent numbers on a Turing

machine tape. Alas, Kleene’s proof applies only within the

context of his tally-based representation,RK , and his coding

convention, CK . To address this limitation, it is necessary to

introduce an extended version of Church’s thesis as an addi-

tional assumption, alongside Kleene’s initial assumption that

the function in question is computable. Consequently, a cor-

122

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

rected version of Kleene’s reductio ad absurdum proof only

demonstrates that at least one of these two assumptions is

incorrect, rather than proving that the function is necessarily

incomputable.

Although Kleene, like Shapiro, would likely have ac-

cepted the additional assumption as valid, it is important

to note that he believed he was reasoning solely within the

realm of mathematics, with references to Church’s thesis aris-

ing only in the aftermath. He was unaware that his chain of

reasoning inherently relied on Church’s thesis from the out-

set. Since Church’s thesis is non-mathematical by Kleene’s

own terms, it follows that both his proof and our amendment

to it are also non-mathematical.

Funding

This work received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

In addition to the two anonymous reviewers, the

author—also known as Karel Van Oudheusden in Flemish

circles—thanks Doukas Kapantaïs, Erhard Schüttpelz, and

Simone Martini for their discussions of (early) drafts of this

paper over the past nine years. He gratefully acknowledges

Kapantaïs for preparing a draft of the synopsis in Section 3.3

and he thanks Edward A. Lee for bringing the case study of

the lava lamps to his attention.

The technical findings in this article are dedicated to the

logician Dick de Jongh and may well have been anticipated,

in one form or another, by LudwigWittgenstein, Paul Finsler,

Dale Jacquette, James RMeyer, Nicholas Swenson, and other

critical thinkers. No claim to priority—nor to finality—is

made in identifying inconsistencies in the foundations of

computability theory. Further discussions and errata appear

on: https://www.dijkstrascry.com/Kleene.

Conflicts of Interest

The author declares no conflict of interest.

Appendix A. Descriptive vs. Prescrip-

tive

In discussing the attribution of law, symbolic logic, or

program text in prescriptive and descriptive terms, the author

offers a three-part classification in his recent Think Piece [54]:

1. Governing laws—Prescriptive but not necessarily de-

scriptive; these are authoritative recommendations or

rules intended to guide behavior, though they are not

necessarily followed in the real world.

2. Natural laws—Both prescriptive and descriptive; here

symbolic representations not only prescribe what ought

to occur but also accurately reflect what does occur in

the physical world.

3. Historical trends—Primarily descriptive and, at most,

secondarily prescriptive; they characterize patterns ob-

served over time, with any prescriptive force arising

only retrospectively or incidentally.

Different historical figures have assigned symbolic

logic to distinct conceptual categories. The author sug-

gests that Eddington regarded logic as falling under the first

category—governing laws. Turing, at least temporarily and

particularly in his exchanges with Wittgenstein, aligned with

Russell’s intellectual position and treated symbolic logic as

belonging to the second category—natural laws. Wittgen-

stein, in contrast, rejected both of these views, arguing that

symbolic logic should instead be understood as part of the

third category—historical trends.

Some anonymous readers of a draft version of this pa-

per do not clearly distinguish between the prescriptive and

the descriptive, frequently treating them as interchangeable.

As a result—and consistent with what the author identifies as

the mainstream view in computer science—they implicitly

adopt the second category: symbolic logic is seen as both

prescriptive and descriptive, the Church-Turing Thesis is

effectively treated as a natural law (cf. the daughter, Helena,

123

https://www.dijkstrascry.com/Kleene

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

in the Exemplum), and no substantial distinction is drawn—

at least in principle—between functional programming and

superficially similar approaches within software engineering.

The standard position rests on an implicit, unac-

knowledged assumption—a neo-Russellian tenet: the be-

lief in an isomorphism between symbolic logic and the

essence of physical reality, between a Chomskian au-

tomaton and the essence of what it is to be a creative

human engineer (see Remark 12), or—closely related—

between notation-independent lambda-definable functions

and notation-dependent Turing machines. This latter con-

flation, between one mathematical realm and another one,

amounts to an equivocation between Church’s Thesis and

Turing’s Thesis, an elision notably made by Kleene in 1967

and by several theoretical computer scientists today.

References

[1] Daylight, E.G., Demoen, B., Catthoor, F., 2004. For-

mally Specifying Dynamic Data Structures for Embed-

ded Software Design: An Initial Approach. Electronic

Notes in Theoretical Computer Science. 108, 99–112.

[2] Katsaragakis, M., Baloukas, C., Papadopoulos, L., et

al., 2025. Performance, Energy and NVM Lifetime-

Aware Data Structure Refinement and Placement for

Heterogeneous Memory Systems. ACM Transactions

on Architecture and Code Optimization. 22(2), 80.

[3] Pilquist, M., Bjarnason, R., Chiusano, P., 2023. Func-

tional Programming in Scala, 2nd ed. Manning Publi-

cations: New York, NY, USA.

[4] Voeten, J., 2001. On the Fundamental Limitations of

Transformational Design. ACM Transactions on De-

sign Automation of Electronic Systems. 6(4), 533–552.

[5] Kleene, S.C., 1967. Mathematical Logic. John Wiley

and Sons: New York, NY, USA.

[6] Naur, P., 1985. Programming as Theory Building. Mi-

croprocessing and Microprogramming. 15, 253–261.

[7] Shapiro, S., 1982. Acceptable Notation. Notre Dame

Journal of Formal Logic. 23(1), 14–20.

[8] Daylight, E.G., 2011. Pluralism in Software Engineer-

ing: TuringAwardWinner Peter Naur Explains. Lonely

Scholar: Heverlee, Belgium.

[9] Jacquette, D., 2004. Diagonalization in Logic andMath-

ematics. In: Gabbay, D.M., Guenthner, F. (Eds.). Hand-

book of Philosophical Logic. Springer: Dordrecht,

Netherlands. pp. 55–147.

[10] Jacquette, D., 2014. Computable Diagonalizations and

Turing’s Cardinality Paradox. Journal for General Phi-

losophy of Science. 45(2), 239–262.

[11] Van Bendegem, J.P., 2012.ADefense of Strict Finitism.

Constructivist Foundations. 7(2), 141–149.

[12] San Mauro, L., 2018. Church–Turing Thesis, in Prac-

tice. In: Pulcini, G., Piazza, M. (Eds.). Truth, Existence

and Explanation: FILMAT 2016 Studies in the Philos-

ophy of Mathematics. Springer: Cham, Switzerland.

pp. 225–248.

[13] Andrews, U., Belin, D.F., San Mauro, L., 2023. On the

Structure of Computable Reducibility on Equivalence

Relations of Natural Numbers. Journal of Symbolic

Logic. 88(3), 1038–1063.

[14] Quinon, P., 2021. Can Church’s Thesis Be Viewed as

a Carnapian Explication? Synthese. 198 (Suppl 5),

1047–1074.

[15] Quinon, P., 2025. Intensional Differences between Pro-

gramming Languages: A Conceptual and Practical

Analysis. Philosophies. 10, 129.

[16] Stephanou, H., 2025. Systems, Machines, and Problem-

Solving. De Gruyter: Berlin, Germany.

[17] Lucas, S., 2021. The Origins of the Halting Problem.

Journal of Logical and Algebraic Methods in Program-

ming. 121, 100687.

[18] Burgin, M., 2005. Super-Recursive Algorithms.

Springer: New York, NY, USA.

[19] Daylight, E.G., 2024. Refining Mark Burgin’s Case

against the Church–Turing Thesis. Philosophies. 9(4),

122.

[20] Petri, C.A., 1966. Communication with Automata.

Technical Report RADC-TR-65-377. Rome Air De-

velopment Center: New York, NY, USA.

[21] Smith, E., 2015. Carl Adam Petri: Life and Science.

Denir, T. (Trans.). Springer: Heidelberg, Germany.

[22] Daylight, E.G., 2025. Injecting Observers into Compu-

tational Complexity. Philosophies. 10(4), 76.

[23] Daylight, E.G., Cardone, F., 2019. Unbounded

Nondeterminism: An Introduction for the Philosopher

of Computing. Available from: https://webtv.univ-

lille.fr/video/10392/edgar-daylight-and-felice-cardone-

unbounded-nondeterminism-an-introduction-for-the-

philosopher-of-computing (cited 1 July 2024).

[24] Berg, J., Chihara, C., 1975. Church’s Thesis Miscon-

strued. Philosophical Studies: An International Jour-

nal for Philosophy in the Analytic Tradition. 28(5),

357–362.

[25] Bowie, G.L., 1973. An Argument Against Church’s

Thesis. The Journal of Philosophy. 70(3), 66–76.

[26] Ross, D., 1974. Church’s Thesis: What Its Difficulties

Are and Are Not. The Journal of Philosophy. 71(15),

515–525.

[27] Kapantaïs, D., 2016. A Refutation of the Church–Tur-

ing Thesis According to Some Interpretation of What

the Thesis Says. In: Müller, V.C. (Ed.). Computing

and Philosophy: Selected Papers from IACAP 2014.

Springer: Cham, Switzerland. pp. 45–62.

[28] Kapantaïs, D., 2018. A Counterexample to the

Church–Turing Thesis as Standardly Interpreted. APA

Newsletter on Philosophy and Computers. 18(1),

124

https://webtv.univ-lille.fr/video/10392/edgar-daylight-and-felice-cardone-unbounded-nondeterminism-an-introduction-for-the-philosopher-of-computing
https://webtv.univ-lille.fr/video/10392/edgar-daylight-and-felice-cardone-unbounded-nondeterminism-an-introduction-for-the-philosopher-of-computing
https://webtv.univ-lille.fr/video/10392/edgar-daylight-and-felice-cardone-unbounded-nondeterminism-an-introduction-for-the-philosopher-of-computing

Philosophy and Realistic Reflection | Volume 03 | Issue 01 | March 2026

24–27.

[29] Davis, M., 1988. Mathematical Logic and the Origin of

Modern Computers. In: Herken, R. (Ed.). The Univer-

sal Turing Machine: A Half-Century Survey. Oxford

University Press: Oxford, UK. pp. 149–174.

[30] Priestley, M., 2011.AScience of Operations: Machines,

Logic and the Invention of Programming. Springer:

London, UK.

[31] Daylight, E.G., 2015. Towards a Historical Notion of

‘Turing—The Father of Computer Science’. History

and Philosophy of Logic. 36(3), 205–228.

[32] Franklin, J., 2014. An Aristotelian Realist Philosophy

of Mathematics. Palgrave Macmillan: Basingstoke,

UK.

[33] Linnebo, Ø., Shapiro, S., 2019. Actual and Potential

Infinity. Noûs. 53(1), 160–191.

[34] Cook, R.T., 2024. The Logic of Potential Infinity.

Philosophia Mathematica. nkae022. DOI: https://doi.

org/10.1093/philmat/nkae022

[35] Henry, P., 1993. Mathematical Machines. In: Haken,

H., Karlqvist, A., Svedin, U. (Eds.). The Machine as

Metaphor and Tool. Springer: Berlin, Germany. pp.

101–122.

[36] Daylight, E.G., 2024. True Turing: A Bird’s-Eye View.

Minds & Machines. 34, 29–49.

[37] Copeland, B.J., 2006. Turing’s Thesis. In: Olszewski,

A., Wolenski, J., Janusz, R. (Eds.). Church’s The-

sis after 70 Years. De Gruyter: Berlin, Germany. pp.

147–174.

[38] Shagrir, O., 2006. Gödel on Turing on Computabil-

ity. In: Olszewski, A., Wolenski, J., Janusz, R. (Eds.).

Church’s Thesis after 70 Years. De Gruyter: Berlin,

Germany; Boston, MA, USA. pp. 393–419.

[39] Bringsjord, S., Arkoudas, K., 2004. The Modal Argu-

ment for Hypercomputing Minds. Theoretical Com-

puter Science. 317(1–3), 167–190.

[40] Longo, G., 2006. The Cognitive Foundations of Math-

ematics: Human Gestures in Proofs and Mathematical

Incompleteness of Formalisms. In: Grialou, P., Longo,

G., Okada, M. (Eds.). Images and Reasoning. Keio

University Press: Tokyo, Japan.

[41] Kugel, P., 2002. Computing Machines Can’t Be Intelli-

gent (…and Turing Said So). Minds & Machines. 12,

563–579.

[42] Kugel, P., 2009. You Don’t Need a Hypercom-

puter to Evaluate an Uncomputable Function. Interna-

tional Journal of Unconventional Computing. 5(3–4),

209–222.

[43] Curtis-Trudel, A., 2022. Why Do We Need a Theory

of Implementation? The British Journal for the Philos-

ophy of Science. 73(4), 1067–1091.

[44] Piccinini, G., 2015. Physical Computation: AMecha-

nistic Account. Oxford University Press: Oxford, UK.

[45] Copeland, B.J., Shagrir, O., 2011. DoAccelerating Tur-

ing Machines Compute the Uncomputable? Minds &

Machines. 21, 221–239.

[46] Rescorla, M., 2014. A Theory of Computational Imple-

mentation. Synthese. 191, 1277–1307.

[47] Kugel, P., 1986. Thinking May Be More Than Com-

puting. Cognition. 22(2), 137–198.

[48] Daylight, E.G., Atienza, D., Vandecappelle, A., et al.,

2004. Memory-Access-Aware Data Structure Transfor-

mations for Embedded Software with Dynamic Data

Accesses. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems. 12(3), 269–280.

[49] Katsaragakis, M., Papadopoulos, L., Baloukas, C., et

al., 2022. Memory Management Methodology for Ap-

plication Data Structure Refinement and Placement

on Heterogeneous DRAM/NVM Systems. In Proceed-

ings of the 2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Antwerp, Belgium,

14–23 March 2022; pp. 748–753.

[50] CloudFlare. How do lava lamps help with Internet en-

cryption? Available from: https://www.cloudflare.c

om/learning/ssl/lava-lamp-encryption/ (cited 15 June

2024).

[51] Brauer, E., 2021. The Dependence of Computabil-

ity on Numerical Notations. Synthese. 198(11),

10485–10511.

[52] Kleene, S.C., 1952. Introduction to Metamathemat-

ics. D. van Nostrand Company: New York, NY, USA;

Toronto, ON, Canada.

[53] Shapiro, S., 2017. Computing with Numbers and Other

Non-Syntactic Things: De re Knowledge of Abstract
Objects. Philosophia Mathematica. 25(2), 268–281.

[54] Daylight, E.G., 2021. Addressing the Question “What

Is a Program Text?” via Turing Scholarship. IEEE

Annals of the History of Computing. 43(4), 87–91.

125

https://doi.org/10.1093/philmat/nkae022
https://doi.org/10.1093/philmat/nkae022
https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/
https://www.cloudflare.com/learning/ssl/lava-lamp-encryption/

	Introduction
	Exemplum
	Four Tenets and a Synopsis
	Two Direct Tenets
	Two Surprising Tenets
	Synopsis

	Shapiro (1982)
	Buildup
	Theorem Proving
	Towards Incomputability
	Knowing a Notation
	Pivoting from Shapiro to Kleene

	Kleene (1967)
	Prelude
	Top-Down
	Bottom-Up
	Kleene's
	Reductio ad Absurdum
	Anti-Climax

	Conclusions

