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ABSTRACT
This paper presents an Artificial Intelligence (AI)-based approach to train localization through the detection of 

railway infrastructure objects using convolutional neural networks. The proposed system identifies key visual landmarks 
such as traffic lights, level crossings, tunnels, bridges, and passenger platforms directly from live video streams captured 
by onboard cameras during train operation. This enables accurate and continuous localization without relying on satel-
lite navigation systems or additional trackside infrastructure. The object detection model is based on the You Only Look 
Once (YOLOv11) architecture. It is trained using high-performance Graphics Processing Unit (GPU) resources and 
subsequently converted and optimized for deployment on the energy-efficient RK3588 neural processing unit (NPU). 
The system achieves a mean average precision of mAP@0.5:0.95 = 0.52 and operates in real time at approximately 35 
frames per second, meeting the practical requirements for onboard applications. Compared to traditional Global Naviga-
tion Satellite System (GNSS)-based solutions, the proposed method is inherently resilient to signal jamming and spoof-
ing while significantly reducing infrastructure costs. Its low power consumption and high-speed inference make it espe-
cially well-suited for integration into modern railway systems operating at higher automation levels. The results confirm 
the feasibility of this AI-driven approach as a scalable and robust solution for train localization in diverse operational 
conditions.
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1. Introduction

The ongoing development of railway automation, 
particularly the transition toward Grade of Automation 3 
(GoA3) and Grade of Automation 4 (GoA4) [1], imposes 
increasingly stringent requirements on train control and 
localization systems. At these higher automation levels, 
where train operation is performed with minimal or no 
onboard staff, ensuring precise, reliable, and real-time po-
sitioning is critical for maintaining safety and operational 
efficiency.

Traditionally, Global Navigation Satellite Systems 
(GNSS), including GPS, GLONASS, Galileo, BeiDou, 
QZSS, and NavIC, have been employed for train localiza-
tion due to their wide availability and global or regional 
coverage. However, applying GNSS in safety-critical ap-
plications such as autonomous train operation remains 
challenging. Issues such as signal blockage in tunnels, 
urban canyons, and forested areas; multipath effects; sus-
ceptibility to jamming and spoofing; reliance on foreign-
operated space infrastructure; and limited update rates pose 
significant limitations to ensuring continuous and trustwor-
thy localization [2].

To overcome these shortcomings, alternative or com-
plementary localization technologies are being actively 
investigated. Among them, computer vision systems de-
signed to detect railway infrastructure objects have the po-
tential to serve as either a standalone alternative to GNSS 
or as an augmentation method to enhance the robustness 
and reliability of train localization. These systems employ 
onboard cameras in combination with artificial intelligence 
algorithms to identify and classify characteristic infrastruc-
ture components. By recognizing such elements and corre-
lating them with a priori georeferenced data, the train’s po-
sition can be estimated with high accuracy, independently 
of external radio signals.

This paper presents a novel vision-based localization 
approach for railway vehicles, which utilizes convolutional 
neural networks (CNNs) [3] for the real-time detection of 
railway infrastructure objects. The proposed system is 
based on the YOLOv11 (You Only Look Once, version 11) 

[4] object detection architecture and is capable of identify-
ing critical elements such as signals, level crossings, plat-
forms, tunnels, and bridges from video data captured by a 

forward-facing onboard camera. The recognized infrastruc-
ture components are matched to a pre-mapped database, 
enabling continuous and dynamic train position estimation.

The proposed method offers several advantages: it 
increases resilience to GNSS signal loss or degradation, 
enables operation in GNSS-denied environments, and does 
not require any additional trackside infrastructure. Con-
sequently, the approach is well-suited for integration into 
next-generation railway automation systems, providing 
a scalable and reliable localization solution in support of 
high levels of automation.

2. Related Work

Train localization has traditionally relied on a diverse 
set of techniques, including satellite navigation systems 
and trackside infrastructure sensors. While each approach 
offers specific advantages, they also present distinct limita-
tions – particularly in the context of autonomous and semi-
autonomous railway operations. 

2.1. Global Navigation Satellite Systems (GNSS)

Global Navigation Satellite Systems, such as GPS 
(United States of America), GLONASS (Russia), Galileo 
(European Union), BeiDou (China), QZSS (Japan), and 
NavIC (India), have been widely adopted for position-
ing and navigation across various transportation sectors, 
including rail. GNSS offers global coverage and accurate 
positioning under clear-sky conditions, making it a practi-
cal solution for large-scale railway networks.

However, despite their widespread use, GNSS-based 
systems face several limitations – especially in safety-
critical applications such as autonomous train control:

•	 Signal blockage – GNSS signals can be obstructed 
in tunnels, cuttings, under bridges, and within 
urban canyons, leading to temporary loss of posi-
tioning [5].

•	 Multipath effects – Reflections from buildings, 
terrain, or other surfaces can distort signal paths 
and result in inaccurate positioning [6].

•	 Signal jamming – Due to their low power at 
ground level, GNSS signals are vulnerable to both 
intentional and unintentional radio frequency in-
terference [7].
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•	 Spoofing attacks – Malicious entities can transmit 
counterfeit GNSS signals, causing receivers to 
compute false positions [8].

•	 Dependency on external infrastructure – GNSS 
relies on space-based assets that are often operated 
by foreign governments, which may raise con-
cerns about availability, security, or geopolitical 
risks.

These limitations have driven research into alterna-
tive and complementary localization techniques.

2.2. Wheel Odometry

Wheel odometry is a traditional method for estimat-
ing train position by counting wheel rotations and calculat-
ing the traveled distance based on the known diameter of 
the wheel. This technique is widely used in railway appli-
cations due to its simplicity, independence from external 
infrastructure, and low implementation cost.

However, this method is prone to cumulative errors 
arising from wheel slip or slide, which are particularly 
common during braking, acceleration, or operation under 
low-adhesion conditions (e.g., wet or icy rails) [9]. Another 
major source of error is the gradual reduction in wheel 
diameter over time due to wear of the wheel tread and, 
more specifically, the steel tyre (wheel bandage). Since the 
calculation of distance is directly dependent on the wheel’s 
diameter, even small changes can lead to significant posi-
tion estimation errors over long distances.

To mitigate this, it is necessary to regularly measure 
the diameter of the bandage on the wheelsets used for 
odometry. These measurements allow for timely recalibra-
tion of the odometry system, ensuring that distance calcu-
lations remain accurate despite mechanical wear. In prac-
tice, such measurements are typically carried out during 
scheduled maintenance using portable measuring tools or 
stationary systems installed in maintenance depots.

Despite regular corrections, standalone wheel 
odometry is often insufficient for applications requiring 
high-precision localization, such as autonomous train oper-
ation. Therefore, it is commonly used in conjunction with 
complementary positioning technologies, including GNSS, 
inertial navigation systems, and trackside transponders, 
to enhance accuracy, provide redundancy, and reduce the 
impact of drift and slippage in challenging operating envi-

ronments.

2.3. Inertial Navigation Systems (INS)

Inertial Navigation Systems (INS) estimate a ve-
hicle’s position, velocity, and orientation by processing 
signals from accelerometers and gyroscopes through a pro-
cess known as dead reckoning. These systems operate in-
dependently of external signals, making them particularly 
valuable in environments where GNSS is unavailable, such 
as tunnels, urban canyons, or areas affected by signal in-
terference. As a result, INS is frequently used as a fallback 
solution when GNSS data is temporarily inaccessible [10].

One of the key advantages of INS is its ability to pro-
vide continuous localization without requiring any external 
infrastructure. This autonomy makes it highly suitable 
for integration into onboard train control systems, where 
uninterrupted position data is essential for ensuring safety 
and automation continuity. However, the major drawback 
of inertial navigation is the gradual accumulation of errors 
over time, often referred to as drift. Since INS calculates 
position incrementally based on previous measurements, 
even small sensor inaccuracies can compound, resulting in 
significant deviations from the actual position unless peri-
odic corrections from an external reference are applied.

To address this issue, advanced positioning systems 
often employ GNSS/INS integration, where GNSS data 
is used to regularly correct the drift inherent in INS cal-
culations [11]. This sensor fusion approach significantly 
enhances localization robustness by combining the high 
accuracy of GNSS with the continuity of INS. However, 
in scenarios where GNSS updates are entirely unavailable, 
such as during long tunnel segments or in the presence of 
GNSS jamming or spoofing, the effectiveness of this fu-
sion is compromised. Without reliable external corrections, 
the INS continues to drift, leading to increasing localiza-
tion errors over time.

Such inaccuracies become particularly problematic in 
the context of autonomous train operation, where precise 
positioning is critical for safe braking, station stopping, 
and track switching. In safety-critical applications, pro-
longed reliance on uncorrected INS data may result in de-
viations large enough to compromise operational integrity, 
highlighting the need for additional redundancy or alterna-
tive localization strategies in GNSS-denied environments.
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2.4. Radio-Frequency Identification (RFID)

RFID-based localization employs tags, either pas-
sive, powered by the reader’s interrogation signal, or ac-
tive, equipped with their own power supply, strategically 
affixed alongside or between the rails, while RFID readers 
are installed on the train’s undercarriage or near its leading 
bogie [12]. As the train moves, the onboard reader periodi-
cally energizes passive tags (or polls active tags), receives 
their unique identifiers, and thereby determines that it has 
passed a known reference point. By correlating each tag’s 
ID with its pre-surveyed track location, the system can 
update the train’s position with sub-meter accuracy at each 
tag crossing.

Because RFID does not rely on satellite signals, it is 
immune to GNSS-specific vulnerabilities such as multipath 
interference in urban canyons, signal blockage in tunnels, 
or intentional jamming and spoofing. This resilience, com-
bined with the fine granularity of tag spacing, makes RFID 
localization attractive for safety-critical applications where 
reliable position updates are essential.

Despite these benefits, widespread adoption of RFID 
localization faces significant practical challenges. Deploy-
ing thousands of tags along hundreds of kilometers of 
track demands substantial upfront investment in hardware, 
installation labor, and track-side power or maintenance 
access for active tags. Even passive tags, while lower-cost 
per unit, require careful mounting, periodic inspection, and 
replacement when damaged or degraded. As a result, the 
total cost of ownership can be prohibitive for large net-
works.

Furthermore, RFID systems inherently produce discrete 
position updates only at tag locations. Between tags, the train 
must rely on onboard odometry or inertial sensors, which 
accumulate drift until the next tag is read. Consequently, the 
effective localization resolution and continuity are bounded 
by tag spacing: closer spacing yields more frequent updates 
but further raises infrastructure costs. This trade-off between 
accuracy, update rate, and deployment expense remains a key 
limitation when considering RFID for continuous train posi-
tioning over long mainline routes.

2.5. Balises

Balises play a central role in many modern train 

control systems by acting as fixed reference points along 
the track. In the European Train Control System (ETCS), 
for example, Eurobalises are mounted between the rails at 
predetermined locations and serve as passive transpond-
ers: when a train passes over a balise, the onboard antenna 
energizes it and the balise then transmits stored data back 
to the train’s onboard unit [13]. That data typically includes 
the balise’s exact geographic reference, line identification, 
permissible speed, and any temporary speed restrictions 
or movement authorities. By periodically “reading” these 
waypoints, the train continually refreshes its understanding 
of its location with meter-level accuracy, which is essential 
for enforcing braking curves, maintaining safe separation, 
and enabling higher levels of automation.

Because balises do not rely on continuous radio links 
or satellite signals, they offer exceptional reliability and 
immunity to electromagnetic interference, attributes that 
are vital in safety-critical railway environments. Their pas-
sive design also means they have no onboard power source 
and very low failure rates, contributing to system robust-
ness and safety certification.

However, this fixed-point approach also introduces 
inherent limitations. Position information is only updated 
when the train crosses a balise, resulting in discrete location 
“jumps” rather than a continuous position track. Between 
balises, the train must rely on less precise odometry or in-
ertial measurements, which can accumulate error over dis-
tance. Moreover, the installation and upkeep of balises, and 
the associated track-side infrastructure such as mounting 
assemblies, cables, and data concentrators, add capital and 
operational expenses. Regular inspection, cleaning, and oc-
casional replacement of balise units are required to ensure 
long-term reliability, which increases life-cycle costs com-
pared to purely onboard or wireless positioning solutions.

2.6. AI-Based Methods

Recent advancements in computer vision and artifi-
cial intelligence (AI) have introduced new opportunities 
for train localization. AI-based approaches, particularly 
those employing CNNs, can identify and interpret railway 
infrastructure elements from visual data captured by on-
board cameras.

Techniques such as object detection using the YOLO 
(You Only Look Once) family of models have demonstrat-
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ed high performance in detecting railway signals, switches, 
signs, level crossings, and obstacles [14,15]. These methods are 
especially attractive because they rely on visual features of 
existing infrastructure and can operate effectively in GNSS-
denied environments, such as tunnels or urban canyons.

In contrast to inertial navigation systems (INS), 
which suffer from accumulated drift over time and require 
frequent correction from external sources, AI-based visual 
methods do not accumulate positional errors in the same 
way. Each detection of a known infrastructure element 
provides a new, independent cue for localization.

Furthermore, unlike RFID-based systems and balise-
based solutions, which require widespread and costly 
trackside equipment installation and maintenance along the 
entire rail network, AI-based systems only require onboard 
sensors and computing hardware. This makes them more 
scalable and cost-effective, particularly for retrofitting ex-
isting rolling stock.

Another key advantage is the abundance and diver-
sity of railway infrastructure objects, such as kilometer and 
hectometer posts, signals, level crossings, bridges, tunnels, 
and platforms, which are spatially distributed along the 
tracks. These landmarks serve as frequent and reliable ref-
erence points, enabling the continuous update of the train’s 
estimated position using visual data captured from onboard 
cameras.

When integrated with prior knowledge of track to-
pology or map-matching techniques, AI-based localization 
can either enhance traditional methods or serve as a stan-
dalone solution for train position estimation in the context 
of autonomous or semi-autonomous railway operations.

3. Materials and Methods

Considering the advantages offered by AI-based 
localization methods, such as robustness to signal interfer-
ence, independence from GNSS, and minimal reliance on 
external infrastructure, this work proposes a train localiza-
tion approach based on the detection of railway infrastruc-
ture elements using convolutional neural networks.

3.1. Dataset Description

In order to effectively train convolutional neural net-
works for object detection tasks, a large and diverse data-

set of labeled images is essential. The quality, variability, 
and annotation accuracy of the dataset directly influence 
the performance, generalization capability, and reliability 
of the resulting model, especially in safety-critical domains 
such as railway transportation.

To train the convolutional neural network, a custom 
dataset of railway infrastructure objects was manually cre-
ated. The dataset was constructed from video recordings 
captured by a forward-facing camera mounted on a train 
during regular trips under various weather conditions and 
at different times of the day. This approach ensured a wide 
variety of source images, enhancing the robustness and 
generalization ability of the trained model.

All images in the dataset have a resolution of at least 
Full HD (1920×1080 pixels), providing sufficient detail for 
accurate object detection. Figure 1 illustrates several rep-
resentative images from the dataset.

Figure 1. Example images from the dataset.

Each image was manually annotated with bounding 
boxes around key railway infrastructure elements, includ-
ing passenger platforms, level crossings, traffic lights, tun-
nels, bridges, and other relevant features.

The final dataset consists of more than 20,000 anno-
tated images, making it a substantial resource for training 
and evaluating deep learning models in the context of rail-
way infrastructure detection and train localization.

3.2. YOLOv11 Architecture

To detect objects in railway infrastructure, we use 
the YOLOv11 model as the convolutional neural network. 
YOLOv11 represents an improved version of the previous 
YOLO series and is specifically designed to provide high 
detection accuracy while maintaining real-time inference 
speed.
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The architecture of YOLOv11 consists of three main 
components:

•	 Backbone – responsible for extracting visual fea-
tures from the input image,

•	 Neck – aggregates and refines features at multiple 

scales,
•	 Head – performs object detection based on the 

processed features.
The composition and interaction of these components 

are illustrated in Figure 2.

Figure 2. Architecture of YOLOv11.
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YOLOv11 is available in five model variants: n 
(nano), s (small), m (medium), l (large), and x (extra-large) [16]. 
These variants differ in three key architectural parameters: 
d (depth multiple), w (width multiple), and mc (maximum 
number of channels). The parameter d controls the depth of 
the network by scaling the number of layers; w adjusts the 
width by modifying the number of channels in each layer; 
and mc defines the maximum number of channels allowed 
in any convolutional layer. All model versions and their 
corresponding parameter values are presented in Table 1.

Table 1. Configuration of YOLOv11 model variants according to 
architectural parameters.

Model 
Variant

d (Depth 
Multiple)

w (Width 
Multiple)

mc (Max 
Channels)

n (nano) 0.50 0.25 1024

s (small) 0.50 0.50 1024

m (medium) 0.50 1.00 512

l (large) 1.00 1.00 512

x (extra-large) 1.00 1.50 512

YOLOv11 introduces several architectural enhance-
ments over previous versions, aimed at increasing the ef-
ficiency and accuracy of object detection, particularly for 
small and partially occluded objects:

1. C3K2 Block
This block is an evolution of the CSP (Cross Stage 

Partial) [17] bottleneck structure and serves as the core of 
the improved backbone. It utilizes compact 3×3 convolu-
tional kernels, which reduce computational load while pre-
serving the model’s ability to extract fine-grained features. 
Unlike earlier structures, C3K2 integrates several internal 
C3K [18] blocks and merges outputs to maintain rich spatial 
information with fewer parameters.

2. Spatial Pyramid Pooling Fast (SPFF)
The SPFF module [19] is used in the neck of the archi-

tecture to combine features from different scales. It applies 
multiple max-pooling operations with varying kernel sizes 
to extract contextual information from both small and large 
regions of the image. This significantly improves the net-
work’s ability to detect objects of different sizes, especially 
small ones, without sacrificing speed.

3. C2PSA Attention Mechanism
YOLOv11 integrates the C2PSA (Cross Stage Partial 

with Spatial Attention) block [20] to enhance the model’s fo-
cus on the most informative areas of an image. It combines 

spatial attention with partial feature sharing to emphasize 
important regions, such as small signs or partially obscured 
objects. This mechanism helps the model to selectively 
refine feature maps and contributes to higher detection ac-
curacy.

4. Multi-Scale Prediction Head
Similar to previous YOLO models, the head of 

YOLOv11 generates predictions at three different scales, 
corresponding to varying levels of spatial resolution. This 
ensures effective detection of objects ranging from small 
to large by leveraging feature maps with appropriate detail 
levels.

Together, these innovations allow YOLOv11 to out-
perform previous versions in both accuracy and efficiency, 
making it well-suited for real-time object detection tasks in 
railway infrastructure environments.

3.3. Training and Deployment

To train the object detection model, we utilize a 
GPU-based computing environment, specifically the 
NVIDIA RTX A6000, which provides high computational 
performance of 38.71 TFLOPS (Tera Floating Point Op-
erations Per Second) and supports the efficient training of 
deep convolutional neural networks. Training deep models 
requires processing large volumes of annotated data and 
performing extensive backpropagation operations, which 
are highly parallelizable and benefit significantly from 
GPU acceleration. The use of a GPU during training ena-
bles faster convergence and allows for experimenting with 
different model architectures and hyperparameters within 
a practical timeframe. Since training is performed in a 
controlled, stationary environment, power consumption is 
not a limiting factor, making high-performance GPUs the 
preferred choice.

In contrast, deployment on board a train requires a 
different set of hardware considerations. Mobile and em-
bedded systems used in railway environments must adhere 
to strict requirements related to low power consumption, 
compact form factor, and robustness to vibration and tem-
perature variations. For this reason, inference is performed 
on the RK3588 NPU, which delivers up to 6 TOPS (Tera 
Operations Per Second) of performance while maintaining 
a low power profile. This enables real-time object detec-
tion under operational conditions without exceeding the 
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system’s thermal and power budgets.
Thus, the use of a GPU during training ensures high 

model accuracy through intensive computation, while 
deployment on an NPU guarantees efficient and reliable 
inference in the constrained environment of railway opera-
tions.

The overall training and deployment pipeline is illus-
trated in Figure 3.

Figure 3. Pipeline of the model training and deployment process.

After completing the training phase, the convolu-
tional neural network model is saved in the «.pt» format 
(PyTorch) [21], which contains both the learned weights and 
the network architecture. While this format is well-suited 
for training and experimentation, it is not optimal for 
deployment on edge devices. Therefore, the next step in-
volves converting the trained model to the «.onnx» format 
(Open Neural Network Exchange) [22]. ONNX provides 
a platform-independent representation of the model and 
serves as an intermediate stage before final deployment.

To improve inference efficiency, especially on low-
power edge devices such as the RK3588 NPU, several op-
timization steps are applied during the ONNX conversion 
process:

•	 Change output node – The model’s output node is 
modified to ensure compatibility with the target 
inference engine and to simplify post-processing.

•	 Remove post-processing block – Components re-
lated to prediction refinement are excluded from 
the model, as they are not optimal for quantization 
and tend to reduce inference speed on embedded 
hardware.

•	 Remove DFL (Distribution Function Learning) 
structure – Although DFL can improve detection 
accuracy, it significantly increases computational 
overhead. Removing it reduces latency during in-
ference on the NPU.

•	 Add score-sum output branch – An additional out-
put branch is introduced to accelerate score aggre-
gation during post-processing, thereby enhancing 
overall detection speed.

After optimization, the resulting ONNX model is 
further converted into the «.rknn» format (Rockchip Neural 
Network) [23] to enable deployment on the RK3588 NPU. 
This conversion includes integer quantization (int8), which 
is a key step in adapting the model for efficient inference on 
edge hardware. Quantization reduces the model’s memory 
footprint, improves execution speed, and increases energy 
efficiency, all while maintaining a reasonable trade-off be-
tween detection accuracy and computational performance.

The RK3588 NPU, with a peak performance of 6 
TOPS, is well-suited for real-time deep learning inference, 
particularly when combined with a quantized model. Ap-
plying integer quantization ensures that the model runs 
efficiently and reliably in real-time detection tasks under 
constrained computational and power conditions.

4. Results and Discussion

To evaluate the performance of the proposed 
YOLOv11s model for railway infrastructure object detec-
tion, both accuracy and inference speed were assessed us-
ing a dedicated test dataset. This dataset included a diverse 
range of images captured under varying weather condi-
tions, lighting, and perspectives to simulate real-world rail-
way scenarios.

The accuracy of the model was measured using the 
mean Average Precision (mAP) metric [24], which is widely 
adopted in object detection tasks. Specifically, we report 
the mAP@0.5:0.95, which represents the average precision 
calculated across multiple Intersection over Union (IoU) 
thresholds, ranging from 0.5 to 0.95 in steps of 0.05 [25]. 
This stricter evaluation criterion provides a more compre-
hensive assessment of the model’s localization and classifi-
cation performance.

The YOLOv11s model achieved an mAP@0.5:0.95 
of 0.52, indicating that the model is capable of reliably 
detecting and localizing railway infrastructure elements, 
such as passenger platforms, traffic lights, level crossings, 
tunnels, and bridges, even in complex scenes and under 
challenging conditions. Examples of detected railway in-
frastructure objects in images are shown in Figure 4.
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In addition to accuracy, real-time performance is crit-
ical for deployment in railway applications, where rapid 
detection is essential for timely decision-making. The opti-
mized and quantized model was deployed on the RK3588 
NPU, and its inference speed was measured on live video 
streams with a resolution of 640×640 pixels.

The results show that the model achieves an infer-
ence speed of approximately 35 frames per second (FPS). 
This level of performance meets the requirements for real-
time object detection on embedded platforms, ensuring 
that the system can operate effectively in dynamic railway 
environments.

The combination of moderate detection accuracy 
and high inference speed makes the YOLOv11s model a 
suitable candidate for embedded deployment in railway 
systems. While the achieved mAP@0.5:0.95 of 0.52 sug-
gests room for further improvement in detection precision, 
the real-time capability of 35 FPS ensures practical ap-
plicability in safety-critical scenarios. Future research may 
focus on refining the training dataset, incorporating more 
attention mechanisms, or exploring advanced model com-
pression techniques to further enhance both accuracy and 
efficiency.

5. Conclusions

This study demonstrates the feasibility and effective-
ness of using convolutional neural networks (CNNs) for 
the detection of railway infrastructure objects as a means 
of train localization. By detecting key visual landmarks, 
such as traffic lights, level crossings, kilometer posts, tun-
nels, bridges, and platforms, the proposed system allows 
for accurate and continuous train localization without the 
need for satellite navigation or the installation of additional 
trackside infrastructure.

The developed solution, based on the YOLOv11s 
model, achieves a detection accuracy of mAP@0.5:0.95 = 
0.52 and a real-time inference speed of approximately 35 
frames per second on the energy-efficient RK3588 NPU. 
These results confirm that the system meets the practical 
requirements for onboard deployment, especially in sce-
narios demanding low power consumption and real-time 
performance.

Unlike GNSS-based localization systems, the AI-
driven approach is inherently robust against signal jam-
ming and spoofing and does not require the installation or 
maintenance of expensive trackside equipment. This makes 

Figure 4. Sample detection results under various environmental conditions.
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it particularly attractive for scalable and cost-effective de-
ployment across various railway lines.

Moreover, the entire perception and localization pro-
cess is performed onboard the train using standard video 
cameras and deep learning algorithms. This infrastructure-
independent strategy aligns well with the goals of higher 
levels of automation in railway operations, particularly 
GoA3 and GoA4, and paves the way for more autonomous 
and intelligent train control systems in the future.
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