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ABSTRACT

Traditional expert–driven technology foresight is often limited by subjectivity, low replicability, and high costs. 
To address these challenges, this study proposes a novel, data–driven framework for technology foresight that offers an 
objective, scalable, and multi–dimensional approach to identifying and prioritizing emerging technologies in the railway 
industry. Our tripartite methodology systematically integrates three analytical dimensions: (1) Temporal Forecasting 
using Autoregressive Integrated Moving Average (ARIMA) models to project the growth trajectories of technology 
keywords; (2) Structural Analysis using Social Network Analysis (SNA) to evaluate the systemic importance and 
influence of technologies within the innovation network; and (3) Semantic Analysis using BERT–based contextual 
embeddings to track the longitudinal evolution of technological concepts. By applying this framework to 4,199 patents 
from the Korean Intellectual Property Office (1990–2023), we demonstrate its efficacy. The results identify a portfolio 
of high–priority technologies, such as “sensor,” “signal,” and “control,” which exhibit both strong growth momentum 
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and high network centrality. Critically, our semantic drift analysis reveals a significant paradigm shift, exemplified by 
the term “device,” which has evolved from representing simple mechanical components to denoting complex digital 
control systems. This integrated framework provides a robust, transparent, and replicable methodology for strategic 
technology roadmapping, offering actionable intelligence that moves beyond static analysis to capture the dynamic 
nature of technological evolution.
Keywords: Technology Roadmapping; Technology Forecasting; ARIMA Time–Series Analysis; Social Network 
Analysis; Railway Industry

1.	 Introduction
The Fourth Industrial Revolution is driving rapid 

technological change, making technology foresight—the 
systematic identification of future technological develop-
ments—a critical strategic imperative for securing national 
and corporate competitiveness [1]. The railway industry, a 
foundational pillar of infrastructure, is currently undergo-
ing a profound transformation driven by digitalization, au-
tomation, and sustainability [2-4]. In this high–velocity envi-
ronment, the ability to anticipate and strategically integrate 
emerging technologies is no longer just an advantage but a 
necessity. 

However, traditional foresight methodologies, which 
heavily rely on qualitative, expert–based approaches like 
Delphi surveys and scenario planning, face significant lim-
itations [5]. While expert knowledge is indispensable, these 
methods are often constrained by subjective biases, a lack 
of transparency and replicability, and significant time and 
resource expenditure [6]. These shortcomings highlight a 
critical gap and a pressing need for more objective, data–
driven, and quantitative approaches that can complement 
expert judgment with empirical rigor [7]. This study ad-
dresses this methodological gap by developing and vali-
dating a novel, multi–dimensional quantitative framework 
for technology foresight, using a comprehensive dataset of 
railway industry patents (1990–2023). Our research design 
is motivated by the observation that a technology’s future 
importance is a function of not one but three distinct dy-
namics: its growth trajectory, its position within the broad-
er innovation ecosystem, and the evolution of its meaning 
[8]. To capture this complexity, our framework uniquely in-
tegrates three analytical lenses, as depicted in the research 
framework.

First, we employ temporal analysis using Autoregres-

sive Integrated Moving Average (ARIMA) models to fore-
cast the growth potential of technology keywords, identi-
fying which are gaining momentum [9]. Second, we utilize 
structural analysis via Social Network Analysis (SNA) 
to map keyword co–occurrence networks, revealing the 
relational importance of technologies as hubs or bridges 
within the innovation landscape [10]. Third, we introduce a 
semantic analysis using BERT–based contextual embed-
dings to track the longitudinal evolution in the meaning 
of key terms, thereby uncovering subtle but critical para-
digm shifts [11]. By synthesizing these temporal, structural, 
and semantic dimensions, our framework offers a holistic, 
objective, and scalable methodology for technology road-
mapping. This research contributes not only a practical 
tool for the railway sector but also a robust analytical mod-
el applicable to any industry seeking to navigate complex 
technological transitions. This research, therefore, con-
tributes an objective, replicable, and scalable approach to 
enriching technology roadmapping, with applicability ex-
tending beyond the railway sector to other complex indus-
trial domains.

2.	 Literature Review

2.1.	Patent Data–Driven Technology Forecast-
ing Approaches

Patents are a well–established proxy for technological 
innovation and have been extensively utilized for trend 
analysis and foresight [12]. A significant body of literature 
employs patent analytics to map technological landscapes 
through descriptive methods, such as analyzing filing 
trends, citation networks, and patent classifications [13]. 
While these studies offer valuable retrospective insights 
into innovation patterns, they often lack a forward–look-
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ing, predictive component [14]. Their focus remains on de-
scribing “what has happened” rather than systematically 
forecasting “what is likely to happen next,” which is the 
critical function of effective technology roadmapping.

To bridge this gap, some researchers have incorpo-
rated time–series models, with the Autoregressive Inte-
grated Moving Average (ARIMA) model being a prom-
inent choice for its efficacy in forecasting temporal data 
[15]. Within technology management, ARIMA has been 
successfully applied to predict patenting activity and the 
growth trajectories of specific technologies. However, 
this approach is inherently uni–dimensional. By evaluat-
ing a technology’s momentum in isolation, it neglects its 
relational context. The future importance of a technology 
depends not only on its individual growth but also on its 
inter–dependencies and its role within the broader techno-
logical ecosystem—a dimension that time–series analysis 
alone cannot capture.

2.2.	Network–Based Approaches to Technolo-
gy Foresight

Social Network Analysis (SNA) offers a complemen-
tary perspective by mapping the relational architecture of 
an innovation system [16]. By constructing networks from 
data such as keyword co–occurrence, researchers can iden-
tify structurally important technologies. Centrality mea-
sures quantify a node’s influence, revealing which tech-
nologies function as core hubs, bridges between clusters, 
or peripheral actors. However, conventional SNA–based 
approaches also present a critical limitation: they typically 
provide a static snapshot of relationships [17]. Such analyses 
often fail to capture the temporal dynamics of a technol-
ogy’s growth, meaning a technology that is central today 
could be in decline, a crucial insight that a static network 
analysis would miss.

This review of the literature reveals a clear, tripartite 
research gap. First, while temporal analysis (e.g., ARI-
MA) can forecast growth, it overlooks structural influ-
ence. Second, while structural analysis (e.g., SNA) can 
identify influential technologies, it often ignores their 
dynamic growth trajectories. Crucially, a third gap ex-
ists: both approaches treat technology keywords as static 

labels, disregarding the phenomenon of semantic drift, 
where the meaning and application of a term evolve over 
time [18]. For instance, the keyword “device” might refer 
to a simple mechanical component in 1990 but a complex, 
software–integrated sensor in 2020. Overlooking this se-
mantic evolution can lead to profound misinterpretations 
of technological trends. This study addresses this tripartite 
gap by proposing a novel methodology that synthesizes: 
1) temporal forecasting (ARIMA) to identify high–growth 
technologies; 2) structural analysis (SNA) to pinpoint sys-
temically influential technologies; and 3) semantic anal-
ysis (BERT) to interpret the evolving nature of these key 
technologies. This integrated approach facilitates a more 
dynamic, nuanced, and accurate understanding of techno-
logical evolution, moving beyond subjective assessments 
to offer a robust, data–driven framework.

3.	 Methodology

3.1.	Phase 1: Data Acquisition and Preprocess-
ing

The methodology follows the three–phase research 
framework illustrated in the R visualization code and Fig-
ure 1. Each phase is designed to build upon the previous 
one, moving from raw data to integrated, strategic insights. 
The foundation of this study is a corpus of 4,199 patent 
documents (titles and abstracts) related to the railway in-
dustry, sourced from the Korean Intellectual Property Of-
fice (KIPO) for the period 1990–2023 [9]. To prepare this 
textual data for analysis, a systematic preprocessing pipe-
line was implemented in R. This involved: (1) tokenization 
into individual terms; (2) normalization via conversion to 
lowercase; (3) removal of standard English stopwords (e.g., 
“the,” “is”); and (4) filtering of domain–specific, non–in-
formative stopwords (e.g., “railway,” “korea,” “method,” 
“present”) to reduce noise and improve signal quality [19]. 
The processed corpus was then transformed into a Doc-
ument–Term Matrix (DTM), a mathematical representa-
tion where rows correspond to documents and columns to 
terms, with cell values indicating term frequency [20]. This 
DTM serves as the primary input for the subsequent tem-
poral and structural analyses.
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Figure 1. Research Framework: A schematic representation of the overall methodology used in this study.

3.2.	Phase 2: Multi–Method Analysis

3.2.1.	Temporal Analysis: Forecasting with 
ARIMA

To forecast the future growth potential of each tech-
nology keyword, we performed a time–series analysis on 
the annual frequency of the top–ranking keywords derived 
from the DTM. We employed the Autoregressive Integrat-
ed Moving Average (ARIMA) model, a robust and widely 
adopted forecasting method in econometrics and tech-
nology studies [21]. For each keyword’s annual frequency 
data, an optimal ARIMA(p, d, q) model was automatical-

ly identified using the auto. The arima () function from 
the forecast package in R. This function systematically 
searches for the model that minimizes the Akaike Infor-
mation Criterion (AIC), a measure that balances model fit 
and complexity [22]. Based on the five–year forecast gener-
ated by the optimal model, keywords were classified into 
three distinct categories: ‘Hot’ (statistically significant in-
creasing trend), ‘Active’ (stable or flat trend), and ‘Cold’ 
(statistically significant decreasing trend), as illustrated 
conceptually in Figure 2. This stage provides a quantita-
tive basis for identifying technologies with high growth 
momentum.
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Figure 2. Example of Time–Series (ARIMA) Analysis.

3.2.2.	Structural Analysis: Network Centrality 
with SNA

To evaluate the structural importance and relational 
dynamics of technologies within the innovation ecosystem, 
we constructed a keyword co–occurrence network. In this 
network, nodes represent technology–related keywords, 
while weighted edges capture the frequency with which 
two keywords co–appear in the same patent documents. 
This network–based approach provides a clear view of the 
relational architecture of the railway technology domain, 
highlighting how specific technologies interact, cluster, 
and evolve within the broader innovation landscape.

To quantify the influence of individual technologies 
within this structure, we applied three established centrali-
ty measures [23]. Degree centrality (Equation 1) reflects the 
overall connectivity of a technology, based on the num-
ber of direct links a node possesses. Closeness centrality 
(Equation 2) captures how efficiently a technology can 
spread information by measuring the inverse of the sum of 
its shortest path distances to all other nodes, thereby indi-
cating its integration into the technological core. Between-
ness centrality (Equation 3) measures the extent to which a 
technology functions as a bridge or “gatekeeper,” lying on 
the shortest paths between other nodes and connecting oth-
erwise disparate clusters within the network.

(1)

(2)

(3)

3.2.3.	Semantic Analysis: Conceptual Evolu-
tion with BERT

To investigate how the meaning and application of 
key technologies evolve, we conducted a longitudinal se-
mantic drift analysis [24]. This analysis focused on the ‘Hot’ 
keywords identified by the ARIMA models to determine 
if their growing prominence was accompanied by a con-
ceptual shift. The patent dataset was partitioned into seven 
five–year epochs (1990–1994, 1995–1999, ..., 2020–2024). 
For each epoch, we generated contextual word embed-
dings for each occurrence of a target keyword using a pre–
trained BERT model (bert–base–uncased) [25]. The aggre-
gate semantic vector for a keyword in a given epoch (V) 
was computed by averaging the contextual embeddings of 
all its instances within that epoch (Equation 4).

(4)
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by calculating a Semantic Drift Index (SDI) for each epoch 
(e) as the cosine distance between its semantic vector (Ve>) 
and the vector of the baseline period (V0, 1990–1994), as 
shown in Equation 5. A higher SDI value signifies a great-
er divergence from the keyword’s original meaning. To 
provide qualitative context for this quantitative shift, we 
also trained epoch–specific Word2Vec models to identify 
the nearest semantic neighbors of the target keyword in 
each period. Finally, to test for a systematic temporal trend 
in the semantic drift, we performed an Ordinary Least 
Squares (OLS) regression of the SDI against time (te), 
where a statistically significant coefficient (β) would con-
firm a consistent, directional drift in meaning (Equation 6) 
[26]. This final analytical stage allows us to not only identify 
a technology’s rising prominence but also to understand 
how its role and function are evolving.

(5)

(6)

4.	 Results

4.1.	Descriptive Analysis of Patent Landscape

The final dataset for this study consists of 4,199 rail-
way–related patents filed with the Korean Intellectual 
Property Office (KIPO) between 1990 and 2023. An anal-
ysis of patenting activity over this period, as illustrated 
in Figure 3, reveals a pattern of steady growth from the 
1990s, reaching a peak in the mid–2010s, followed by a 
modest decline. This trajectory suggests a maturation of 
the industry’s foundational technologies and a potential 
shift in innovation focus. A line graph showing the number 
of patent applications per year, starting low in 1990, rising 
to a peak around 2015, and then showing a slight decline 
towards 2023.

Figure 3. Frequency of Railway Patent Applications (1990–2023).

The innovation landscape is notably concentrated 
among a few key entities (Table 1). The Korea Rail-
road Research Institute (KRRI) stands out as the most 
prolific applicant, responsible for 790 patents, which 
constitutes 18.8% of the total. The top five applicants—
including Hyundai–Rotem Co., Daewoo Heavy Indus-

tries, Korea Railroad Corporation, and Hyundai Mobis 
Co. Ltd.—collectively account for 38.1% of all pat-
ents in the dataset. This concentration indicates that a 
small number of major players dominate the techno-
logical development within the South Korean railway 
industry.

Table 1. Top Five Patent Applicants in the Korea Railway Industry (1990–2023).
Rank Applicant Number of Patents Filed (Patent Share)

1 Korea Railroad Research Institute (KRRI) 790 (18.8%)
2 Hyundai–Rotem Co. 449 (10.7%)
3 Daewoo Heavy Industries 197 (4.7%)
4 Korea Railroad Corporation 101 (2.4%)
5 Hyundai Mobis Co. Ltd. 64 (1.5%)

SDIe=1−
Ve⋅ V0
|Ve| |V0|

SDIe=α+βte+ϵe
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4.2.	Integrated Foresight: Synthesizing Tem-
poral Trends and Network Structure

To identify high–potential areas for future techno-
logical investment, this study integrated time–series fore-
casting with network analysis. First, text mining of patent 
titles and abstracts was conducted to extract the 20 most 
frequent technology–related keywords. As visualized in 
the word cloud in Figure 4, terms such as “structure,” 
“rail,” “control,” “signal,” and “prevention” emerged as 
highly prominent, reflecting their foundational importance 
in railway innovation. These top 20 keywords collectively 
appeared in over half of the patents in the corpus, under-

scoring their central role.
Next, to forecast future trends, ARIMA models were 

applied to the annual frequency data of each keyword. This 
analysis enabled the classification of keywords into three 
categories: ‘Hot’ (increasing trend), ‘Active’ (stable trend), 
and ‘Cold’ (decreasing trend). As depicted in the repre-
sentative results in Figure 5, keywords such as device, 
control, circuit, speed, sensor, and signal are projected to 
experience significant growth (‘Hot’). In contrast, founda-
tional terms like track and manufacturing are expected to 
maintain stable relevance (‘Active’), while keywords such 
as entrance and test exhibit a declining trajectory (‘Cold’).

Figure 4. Visualization of Top 20 Technology Keywords.

Figure 5. Predicting promising patent keywords through an optimal ARIMA model.
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While ARIMA modeling effectively captures temporal 
momentum, it does not account for a technology’s rela-
tional importance. To address this, an SNA was performed 
on a keyword co–occurrence network. Centrality measures 
were calculated to quantify each keyword’s influence with-

in this network. The network visualization in Figure 6 re-
veals that keywords identified as ‘Hot’—notably device, 
circuit, speed, sensor, and signal—also possess the highest 
centrality scores, identifying them as critical hubs and inte-
grators within the railway technology ecosystem.

Figure 6. Visualization Results of Social Network Analysis.

By integrating temporal growth forecasts from ARI-
MA with structural influence metrics from Social Network 
Analysis (SNA), we developed a Technology Priority Ma-
trix (Table 2). This matrix offers a data–driven framework 
for strategic prioritization by classifying technologies ac-
cording to both their growth potential and their network 
centrality. At the top tier, Priority 1: Core & Growing 
technologies—including device, sensor, signal, circuit, and 

speed—emerge as the most critical. These areas not only 
show strong growth trajectories but also occupy central po-
sitions in the innovation network, positioning them as the 
core drivers of digitalization, automation, and high–speed 
systems. Complementing these, Priority 2: Emerging Con-
nectors, such as control, represent rapidly growing tech-
nologies with medium centrality that are poised to become 
pivotal bridges linking established and emerging clusters.

Table 2. Centrality Measures of Technology Keywords in the Railway Industry.
Temporal Trend 

(ARIMA) High (SNA) Medium (SNA) Low (SNA)

Hot Priority 1: Core & Growing (device, sen-
sor, signal, circuit, speed)

Priority 2: Emerging Connectors 
(control) –

Active – Priority 3: Established Core (track) Priority 4: Niche & Stable (manufacturing)

Cold – – Priority 5: Declining (entrance, test)

In contrast, Priority 3 and 4 technologies—such as 
track (established core) and manufacturing (niche but 
stable)—are more mature and foundational, demanding 
sustained but less intensive innovation efforts. Finally, Pri-
ority 5: Declining or Legacy areas, including entrance and 
test, exhibit both low growth and weak structural influ-

ence, signaling a decline in strategic importance. Together, 
this integrated analysis provides an objective and multi–
dimensional framework for guiding R&D investment and 
long–term planning, ensuring that resources are allocated 
toward technologies with the highest potential for shaping 
the future of the railway innovation ecosystem.
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4.3.	Establishment of Technology Management 
Strategy Based on Promising Detailed 
Technology Keywords

The integrated analysis pinpoints device, circuit, 
speed, sensor, and signal as the highest–priority tech-
nology domains that are shaping the industry’s future. 
These keywords consistently rank highest in both net-
work influence and growth potential, marking them as 

prime areas for strategic R&D investment, as summa-
rized in Table 3. Concrete examples of innovation in 
these priority areas can be seen in patents from the Ko-
rea Railroad Research Institute (KRRI), as detailed in 
Table 4. These patents exemplify the strategic direction 
suggested by the data. The identified technologies high-
light several key strategic thrusts for the railway indu-
stry.

Table 3. Priority Technology Keywords and Their Characteristics.
Technology Keyword Social Network Analysis Time Series Analysis Priority

device, circuit, speed, sensor, signal High Hot 1
control Medium Hot 2
track Medium Active 3

manufacturing Low Active 4
entrance, test Low Cold 5

Table 4. Key Patents from Korea Railroad Research Institute (KRRI) Related to Priority Keywords.

Patent Title Description IPC Classification Country of Application

Hybrid Heating Type Railroad 
Waste Sleeper Pyrolysis Equip-

ment

A system for pyrolyzing waste 
wood sleepers using hybrid 

heating technology, including 
microwave application to reac-

tor containers.

C10B19/00 (Heating of coke 
ovens by electrical means)

South Korea (KR), United 
States (US)

Method and Apparatus for Pro-
viding Automated Interlocking 
Logic for Railway Signaling 

Based on Moving Block

A railway signaling system 
utilizing automated interlocking 
logic based on a moving block 
system to enhance train path 

efficiency and safety.

B61L27/00 (Central railway 
traffic control systems; Track-
side control; Communication 

systems)

South Korea (KR), United 
States (US), Japan (JP), World 
Intellectual Property Organiza-

tion (WO)

First, investing in smart railway infrastructure is crucial 
for automation and operational efficiency. The KRRI patent 
for “Automated Interlocking Logic for Railway Signaling 
Based on Moving Block” (Figure 7) is a prime example. 
Such systems, which leverage sensor and signaling tech-

nologies, enable real–time optimization, predictive main-
tenance, and enhanced safety, directly aligning with the 
high–priority keywords. A diagram illustrating a centralized 
control system communicating with multiple trains on a 
track, optimizing their movement and spacing in real–time.

Figure 7. Automated Interlocking Logic System for Railway Signaling Using Moving Block Technology.
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Second, a focus on sustainability and energy–effi-
cient technologies is vital for addressing environmental 
concerns. The “Hybrid Heating Type Railroad Waste 
Sleeper Pyrolysis Equipment” developed by KRRI (Fig-
ure 8) demonstrates innovation in the circular economy 
by efficiently processing waste materials. Such eco–
friendly solutions align with global sustainability goals 
and can create new economic opportunities. A schematic 

of an industrial system showing waste sleepers being 
fed into a reactor, which uses hybrid heating to con-
vert them into other materials, contributing to a circular 
economy. Finally, the international applications for these 
patents underscore the importance of global patent ex-
pansion and strategic collaboration to secure technolog-
ical leadership and protect intellectual property in key 
markets.

Figure 8. Hybrid Heating Type Railroad Waste Sleeper Pyrolysis Equipment.

4.4.	Semantic Drift Analysis: Uncovering the 
Evolving Meaning of Device

To add a qualitative dimension to the foresight analy-
sis, a semantic drift analysis was conducted on the “Hot” 
priority keywords using BERT–based contextual embed-
dings. This analysis aimed to determine if a keyword’s 
meaning evolved as its prominence grew. The results re-
vealed that among the high–growth keywords, device was 

the only one to exhibit a statistically significant semantic 

drift over time. The Ordinary Least Squares (OLS) re-

gression results in Table 5 confirm this finding. “Device” 

shows a strong model fit (R² = 0.838) and a highly signifi-

cant positive coefficient (p < 0.01), indicating a systematic 

and directional shift in its meaning. In contrast, other pri-

ority keywords like ‘speed’, ‘sensor’, ‘signal’, and ‘circuit’ 

remained semantically stable.

Table 5. OLS Regression Results for Semantic Drift of “Hot” Keywords.
Keyword R–squared Adj. R–squared Coefficient (x1) p–value

Device 0.838 0.811 0.0012 0.001
Speed 0.328 0.194 0.0021 0.179
Sensor 0.458 0.322 0.0046 0.140
Signal 0.459 0.351 0.0089 0.095
Circuit 0.004 −0.196 0.0002 0.897

The nature of this evolution becomes clear when ex-
amining the top semantic neighbors of “device” across 
different time periods (Table 6). In the early 1990s, 
“device” was associated with mechanical concepts like 

friction and valves. By the 2000s, its context shifted to 
include electrical terms such as array and current. After 
2010, its neighbors increasingly reflect digital and con-
trol–oriented concepts like sidelink, control, and loca-
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tion_indicator, signaling a transition toward smart, inter-
connected systems. This longitudinal shift is quantified 
by the Semantic Drift Index (SDI), which measures the 
change in meaning relative to the 1990–1994 baseline. 
As visualized in Figure 9, the SDI for “device” shows 
a consistent upward trend, confirming a systematic de-

parture from its original mechanical context. A line chart 
with the Y–axis as SDI (cosine distance) and the X–axis 
as time epochs. The line shows a steady upward trend, 
with an R² value of 0.838 and p < 0.01 noted, indicating 
a strong positive correlation between time and semantic 
change.

Table 6. Top Semantic Neighbors of Device Across Five–Year Epochs.

Epoch Top Semantic Neighbors of Device

1990–1994 extended, friction, vehicle_side, valve_vehicle

1995–1999 center, fastening, earthquake_damage, measuring

2000–2004 automatically_evaluating, lubricant_supply, equipment

2005–2009 pad_directly, array, current, conversion, smoke

2010–2014 vehicles, vehicle, power, electric, magnetic

2015–2019 comprising_one, information, electric, motor

2020–2024 thereof, electric, using, sidelink, control

2025–2029 location_indicator, rotating_lifting, blower, system

Figure 9. Semantic Drift Index (SDI) of Device (1990–2029).

The robustness of this trend is further validated by the 
detailed OLS regression model in Table 7, which yields a 
positive and statistically significant coefficient (β = 0.0012, 
p < 0.01). This result confirms that the meaning of “device” 
has consistently evolved, reflecting the convergence of 

mechanical, electrical, and digital technologies in modern 
railway innovation. This analysis demonstrates the value 
of examining semantic drift to uncover nuanced paradigm 
shifts that are often missed by frequency or network analy-
ses alone.

Table 7. OLS regression results for the semantic drift of the device.

Variable Coefficient Std. Error t–value p–value 95% CI (Lower) 95% CI (Upper)

Constant −2.3047 0.418 −5.513 0.001 −3.328 −1.282

Year 0.0012 0.000 5.578 0.001 0.001 0.002
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5.	 Discussion

5.1.	Limitations and Caveats

While this study’s framework provides a robust ap-
proach to technology foresight, several limitations must be 
acknowledged to properly contextualize the findings and 
inform future research. First, the reliance on patent data 
as the sole proxy for innovation has inherent constraints 
[27]. Not all inventions are patented, as firms may opt for 
trade secrets to protect process innovations or proprietary 
software algorithms. Consequently, the observed decline 
in patent filings post–2010 might reflect not only industry 
maturation but also a strategic pivot toward other forms 
of intellectual property protection, potentially leading to 
an underestimation of innovation in certain domains like 
software. Second, the predictive power of ARIMA mod-
els is contingent on the assumption that future trends will 
follow historical patterns [28]. While effective for linear and 
seasonal trends, these models may be less reliable for fore-
casting sudden, non–linear technological disruptions that 
lack historical precedent. Therefore, our framework is bet-
ter suited to identifying emerging trends within an estab-
lished paradigm than to predicting the genesis of entirely 
new ones.

Third, the analytical methods themselves have limita-
tions [29]. Keyword extraction, even when carefully curat-
ed, inevitably simplifies complex technical concepts. The 
SNA component effectively maps the associative structure 
between technologies but does not, by itself, reveal the 
causal or directional nature of these relationships (e.g., 
whether advances in sensor technology drive innovation in 
signal systems or vice–versa). Finally, this study’s scope 
was intentionally confined to patent data from the Korean 
Intellectual Property Office to provide a deep longitudinal 
analysis of a single national industry. This national focus, 
however, limits the direct generalizability of our specific 
findings to the global railway industry, as innovation prior-
ities and trajectories may differ across regions like Europe, 
North America, or Japan.

5.2.	Avenues for Future Research

The limitations of this study highlight several oppor-
tunities for methodological refinement. Future research 

could improve predictive accuracy by developing hybrid 
forecasting models that combine ARIMA with advanced 
machine learning techniques such as Long Short–Term 
Memory (LSTM) networks. These hybrid approaches are 
capable of capturing both linear trends and non–linear 
complexities, thereby offering more robust forecasts for 
disruptive technological change. Further benchmarking 
against alternative models such as Prophet or Vector Au-
toregression (VAR) would not only validate their perfor-
mance but also enhance methodological rigor.

Another important avenue lies in data triangulation. 
The foresight framework’s robustness can be significant-
ly strengthened by incorporating a wider variety of data 
sources. Expanding the analysis to include global patent 
repositories such as USPTO, EPO, and WIPO would en-
able meaningful cross–national comparisons, while inte-
grating scientific publications, venture capital investments, 
market reports, and corporate press releases could provide 
earlier signals of emerging technologies. Such triangula-
tion would help bridge the gap between early–stage inno-
vation and its eventual commercialization, creating a more 
holistic and forward–looking analytical framework.

Finally, future studies should pursue qualitative–quan-
titative integration and scope expansion. A mixed–methods 
approach—where quantitative insights guide case stud-
ies and expert interviews in ‘Hot’ technology domains—
would validate results, uncover causal mechanisms, and 
provide richer contextual narratives of innovation dynam-
ics. Beyond the railway sector, applying the framework to 
industries such as renewable energy, aerospace, or biotech-
nology would test its generalizability and refine its meth-
odological robustness. Within the railway industry itself, 
more granular analyses of sub–domains like high–speed 
rail, urban mobility, or freight logistics could generate 
highly targeted insights to inform domain–specific strate-
gies.

6.	 Conclusions
This study proposed and validated a novel, data–driven 

framework for technology foresight, designed to overcome 
the limitations of traditional expert–based methods by pro-
viding an objective, replicable, and multi–dimensional ap-
proach. By systematically integrating temporal forecasting 
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(ARIMA), structural network analysis (SNA), and longitu-
dinal semantic analysis (BERT), our research offers a more 
nuanced and dynamic understanding of technological evo-
lution within the South Korean railway industry from 1990 
to 2023.

6.1.	Principal Findings and Implications

Our principal findings are that a technology’s future 
strategic value is a composite of its growth momentum, 
structural influence, and conceptual evolution [30]. The in-
tegrated analysis, synthesized in the Technology Priority 
Matrix, successfully identified a portfolio of core technolo-
gies (e.g., device, sensor, signal) that are not only projected 
to grow (‘Hot’) but also function as central hubs in the in-
novation network [31]. This provides clear, evidence–based 
prioritization for R&D investment. 

Most significantly, the semantic drift analysis uncov-
ered a latent paradigm shift that would be invisible to con-
ventional quantitative methods [32,33]. The statistically sig-
nificant evolution of the term “device” from a mechanical 
component to a digital control system provides empirical 
proof of the railway industry’s fundamental transition to-
wards digitalization and intelligent systems. This finding 
implies that future innovation strategies must shift from an 
engineering–centric to a systems–integration and service–
oriented perspective [34].

6.2.	Theoretical and Practical Implications

The theoretical contribution of this study lies in pre-
senting a holistic framework that bridges the tripartite gap 
in existing technology foresight research by integrating 
temporal, structural, and semantic dimensions [35,36]. This 
multidimensional approach advances the field beyond 
traditional uni–dimensional analyses, demonstrating that 
the significance of a technology is shaped not only by its 
growth trajectory but also by its systemic role and evolving 
meaning [37]. In particular, the identification of semantic 
drift as a measurable indicator of paradigm shifts provides 
technology management scholars with a novel analyti-
cal tool for capturing and interpreting shifts in innovation 
trajectories. The practical contribution of this framework 
is its ability to deliver an objective, evidence–based, and 
reproducible methodology for strategic decision–making. 

By grounding foresight in quantifiable trends and relation-
al insights, stakeholders can allocate R&D resources more 
effectively, design targeted technology roadmaps, and 
formulate policy with greater confidence than when rely-
ing on intuition alone [38]. Furthermore, the framework’s 
adaptability across different sectors underscores its value 
as a strategic intelligence tool for managing technologi-
cal change in any industry where innovation processes are 
documented in textual data [36].

6.3.	Strategic Recommendations for Industry 
Stakeholders

Based on the findings, several strategic recommenda-
tions can be advanced to strengthen the competitiveness 
and long–term sustainability of Korea’s railway industry. 
First, stakeholders should prioritize investment in digital 
core technologies, particularly in Priority 1 and 2 domains 
such as devices, sensors, signal, and control. Concentrat-
ed R&D in AI–powered signaling, IoT–enabled predictive 
maintenance, and high–speed communication systems 
will accelerate the transition toward smart, automated, and 
efficient railway infrastructure. Equally important is the 
need to embrace a service–oriented innovation model. The 
semantic evolution of “device” illustrates a broader shift 
from engineering–centric development to user– and ser-
vice–focused innovation. Future systems should therefore 
be designed to enhance passenger experience, deliver real–
time information services, and integrate seamlessly with 
other mobility platforms.

In parallel, stakeholders should adopt a more proactive 
global intellectual property strategy and foster internation-
al collaboration. Securing patents in major global markets 
such as the US, EU, and Japan is critical for protecting 
technological advances and expanding industry influence. 
At the same time, forging alliances with leading technolo-
gy firms and research institutes will accelerate co–devel-
opment and knowledge transfer. Finally, industry must ad-
vance sustainable and circular technologies, with emphasis 
on eco–friendly innovations such as the waste sleeper 
pyrolysis system, improved energy efficiency, and circular 
economy practices. Pursuing these strategies in combina-
tion will enable the Korean railway industry to evolve into 
a sector that is not only technologically advanced but also 
globally competitive, user–centered, and environmentally 
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sustainable.
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