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ABSTRACT

Traditional expert—driven technology foresight is often limited by subjectivity, low replicability, and high costs.
To address these challenges, this study proposes a novel, data—driven framework for technology foresight that offers an
objective, scalable, and multi—-dimensional approach to identifying and prioritizing emerging technologies in the railway
industry. Our tripartite methodology systematically integrates three analytical dimensions: (1) Temporal Forecasting
using Autoregressive Integrated Moving Average (ARIMA) models to project the growth trajectories of technology
keywords; (2) Structural Analysis using Social Network Analysis (SNA) to evaluate the systemic importance and
influence of technologies within the innovation network; and (3) Semantic Analysis using BERT-based contextual
embeddings to track the longitudinal evolution of technological concepts. By applying this framework to 4,199 patents
from the Korean Intellectual Property Office (1990-2023), we demonstrate its efficacy. The results identify a portfolio
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of high—priority technologies, such as “sensor,” “signal,” and “control,” which exhibit both strong growth momentum
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and high network centrality. Critically, our semantic drift analysis reveals a significant paradigm shift, exemplified by

the term “device,” which has evolved from representing simple mechanical components to denoting complex digital

control systems. This integrated framework provides a robust, transparent, and replicable methodology for strategic

technology roadmapping, offering actionable intelligence that moves beyond static analysis to capture the dynamic

nature of technological evolution.

Keywords: Technology Roadmapping; Technology Forecasting; ARIMA Time—Series Analysis; Social Network

Analysis; Railway Industry

1. Introduction

The Fourth Industrial Revolution is driving rapid
technological change, making technology foresight—the
systematic identification of future technological develop-
ments—a critical strategic imperative for securing national
and corporate competitiveness . The railway industry, a
foundational pillar of infrastructure, is currently undergo-
ing a profound transformation driven by digitalization, au-
tomation, and sustainability ¥, In this high-velocity envi-
ronment, the ability to anticipate and strategically integrate
emerging technologies is no longer just an advantage but a
necessity.

However, traditional foresight methodologies, which
heavily rely on qualitative, expert—based approaches like
Delphi surveys and scenario planning, face significant lim-
itations ). While expert knowledge is indispensable, these
methods are often constrained by subjective biases, a lack
of transparency and replicability, and significant time and
resource expenditure . These shortcomings highlight a
critical gap and a pressing need for more objective, data—
driven, and quantitative approaches that can complement
expert judgment with empirical rigor . This study ad-
dresses this methodological gap by developing and vali-
dating a novel, multi-dimensional quantitative framework
for technology foresight, using a comprehensive dataset of
railway industry patents (1990-2023). Our research design
is motivated by the observation that a technology’s future
importance is a function of not one but three distinct dy-
namics: its growth trajectory, its position within the broad-
er innovation ecosystem, and the evolution of its meaning
1 To capture this complexity, our framework uniquely in-
tegrates three analytical lenses, as depicted in the research
framework.

First, we employ temporal analysis using Autoregres-

sive Integrated Moving Average (ARIMA) models to fore-
cast the growth potential of technology keywords, identi-
fying which are gaining momentum . Second, we utilize
structural analysis via Social Network Analysis (SNA)
to map keyword co—occurrence networks, revealing the
relational importance of technologies as hubs or bridges

19 Third, we introduce a

within the innovation landscape
semantic analysis using BERT—based contextual embed-
dings to track the longitudinal evolution in the meaning
of key terms, thereby uncovering subtle but critical para-
digm shifts ', By synthesizing these temporal, structural,
and semantic dimensions, our framework offers a holistic,
objective, and scalable methodology for technology road-
mapping. This research contributes not only a practical
tool for the railway sector but also a robust analytical mod-
el applicable to any industry seeking to navigate complex
technological transitions. This research, therefore, con-
tributes an objective, replicable, and scalable approach to
enriching technology roadmapping, with applicability ex-
tending beyond the railway sector to other complex indus-

trial domains.

2. Literature Review

2.1. Patent Data—Driven Technology Forecast-
ing Approaches

Patents are a well—established proxy for technological
innovation and have been extensively utilized for trend
analysis and foresight ', A significant body of literature
employs patent analytics to map technological landscapes
through descriptive methods, such as analyzing filing
trends, citation networks, and patent classifications /.
While these studies offer valuable retrospective insights

into innovation patterns, they often lack a forward—look-
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ing, predictive component "', Their focus remains on de-
scribing “what has happened” rather than systematically
forecasting “what is likely to happen next,” which is the
critical function of effective technology roadmapping.

To bridge this gap, some researchers have incorpo-
rated time—series models, with the Autoregressive Inte-
grated Moving Average (ARIMA) model being a prom-
inent choice for its efficacy in forecasting temporal data
5 Within technology management, ARIMA has been
successfully applied to predict patenting activity and the
growth trajectories of specific technologies. However,
this approach is inherently uni-dimensional. By evaluat-
ing a technology’s momentum in isolation, it neglects its
relational context. The future importance of a technology
depends not only on its individual growth but also on its
inter—dependencies and its role within the broader techno-
logical ecosystem—a dimension that time—series analysis

alone cannot capture.

2.2. Network—Based Approaches to Technolo-
gy Foresight

Social Network Analysis (SNA) offers a complemen-
tary perspective by mapping the relational architecture of
an innovation system "'®. By constructing networks from
data such as keyword co—occurrence, researchers can iden-
tify structurally important technologies. Centrality mea-
sures quantify a node’s influence, revealing which tech-
nologies function as core hubs, bridges between clusters,
or peripheral actors. However, conventional SNA-based
approaches also present a critical limitation: they typically
provide a static snapshot of relationships . Such analyses
often fail to capture the temporal dynamics of a technol-
ogy’s growth, meaning a technology that is central today
could be in decline, a crucial insight that a static network
analysis would miss.

This review of the literature reveals a clear, tripartite
research gap. First, while temporal analysis (e.g., ARI-
MA) can forecast growth, it overlooks structural influ-
ence. Second, while structural analysis (e.g., SNA) can
identify influential technologies, it often ignores their
dynamic growth trajectories. Crucially, a third gap ex-

ists: both approaches treat technology keywords as static

labels, disregarding the phenomenon of semantic drift,
where the meaning and application of a term evolve over
time """, For instance, the keyword “device” might refer
to a simple mechanical component in 1990 but a complex,
software—integrated sensor in 2020. Overlooking this se-
mantic evolution can lead to profound misinterpretations
of technological trends. This study addresses this tripartite
gap by proposing a novel methodology that synthesizes:
1) temporal forecasting (ARIMA) to identify high—growth
technologies; 2) structural analysis (SNA) to pinpoint sys-
temically influential technologies; and 3) semantic anal-
ysis (BERT) to interpret the evolving nature of these key
technologies. This integrated approach facilitates a more
dynamic, nuanced, and accurate understanding of techno-
logical evolution, moving beyond subjective assessments

to offer a robust, data—driven framework.

3. Methodology

3.1. Phase 1: Data Acquisition and Preprocess-

ing

The methodology follows the three—phase research
framework illustrated in the R visualization code and Fig-
ure 1. Each phase is designed to build upon the previous
one, moving from raw data to integrated, strategic insights.
The foundation of this study is a corpus of 4,199 patent
documents (titles and abstracts) related to the railway in-
dustry, sourced from the Korean Intellectual Property Of-
fice (KIPO) for the period 1990-2023 .. To prepare this
textual data for analysis, a systematic preprocessing pipe-
line was implemented in R. This involved: (1) tokenization
into individual terms; (2) normalization via conversion to
lowercase; (3) removal of standard English stopwords (e.g.,
“the,” “is”); and (4) filtering of domain—specific, non—in-
formative stopwords (e.g., “railway,” “korea,” “method,”
“present”) to reduce noise and improve signal quality """,
The processed corpus was then transformed into a Doc-
ument—Term Matrix (DTM), a mathematical representa-
tion where rows correspond to documents and columns to
terms, with cell values indicating term frequency " This
DTM serves as the primary input for the subsequent tem-

poral and structural analyses.
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Figure 1. Research Framework: A schematic representation of the overall methodology used in this study.

3.2. Phase 2: Multi-Method Analysis

3.2.1. Temporal Analysis: Forecasting with
ARIMA

To forecast the future growth potential of each tech-
nology keyword, we performed a time—series analysis on
the annual frequency of the top—ranking keywords derived
from the DTM. We employed the Autoregressive Integrat-
ed Moving Average (ARIMA) model, a robust and widely
adopted forecasting method in econometrics and tech-
nology studies . For each keyword’s annual frequency
data, an optimal ARIMA(p, d, q) model was automatical-

ly identified using the auto. The arima () function from
the forecast package in R. This function systematically
searches for the model that minimizes the Akaike Infor-
mation Criterion (AIC), a measure that balances model fit
and complexity . Based on the five—year forecast gener-
ated by the optimal model, keywords were classified into
three distinct categories: ‘Hot’ (statistically significant in-
creasing trend), ‘Active’ (stable or flat trend), and ‘Cold’
(statistically significant decreasing trend), as illustrated
conceptually in Figure 2. This stage provides a quantita-
tive basis for identifying technologies with high growth

momentum.
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Trend Prediction through
Time Series Analysis

Y = Frequency
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~ Active Fields

Cold Fields

%
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Figure 2. Example of Time—Series (ARIMA) Analysis.

3.2.2. Structural Analysis: Network Centrality
with SNA

To evaluate the structural importance and relational
dynamics of technologies within the innovation ecosystem,
we constructed a keyword co—occurrence network. In this
network, nodes represent technology-related keywords,
while weighted edges capture the frequency with which
two keywords co—appear in the same patent documents.
This network—based approach provides a clear view of the
relational architecture of the railway technology domain,
highlighting how specific technologies interact, cluster,
and evolve within the broader innovation landscape.

To quantify the influence of individual technologies
within this structure, we applied three established centrali-
ty measures ”. Degree centrality (Equation 1) reflects the
overall connectivity of a technology, based on the num-
ber of direct links a node possesses. Closeness centrality
(Equation 2) captures how efficiently a technology can
spread information by measuring the inverse of the sum of
its shortest path distances to all other nodes, thereby indi-
cating its integration into the technological core. Between-
ness centrality (Equation 3) measures the extent to which a
technology functions as a bridge or “gatekeeper,” lying on
the shortest paths between other nodes and connecting oth-

erwise disparate clusters within the network.

N
D~ 7 (1)
J=1
N -1
C[  d(i)] 2
J=1
- 20 3
st st

3.2.3. Semantic Analysis: Conceptual Evolu-
tion with BERT

To investigate how the meaning and application of
key technologies evolve, we conducted a longitudinal se-
mantic drift analysis . This analysis focused on the ‘Hot’
keywords identified by the ARIMA models to determine
if their growing prominence was accompanied by a con-
ceptual shift. The patent dataset was partitioned into seven
five—year epochs (1990-1994, 1995-1999, ..., 2020-2024).
For each epoch, we generated contextual word embed-
dings for each occurrence of a target keyword using a pre—
trained BERT model (bert—base—uncased) **. The aggre-
gate semantic vector for a keyword in a given epoch (V)
was computed by averaging the contextual embeddings of
all its instances within that epoch (Equation 4).

1 N,
Ve:F i=1Vie 4)

e

We then quantified the magnitude of semantic change
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by calculating a Semantic Drift Index (SDI) for each epoch
(e) as the cosine distance between its semantic vector (Ve>)
and the vector of the baseline period (V0, 1990-1994), as
shown in Equation 5. A higher SDI value signifies a great-
er divergence from the keyword’s original meaning. To
provide qualitative context for this quantitative shift, we
also trained epoch—specific Word2Vec models to identify
the nearest semantic neighbors of the target keyword in
each period. Finally, to test for a systematic temporal trend
in the semantic drift, we performed an Ordinary Least
Squares (OLS) regression of the SDI against time (ze),
where a statistically significant coefficient () would con-
firm a consistent, directional drift in meaning (Equation 6)
%l This final analytical stage allows us to not only identify
a technology’s rising prominence but also to understand
how its role and function are evolving.

Ver Vo

SDI,=1-
Vel 70l

©)

SDI,=o+Bt,+e, (6)

4. Results

4.1. Descriptive Analysis of Patent Landscape

The final dataset for this study consists of 4,199 rail-
way-related patents filed with the Korean Intellectual
Property Office (KIPO) between 1990 and 2023. An anal-
ysis of patenting activity over this period, as illustrated
in Figure 3, reveals a pattern of steady growth from the
1990s, reaching a peak in the mid—-2010s, followed by a
modest decline. This trajectory suggests a maturation of
the industry’s foundational technologies and a potential
shift in innovation focus. A line graph showing the number
of patent applications per year, starting low in 1990, rising
to a peak around 2015, and then showing a slight decline
towards 2023.

Railway Patent Applications in Korea (1990-2023)

] Railway Patent Applications

\pplications

Number of Patert A

‘ear

Figure 3. Frequency of Railway Patent Applications (1990-2023).

The innovation landscape is notably concentrated
among a few key entities (Table 1). The Korea Rail-
road Research Institute (KRRI) stands out as the most
prolific applicant, responsible for 790 patents, which
constitutes 18.8% of the total. The top five applicants—

including Hyundai—Rotem Co., Daewoo Heavy Indus-

tries, Korea Railroad Corporation, and Hyundai Mobis
Co. Ltd.—collectively account for 38.1% of all pat-
ents in the dataset. This concentration indicates that a
small number of major players dominate the techno-
logical development within the South Korean railway

industry.

Table 1. Top Five Patent Applicants in the Korea Railway Industry (1990-2023).

Rank Applicant Number of Patents Filed (Patent Share)
1 Korea Railroad Research Institute (KRRI) 790 (18.8%)
2 Hyundai—Rotem Co. 449 (10.7%)
3 Daewoo Heavy Industries 197 (4.7%)
4 Korea Railroad Corporation 101 (2.4%)
5 Hyundai Mobis Co. Ltd. 64 (1.5%)
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4.2.Integrated Foresight: Synthesizing Tem-
poral Trends and Network Structure

To identify high—potential areas for future techno-
logical investment, this study integrated time—series fore-
casting with network analysis. First, text mining of patent
titles and abstracts was conducted to extract the 20 most
frequent technology-related keywords. As visualized in
the word cloud in Figure 4, terms such as “structure,”
“rail,” “control,” “signal,” and “prevention” emerged as
highly prominent, reflecting their foundational importance
in railway innovation. These top 20 keywords collectively

appeared in over half of the patents in the corpus, under-
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scoring their central role.

Next, to forecast future trends, ARIMA models were
applied to the annual frequency data of each keyword. This
analysis enabled the classification of keywords into three
categories: ‘Hot’ (increasing trend), ‘Active’ (stable trend),
and ‘Cold’ (decreasing trend). As depicted in the repre-
sentative results in Figure 5, keywords such as device,
control, circuit, speed, sensor, and signal are projected to
experience significant growth (‘Hot”). In contrast, founda-
tional terms like track and manufacturing are expected to
maintain stable relevance (‘Active”), while keywords such

as entrance and test exhibit a declining trajectory (‘Cold”).
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Figure 4. Visualization of Top 20 Technology Keywords.
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Figure 5. Predicting promising patent keywords through an optimal ARIMA model.
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While ARIMA modeling effectively captures temporal
momentum, it does not account for a technology’s rela-
tional importance. To address this, an SNA was performed
on a keyword co—occurrence network. Centrality measures

were calculated to quantify each keyword’s influence with-

tester

in this network. The network visualization in Figure 6 re-
veals that keywords identified as ‘Hot’—notably device,
circuit, speed, sensor, and signal—also possess the highest
centrality scores, identifying them as critical hubs and inte-

grators within the railway technology ecosystem.

Figure 6. Visualization Results of Social Network Analysis.

By integrating temporal growth forecasts from ARI-
MA with structural influence metrics from Social Network
Analysis (SNA), we developed a Technology Priority Ma-
trix (Table 2). This matrix offers a data—driven framework
for strategic prioritization by classifying technologies ac-
cording to both their growth potential and their network
centrality. At the top tier, Priority 1: Core & Growing

technologies—including device, sensor, signal, circuit, and

speed—emerge as the most critical. These areas not only
show strong growth trajectories but also occupy central po-
sitions in the innovation network, positioning them as the
core drivers of digitalization, automation, and high—speed
systems. Complementing these, Priority 2: Emerging Con-
nectors, such as control, represent rapidly growing tech-
nologies with medium centrality that are poised to become

pivotal bridges linking established and emerging clusters.

Table 2. Centrality Measures of Technology Keywords in the Railway Industry.

Temporal Trend

(ARIMA) High (SNA) Medium (SNA) Low (SNA)
Hot Priority 1: Core & Growing (device, sen- Priority 2: Emerging Connectors N
sor, signal, circuit, speed) (control)
Active - Priority 3: Established Core (track) ~ Priority 4: Niche & Stable (manufacturing)
Cold - - Priority 5: Declining (entrance, test)

In contrast, Priority 3 and 4 technologies—such as
track (established core) and manufacturing (niche but
stable)—are more mature and foundational, demanding
sustained but less intensive innovation efforts. Finally, Pri-
ority 5: Declining or Legacy areas, including entrance and

test, exhibit both low growth and weak structural influ-

ence, signaling a decline in strategic importance. Together,
this integrated analysis provides an objective and multi—
dimensional framework for guiding R&D investment and
long—term planning, ensuring that resources are allocated
toward technologies with the highest potential for shaping

the future of the railway innovation ecosystem.
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4.3. Establishment of Technology Management
Strategy Based on Promising Detailed
Technology Keywords

The integrated analysis pinpoints device, circuit,
speed, sensor, and signal as the highest—priority tech-
nology domains that are shaping the industry’s future.
These keywords consistently rank highest in both net-

work influence and growth potential, marking them as

prime areas for strategic R&D investment, as summa-
rized in Table 3. Concrete examples of innovation in
these priority areas can be seen in patents from the Ko-
rea Railroad Research Institute (KRRI), as detailed in
Table 4. These patents exemplify the strategic direction
suggested by the data. The identified technologies high-
light several key strategic thrusts for the railway indu-

stry.

Table 3. Priority Technology Keywords and Their Characteristics.

Technology Keyword Social Network Analysis Time Series Analysis Priority
device, circuit, speed, sensor, signal High Hot 1
control Medium Hot 2
track Medium Active 3
manufacturing Low Active 4
entrance, test Low Cold 5

Table 4. Key Patents from Korea Railroad Research Institute (KRRI) Related to Priority Keywords.

Patent Title Description

IPC Classification Country of Application

A system for pyrolyzing waste
wood sleepers using hybrid
heating technology, including
microwave application to reac-
tor containers.

Hybrid Heating Type Railroad
Waste Sleeper Pyrolysis Equip-
ment

C10B19/00 (Heating of coke
ovens by electrical means)

South Korea (KR), United
States (US)

A railway signaling system
utilizing automated interlocking
logic based on a moving block
system to enhance train path
efficiency and safety.

Method and Apparatus for Pro-
viding Automated Interlocking
Logic for Railway Signaling
Based on Moving Block

B61L27/00 (Central railway
traffic control systems; Track-
side control; Communication
systems)

South Korea (KR), United
States (US), Japan (JP), World
Intellectual Property Organiza-

tion (WO)

First, investing in smart railway infrastructure is crucial
for automation and operational efficiency. The KRRI patent
for “Automated Interlocking Logic for Railway Signaling
Based on Moving Block” (Figure 7) is a prime example.

Such systems, which leverage sensor and signaling tech-

nologies, enable real-time optimization, predictive main-
tenance, and enhanced safety, directly aligning with the
high—priority keywords. A diagram illustrating a centralized
control system communicating with multiple trains on a

track, optimizing their movement and spacing in real-time.

Dagjeon DN uP Mokpo
Heukseok-ri - Gaetae Temple
Station Station
y = . o0 \\
/ Station \
T e EPE & x> OO Coes——D
—E—=D RO &= 5 = --%—@
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o bEeEeC——>» 0
‘V\ //
/
P

Figure 7. Automated Interlocking Logic System for Railway Signaling Using Moving Block Technology.
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Second, a focus on sustainability and energy—efti-
cient technologies is vital for addressing environmental
concerns. The “Hybrid Heating Type Railroad Waste
Sleeper Pyrolysis Equipment” developed by KRRI (Fig-
ure 8) demonstrates innovation in the circular economy
by efficiently processing waste materials. Such eco—

friendly solutions align with global sustainability goals

of an industrial system showing waste sleepers being
fed into a reactor, which uses hybrid heating to con-
vert them into other materials, contributing to a circular
economy. Finally, the international applications for these
patents underscore the importance of global patent ex-
pansion and strategic collaboration to secure technolog-

ical leadership and protect intellectual property in key

and can create new economic opportunities. A schematic markets.
WASTE WOOD
SLEEPER PYROLYSIS
EQUIPMENT
(1)
PRESSURE SAFETY
bt SENSOR [—  DEVICE
(600} (700)

REACTOR REACTOR REACTOR
CONTAINER CONTAINER | ® @ @ » ¢ & @ @ o CONTAINER
{100) (100} (100)

MICROWAVE BAS
APPLICATOR PURITIGATION
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Figure 8. Hybrid Heating Type Railroad Waste Sleeper Pyrolysis Equipment.

4.4.Semantic Drift Analysis: Uncovering the
Evolving Meaning of Device

To add a qualitative dimension to the foresight analy-
sis, a semantic drift analysis was conducted on the “Hot”
priority keywords using BERT—based contextual embed-
dings. This analysis aimed to determine if a keyword’s
meaning evolved as its prominence grew. The results re-

vealed that among the high—growth keywords, device was

the only one to exhibit a statistically significant semantic
drift over time. The Ordinary Least Squares (OLS) re-
gression results in Table 5 confirm this finding. “Device”
shows a strong model fit (R? = 0.838) and a highly signifi-
cant positive coefficient (p < 0.01), indicating a systematic
and directional shift in its meaning. In contrast, other pri-
ority keywords like ‘speed’, ‘sensor’, ‘signal’, and ‘circuit’

remained semantically stable.

Table 5. OLS Regression Results for Semantic Drift of “Hot” Keywords.

Keyword R-squared Adj. R-squared Coefficient (x1) p—value
Device 0.838 0.811 0.0012 0.001
Speed 0.328 0.194 0.0021 0.179
Sensor 0.458 0.322 0.0046 0.140
Signal 0.459 0.351 0.0089 0.095
Circuit 0.004 —0.196 0.0002 0.897

The nature of this evolution becomes clear when ex-
amining the top semantic neighbors of “device” across
different time periods (Table 6). In the early 1990s,

“device” was associated with mechanical concepts like

friction and valves. By the 2000s, its context shifted to
include electrical terms such as array and current. After
2010, its neighbors increasingly reflect digital and con-

trol-oriented concepts like sidelink, control, and loca-
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tion_indicator, signaling a transition toward smart, inter-
connected systems. This longitudinal shift is quantified
by the Semantic Drift Index (SDI), which measures the
change in meaning relative to the 1990-1994 baseline.
As visualized in Figure 9, the SDI for “device” shows

a consistent upward trend, confirming a systematic de-

parture from its original mechanical context. A line chart
with the Y—axis as SDI (cosine distance) and the X—axis
as time epochs. The line shows a steady upward trend,
with an R? value of 0.838 and p < 0.01 noted, indicating
a strong positive correlation between time and semantic

change.

Table 6. Top Semantic Neighbors of Device Across Five—Year Epochs.

Epoch Top Semantic Neighbors of Device
1990-1994 extended, friction, vehicle side, valve vehicle
1995-1999 center, fastening, earthquake damage, measuring
20002004 automatically evaluating, lubricant_supply, equipment
2005-2009 pad_directly, array, current, conversion, smoke
20102014 vehicles, vehicle, power, electric, magnetic
2015-2019 comprising_one, information, electric, motor
2020-2024 thereof, electric, using, sidelink, control
2025-2029 location_indicator, rotating_lifting, blower, system

E Semantic Drift of 'device' (5-year epochs)
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Figure 9. Semantic Drift Index (SDI) of Device (1990-2029).

The robustness of this trend is further validated by the
detailed OLS regression model in Table 7, which yields a
positive and statistically significant coefficient (§ = 0.0012,
p <0.01). This result confirms that the meaning of “device”

has consistently evolved, reflecting the convergence of

mechanical, electrical, and digital technologies in modern
railway innovation. This analysis demonstrates the value
of examining semantic drift to uncover nuanced paradigm
shifts that are often missed by frequency or network analy-

ses alone.

Table 7. OLS regression results for the semantic drift of the device.

Variable Coefficient Std. Error t—value p-value 95% CI (Lower) 95% CI (Upper)
Constant —2.3047 0.418 —5.513 0.001 —3.328 —1.282
Year 0.0012 0.000 5.578 0.001 0.001 0.002
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5. Discussion

5.1. Limitations and Caveats

While this study’s framework provides a robust ap-
proach to technology foresight, several limitations must be
acknowledged to properly contextualize the findings and
inform future research. First, the reliance on patent data
as the sole proxy for innovation has inherent constraints
7l Not all inventions are patented, as firms may opt for
trade secrets to protect process innovations or proprietary
software algorithms. Consequently, the observed decline
in patent filings post—2010 might reflect not only industry
maturation but also a strategic pivot toward other forms
of intellectual property protection, potentially leading to
an underestimation of innovation in certain domains like
software. Second, the predictive power of ARIMA mod-
els is contingent on the assumption that future trends will
follow historical patterns **. While effective for linear and
seasonal trends, these models may be less reliable for fore-
casting sudden, non-linear technological disruptions that
lack historical precedent. Therefore, our framework is bet-
ter suited to identifying emerging trends within an estab-
lished paradigm than to predicting the genesis of entirely
new ones.

Third, the analytical methods themselves have limita-

. 29
tions !

| Keyword extraction, even when carefully curat-
ed, inevitably simplifies complex technical concepts. The
SNA component effectively maps the associative structure
between technologies but does not, by itself, reveal the
causal or directional nature of these relationships (e.g.,
whether advances in sensor technology drive innovation in
signal systems or vice—versa). Finally, this study’s scope
was intentionally confined to patent data from the Korean
Intellectual Property Office to provide a deep longitudinal
analysis of a single national industry. This national focus,
however, limits the direct generalizability of our specific
findings to the global railway industry, as innovation prior-
ities and trajectories may differ across regions like Europe,

North America, or Japan.

5.2. Avenues for Future Research

The limitations of this study highlight several oppor-

tunities for methodological refinement. Future research

could improve predictive accuracy by developing hybrid
forecasting models that combine ARIMA with advanced
machine learning techniques such as Long Short-Term
Memory (LSTM) networks. These hybrid approaches are
capable of capturing both linear trends and non-linear
complexities, thereby offering more robust forecasts for
disruptive technological change. Further benchmarking
against alternative models such as Prophet or Vector Au-
toregression (VAR) would not only validate their perfor-
mance but also enhance methodological rigor.

Another important avenue lies in data triangulation.
The foresight framework’s robustness can be significant-
ly strengthened by incorporating a wider variety of data
sources. Expanding the analysis to include global patent
repositories such as USPTO, EPO, and WIPO would en-
able meaningful cross—national comparisons, while inte-
grating scientific publications, venture capital investments,
market reports, and corporate press releases could provide
earlier signals of emerging technologies. Such triangula-
tion would help bridge the gap between early—stage inno-
vation and its eventual commercialization, creating a more
holistic and forward—looking analytical framework.

Finally, future studies should pursue qualitative—quan-
titative integration and scope expansion. A mixed—methods
approach—where quantitative insights guide case stud-
ies and expert interviews in ‘Hot’ technology domains—
would validate results, uncover causal mechanisms, and
provide richer contextual narratives of innovation dynam-
ics. Beyond the railway sector, applying the framework to
industries such as renewable energy, aerospace, or biotech-
nology would test its generalizability and refine its meth-
odological robustness. Within the railway industry itself,
more granular analyses of sub—domains like high—speed
rail, urban mobility, or freight logistics could generate
highly targeted insights to inform domain—specific strate-

gies.

6. Conclusions

This study proposed and validated a novel, data—driven
framework for technology foresight, designed to overcome
the limitations of traditional expert—based methods by pro-
viding an objective, replicable, and multi-dimensional ap-

proach. By systematically integrating temporal forecasting
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(ARIMA), structural network analysis (SNA), and longitu-
dinal semantic analysis (BERT), our research offers a more
nuanced and dynamic understanding of technological evo-
lution within the South Korean railway industry from 1990
to 2023.

6.1. Principal Findings and Implications

Our principal findings are that a technology’s future
strategic value is a composite of its growth momentum,
structural influence, and conceptual evolution *”. The in-
tegrated analysis, synthesized in the Technology Priority
Matrix, successfully identified a portfolio of core technolo-
gies (e.g., device, sensor, signal) that are not only projected
to grow (‘Hot”) but also function as central hubs in the in-
novation network ' This provides clear, evidence—based
prioritization for R&D investment.

Most significantly, the semantic drift analysis uncov-
ered a latent paradigm shift that would be invisible to con-

P28 The statistically sig-

ventional quantitative methods
nificant evolution of the term “device” from a mechanical
component to a digital control system provides empirical
proof of the railway industry’s fundamental transition to-
wards digitalization and intelligent systems. This finding
implies that future innovation strategies must shift from an
engineering—centric to a systems—integration and service—

oriented perspective Y,

6.2. Theoretical and Practical Implications

The theoretical contribution of this study lies in pre-
senting a holistic framework that bridges the tripartite gap
in existing technology foresight research by integrating
temporal, structural, and semantic dimensions ***%. This
multidimensional approach advances the field beyond
traditional uni—dimensional analyses, demonstrating that
the significance of a technology is shaped not only by its
growth trajectory but also by its systemic role and evolving
meaning "\, In particular, the identification of semantic
drift as a measurable indicator of paradigm shifts provides
technology management scholars with a novel analyti-
cal tool for capturing and interpreting shifts in innovation
trajectories. The practical contribution of this framework
is its ability to deliver an objective, evidence—based, and

reproducible methodology for strategic decision—making.

By grounding foresight in quantifiable trends and relation-
al insights, stakeholders can allocate R&D resources more
effectively, design targeted technology roadmaps, and
formulate policy with greater confidence than when rely-
ing on intuition alone ", Furthermore, the framework’s
adaptability across different sectors underscores its value
as a strategic intelligence tool for managing technologi-
cal change in any industry where innovation processes are

documented in textual data ©°'.

6.3. Strategic Recommendations for Industry
Stakeholders

Based on the findings, several strategic recommenda-
tions can be advanced to strengthen the competitiveness
and long—term sustainability of Korea’s railway industry.
First, stakeholders should prioritize investment in digital
core technologies, particularly in Priority 1 and 2 domains
such as devices, sensors, signal, and control. Concentrat-
ed R&D in Al-powered signaling, loT—enabled predictive
maintenance, and high—speed communication systems
will accelerate the transition toward smart, automated, and
efficient railway infrastructure. Equally important is the
need to embrace a service—oriented innovation model. The
semantic evolution of “device” illustrates a broader shift
from engineering—centric development to user— and ser-
vice—focused innovation. Future systems should therefore
be designed to enhance passenger experience, deliver real—
time information services, and integrate seamlessly with
other mobility platforms.

In parallel, stakeholders should adopt a more proactive
global intellectual property strategy and foster internation-
al collaboration. Securing patents in major global markets
such as the US, EU, and Japan is critical for protecting
technological advances and expanding industry influence.
At the same time, forging alliances with leading technolo-
gy firms and research institutes will accelerate co—devel-
opment and knowledge transfer. Finally, industry must ad-
vance sustainable and circular technologies, with emphasis
on eco—friendly innovations such as the waste sleeper
pyrolysis system, improved energy efficiency, and circular
economy practices. Pursuing these strategies in combina-
tion will enable the Korean railway industry to evolve into
a sector that is not only technologically advanced but also

globally competitive, user—centered, and environmentally
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