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ABSTRACT

As an innovative urban development model, smart cities have become a pivotal strategy for fostering green, 
efficient, and sustainable urban growth, epitomizing efficiency, intelligence, and sustainability. Investigating the impact 
of the smart city pilot policy on urban green development not only deepens our understanding of smart city construction 
but also further supports urban green development. This study utilizes panel data from 191 Chinese cities (2008-2022) 
and employs a DID model and a mediating effect model to analyze the influence of smart city construction on urban 
green development. The smart city pilot policy significantly and positively impacts urban green development, a finding 
that remains robust across various tests.  The direct influence of the smart city pilot policy on urban green development 
is seen in three key areas: resources, environment, and technology. Mechanism tests indicate that the smart city pilot 
policy promotes urban green development via two primary pathways: industrial structure upgrading and technological 
progress. The impact shows clear heterogeneity, having a significant effect on non-resource-based cities and small cities. 
The study proposes several policy recommendations, including promoting the digitalization and informatization level 
of industries, strengthening the guidance and regulation of smart city construction and technological innovation, and 
establishing a regional coordination mechanism.
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1.	 Introduction
Cities are pivotal to modernization, continuously im-

proving living conditions by meeting diverse human needs. 
Yet rapid urbanization has generated global challenges - 
environmental pollution [1,2], traffic congestion [3], resource 
depletion [4], and the urban heat-island effect - that critical-
ly undermine urban sustainability [5]. Tackling these issues 
is now central to global urban-development agendas. The 
State Council of China issued the “National New-Type 
Urbanization Plan (2014–2020),” which explicitly calls 
for the construction of smart, green, and human-centered 
cities, promoting a development model that is intensive, 
innovative, integrated, harmonious, and sustainable. In 
this context, smart cities have emerged as a key model for 
fostering sustainable urban development, characterized 
by efficiency, intelligence, and sustainability. Green de-
velopment, one of the core principles of sustainable de-
velopment, emphasizes the harmonious balance between 
economic growth and environmental conservation. In the 
development of smart cities, green development is inte-
grated throughout the process, influencing urban planning, 
infrastructure construction, energy utilization, and environ-
mental governance.

The conception of the Smart City dates back to IBM’s 
“Smart Planet” initiative in 2008, which proposed a new 
social development model. This concept was later integrat-
ed into urban planning. Globally, smart cities are emerging 
as a response to urbanization and a means to elevate living 
standards. Often equated with “digital”, “intelligent”, or 
“knowledge-based” cities, they leverage information and 
communication technologies to foster scientific growth, ef-
ficient governance, and a higher quality of life. By collect-
ing transparent, comprehensive data and ensuring secure 
transmission and effective processing, these cities optimize 
operations, enhance public services, and cultivate low-car-
bon ecosystems [6,7]. As technology rapidly advances and 
the information society emerges, smart cities have become 
a key focus for future urban planning.

Smart cities development exemplifies a paradigm for 
tackling the ecological and governance challenges of rap-
id urbanization [8]. It centers on leveraging technology to 
enhance quality of life, improve service delivery, and op-
timize resource use [9]. Smart cities encompass not only 

information technology but also concentrate on more effi-
cient resource utilization and reduced emissions [10]. Yigit-
canlar et al. [11,12] empirically analyzed the relation between 
urban smart levels and carbon dioxide emissions, revealing 
a nonlinear connection that remains stable over time. Wit-
kowski [13] contends that IoT, big-data analytics, and cloud 
computing allow firms to optimize scale and quality, boost-
ing efficiency while cutting logistics and transaction costs 
and curbing pollution—underscoring the growing schol-
arly interest in the smart-city–green-development nexus. 
Chinese researchers, integrating technological, humanistic, 
structural, and environmental perspectives, broadly concur 
that smart-city initiatives markedly elevate urban green 
performance. Using a difference-in-differences design, 
Zhang and Gao [14] show that the pilot policy upgrades 
regional manufacturing via technological innovation and 
improved resource allocation. Mo and Wu [15] argue that as 
urban development progresses, the green development im-
pact of new smart cities becomes more pronounced, with 
clear stages and variations in its effects.

Though existing studies on the relationship between 
smart city construction and urban green development of-
fer valuable insights, there are still areas that need further 
exploration and refinement. First, the indicators used to 
assess urban green development levels need further opti-
mization and enhancement. Second, the mechanisms by 
which smart city construction impacts urban green devel-
opment require further investigation. As a key government 
strategy to advance smart city development, the policy 
effects and impact mechanisms of the smart city pilot pro-
gram have attracted significant attention. Therefore, exam-
ining the influence of the smart city pilot policy on urban 
green development not only deepens our understanding 
of smart city construction but also further supports urban 
green development.

2.	 Research Hypotheses
Accelerated urbanization confronts cities with acute 

resource shortages and environmental degradation. Green 
development is now essential for sustainable urban growth, 
rendering the green transition of urban models imperative. 
The smart-city pilot policy leverages next-generation in-
formation technologies to reshape urban development, fos-
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ter multidimensional green growth, and elevate overall ur-
ban sustainability. Intelligent methods are pivotal in urban 
planning and construction. Strategically planned functional 
zones shorten travel distances, cutting energy use and car-
bon emissions. Smart transportation systems monitor traf-
fic in real time, easing congestion, reducing vehicle emis-
sions, and improving air quality [16]. Smart grids collect and 
analyze instantaneous energy data, enabling precise allo-
cation and minimizing transmission and utilization losses. 
Meanwhile, intelligent environmental monitoring tracks 
air quality continuously, rapidly detects pollution sources, 
and supplies actionable data for governance. By integrat-
ing these measures, the smart city pilot policy accelerates 
urban green development [6]. In conclusion, the smart city 
pilot policy drives urban green development by collabo-
rating across various sectors. Based on this, the following 
hypothesis is proposed:

Hypothesis 1: The smart city pilot policy contributes to 
enhancing urban green development.

A well-organized, balanced industrial structure is cru-
cial for effectively coordinating resource management, en-
vironmental protection, and economic development [17,18]. 
The smart city pilot policy presents both opportunities and 
challenges for urban development. Smart cities prioritize 
the use of next-generation information technologies to 
enhance resource allocation efficiency and quality of life, 
while also bolstering urban resilience, sustainability, and 
climate change adaptation [19]. By leveraging advanced 
technologies such as big data, the Internet of Things, and 
cloud computing, smart cities foster the development of 
emerging industries, including the digital economy, intel-
ligent transportation, and smart energy, thereby optimizing 
the industrial structure. These emerging industries, charac-
terized by high added value, low pollution, and low energy 
consumption, drive the greening and high-end develop-
ment of urban industrial structures. Smart city develop-
ment also significantly advances the greening of traditional 
industries. For instance, integrating industrial Internet and 
intelligent manufacturing technologies into production 
processes can reduce energy consumption and environ-
mental pollution, leading to a green upgrade of the indus-
trial structure. In summary, smart cities play a pivotal role 
in optimizing and upgrading urban industrial structures 

through technological innovation, industrial enhancement, 
and optimized resource allocation, providing substantial 
support for urban green development. Based on this, the 
following hypothesis is proposed:

Hypothesis 2: The smart city pilot policy contributes to 
urban green development by optimizing the industrial 
structure.

Technological progress is a core driver of urban green 
development, and the smart city pilot policy fosters a con-
ducive environment for technological innovation and prog-
ress [16]. On one hand, policy guidance and support encour-
age businesses to invest more in green technology research 
and development, accelerating the introduction and appli-
cation of new technologies. Technological innovation can 
significantly improve manufacturing resource and energy 
efficiency, while reducing pollution emissions [20]. For in-
stance, in the energy sector, smart grid technology enhanc-
es energy distribution and usage efficiency, reducing ener-
gy waste, losses, and carbon emissions. The use of digital 
design and intelligent manufacturing technologies allows 
for precise control of production processes, reducing de-
fects and raw material consumption, while simultaneously 
improving product quality and added value. Additionally, 
the smart city pilot policy facilitates the deep integration 
of information technology with traditional industries, en-
hancing production efficiency, optimizing resource alloca-
tion, and significantly reducing waste and environmental 
pollution in manufacturing. Through the creation of infor-
mation-sharing platforms and innovation networks, enter-
prises can more easily access and adopt new technologies, 
boosting the region’s overall technological capabilities. 
This diffusion of technology helps bridge the technologi-
cal gap between enterprises, improving the overall green 
development level of urban industries. Based on this, the 
following hypothesis is proposed:

Hypothesis 3: The smart city pilot policy fosters urban 
green development through technological progress.

Urban development imbalances are a notable feature 
of China’s economy and society. As the smart city pilot 
policy is implemented, varying urban forms may lead to 
different effects [21]. The 2012 smart city pilot - covering 90 
cities - revealed wide disparities in economic development, 
industrial structure, infrastructure, resource endowments, 
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innovation capacity, and policy intensity, all of which 
shape the inputs and outcomes of smart city initiatives. 
Non-resource cities, with diversified and dynamic econo-
mies, generally enjoy steadier growth and derive greater 
benefits from the pilot, whereas resource-dependent cities, 
weighed down by legacy extraction and processing, con-
front ecological degradation and pollution that can dampen 
the policy’s impact. Based on this, the following hypothe-
sis is proposed:

Hypothesis 4: The influence of the smart city pilot policy 
on urban green development is heterogeneous.

3.	 Materials and Methods

3.1.	Selection of Variables

3.1.1.	Explained Variables

Based on the “Green Development Indicator System” 
published on the Chinese government website in 2016 and 
drawing from previous studies, this research develops an 
evaluation system for urban green development, incor-
porating three dimensions: environmental governance, 
growth quality, and green living (as shown in Table 1). 
The overall score for urban green development is calculat-
ed using the entropy method.

Table 1.The Evaluation Indicators for Urban Green Development 
Level.

Dimension Indicator Unit of 
Measurement

Environmental 
Governance

Harmless treatment rate of 
domestic waste %

Total investment in pollution 
source control

Ten thousand 
yuan

Growth Quality Proportion of tertiary industry 
in regional gross product %

Green Living

Greening coverage rate in de-
veloped areas %

Per capita green space area Square meters 
per person

3.1.2.	Core Explanatory Variable

The core explanatory variable in this study is Treat*-

Time. Specifically, Treat is assigned values based on the 
list of smart cities established in 2012, as published in rele-
vant documents by the Ministry of Housing and Urban-Ru-
ral Development of the State Council of China. Time is as-
signed values based on the time nodes of the establishment 
of smart cities, and the multiplication of the two yields the 
core explanatory variable Treat*Time.

3.1.3.	Control Variables

In addition to the core explanatory variable, several 
other factors may influence the level of urban green devel-
opment and must be controlled for. These include urban-
ization (urb), economic development (eco), human capital 
(hum), infrastructure (inf), level of openness (ope), and 
industry agglomeration (agg) (see Table 2).

Table 2. Control Variables.

Name Description of Variable

Urbanization Sum of the proportion of employment popula-
tion in the secondary and tertiary industries

Economic 
Development The real per capita GDP

Human Capital Number of college students per ten thousand 
people

Infrastructure The completed investment in urban environ-
mental infrastructure construction

Level of 
Openness

Ratio of the actual total foreign investment 
used to GDP

Industry 
Agglomeration Number of large-scale industrial enterprises

3.1.4.	Mediating Variables

Based on the theoretical analysis presented earlier, the 
following indicators are selected as mediating variables 
in this study: (1) Industrial structure upgrading (struc-
ture), which typically results from the combined effects of 
factors such as technological progress, policy guidance, 
capital investment, and improvements in human resource 
quality, is represented by the ratio of the added value of 
the tertiary industry to that of the secondary industry. (2) 
Technological progress (progress), encompassing the in-
vention and promotion of new products, the improvement 
of production processes, and the application of new energy 
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sources and materials, is measured by expenditure on sci-
ence and technology.

3.2.	Data Sources and Descriptive Statistics

In December 2012, the Ministry of Housing and Ur-
ban-Rural Development of the State Council of China of-
ficially issued two documents: the “Interim Measures for 
the Administration of National Smart City Pilots” and the 
“Pilot Indicator System for National Smart Cities (Dis-
tricts, Towns) (Trial).” These documents marked the offi-
cial launch of the national smart city pilot program. The 
first batch of national smart city pilots comprised 90 cities, 
including 37 prefecture-level cities, 50 districts (counties), 
and 3 towns. To ensure the objectivity and authenticity of 
the research results and the availability of data, this study 
excluded cities that were designated as pilot areas in 2013 
and 2014, as well as those where the pilot program was 
only implemented at the district or county level. Ultimate-
ly, panel data from 191 prefecture-level cities across Chi-
na were selected. Of these, the 29 cities that implemented 
the smart city pilot program in 2012 were classified as the 
treatment group, while those that did not participate in the 

program were considered the control group (a total of 162 
cities).

This study compiles panel data from 191 Chinese pre-
fecture-level cities over a 15-year span from 2008 to 2022. 
Data for the dependent variable, mediator variable, and 
control variables are sourced from the China Statistical 
Yearbook, the China Urban Database, the EPS Database, 
provincial and municipal statistical yearbooks, and the Na-
tional Bureau of Statistics website. Missing data, account-
ing for less than 5%, are imputed based on linear trends. 
Descriptive and econometric analyses are conducted using 
Stata 17 (64-bit), with two-way fixed-effects regression 
tests executed via the reghdfe command to account for 
individual and time effects. Table 3 presents descriptive 
statistics for the explained variable (urban green develop-
ment level, UGD), the core explanatory variable (Smart 
City Pilot Policy, Treat*Time), mediating variables (indus-
trial structure upgrading, structure; technological progress, 
progress), and control variables (urbanization, urb; eco-
nomic development, eco; human capital, hum; infrastruc-
ture, inf; level of openness, ope; industry agglomeration, 
agg).

Table 3. Descriptive Statistics.

Variable Name Abbreviation Sample Size Mean Standard 
Deviation Minimum Maximum

Urban Green Development Level UGD 2672 0.787 0.416 0.043 2.532

Smart City Pilot Policy Treat*Time 2865 0.111 0.315 0.000 1.000

Industrial Structure Upgrading structure 2864 0.987 0.449 0.139 5.650

Technological Progress progress 2864 −0.117 0.500 −1.975 1.732

Urbanization urb 2671 4.732 1.164 −0.211 8.347

Economic Development eco 2865 10.662 0.648 4.595 13.056

Human Capital hum 2674 97.907 6.803 0.000 127.210

Infrastructure inf 2673 11.643 1.674 3.555 15.920

Level of Openness ope 2244 0.302 0.287 0.000 2.944

Industry Agglomeration agg 2864 6.792 1.051 3.296 9.536
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3.3.	Methods

3.3.1.	Benchmark Model 

The smart city pilot policy implemented by China in 
2012 can be considered a quasi-natural policy experiment. 
To evaluate its effects, the Difference-in-Differences (DID) 
method is usually used to construct the benchmark regres-
sion model presented in Equation (1), which explores the 
influence of the smart city pilot policy on urban green de-
velopment levels:

UGDit = μi +λt + αTreatit * Timeit + Σ βi xiit + εit (1)

where i denotes the city, and t denotes the year. UGD 
represents the urban green development level; Treat is a 
dummy variable for grouping; Time is a time dummy vari-
able; x is a set of control variables; individual effects are 
denoted by μi, time effects by λt, and εit represents the ran-
dom error.

Cities that adopted the smart city pilot policy in 2012 
are classified as the treatment group, whereas those that 
did not are classified as the control group. A policy dummy 
variable is assigned a value of 1 for pilot areas and 0 for 
non-pilot areas. Additionally, a time dummy variable is set 
at 1 for 2012 and subsequent years, and 0 for earlier years.

3.3.2.	Mediating Effects Model 

To further examine the impact mechanism of the smart 
city pilot policy on urban green development levels, this 
paper addresses potential estimation biases that may arise 
from the traditional step-by-step regression approach in 
mediation effect models. Drawing on Jiang’s suggestions 
for improving mediating effect tests [22], we construct the 

following mediating effect model based on Model (1):

structureit = μi +λt + γTreatit * Timeit + Σ Φi xiit + εit (2)

progressit = μi +λt + ηTreatit * Timeit + Σ τi xiit + εit (3)

Where structure and progress represent the mediating vari-
ables. According to the testing criteria, when conducting 
the mediating effect test, if the regression coefficient α in 
Model (1) is significant, and the coefficient γ in Model (2) 
or η in Model (3) is also significant, it suggests that the 
core explanatory variable’s regression coefficients are all 
significant, indicating the presence of a mediating effect.

4.	 Results

4.1.	Benchmark Regression

Table 4 displays the benchmark regression results, as-
sessing the impact of the smart city pilot policy on urban 
green development levels. Column (1) excludes control 
variables, whereas Columns (2)–(7) incrementally include 
control variables. All models account for individual and 
time fixed effects. The regression results indicate that, in 
the absence of control variables, the coefficient of Treat*-
Time is 0.068 and statistically significant at the 1% level. 
This suggests that, compared to cities that did not imple-
ment the smart city pilot policy, cities that did saw a sig-
nificant improvement in their level of green development 
post-2012. After progressively adding control variables in 
Columns (2)–(7), the coefficient of Treat*Time changed 
slightly but remained significantly positive. These results 
suggest that the implementation of the smart city pilot pol-
icy significantly enhanced urban green development levels.

Table 4. Benchmark Regression.

(1) (2) (3) (4) (5) (6) (7)

UGD UGD UGD UGD UGD UGD UGD

Treat*Time 0.068*** 0.068*** 0.063*** 0.061*** 0.061*** 0.054*** 0.054***

(4.787) (4.741) (4.449) (4.257) (4.259) (3.902) (3.922)

urb 0.000 0.000 0.000 0.000 0.000 0.000

(1.002) (0.605) (0.696) (0.706) (1.037) (1.057)

eco −0.070*** −0.068*** −0.068*** −0.073*** −0.039**

(−5.420) (−5.335) (−5.333) (−5.188) (−2.504)

hum −0.003*** −0.003*** −0.001 −0.001
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(1) (2) (3) (4) (5) (6) (7)

UGD UGD UGD UGD UGD UGD UGD

(−2.942) (−2.950) (−0.781) (−0.778)

inf −0.001 −0.004 −0.004

(−0.299) (−0.918) (−0.804)

ope −0.049*** −0.030**

(−3.317) (−2.028)

agg −0.064***

(−5.271)

_cons 0.114*** 0.113*** 0.771*** 1.007*** 1.020*** 0.961*** 1.013***

(3.432) (3.401) (6.127) (6.755) (6.537) (5.008) (5.308)

N 2672 2672 2672 2672 2672 2244 2244
Individual 

Effects Yes Yes Yes Yes Yes Yes Yes

Time Effects Yes Yes Yes Yes Yes Yes Yes
t statistics in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

4.2.	Parallel Trends Test

The parallel trend assumption asserts that, before pol-
icy implementation, the outcome variables of the treat-
ment and control groups should follow the same trend of 
change. To test this, an event study approach is applied. 
The year 2012, when the policy was implemented, serves 
as the base period, and period -1 is excluded to prevent 
perfect collinearity. The estimation results are shown in 
Figure 1. Before the policy implementation, the estimated 
urban green development level did not significantly differ 

from 0, fluctuating around it. This suggests that there was 
no significant difference between the treatment and control 
groups before the policy, thus satisfying the parallel trend 
assumption. After the policy implementation, it is observed 
that various measures were not fully operational in the 
initial phase, resulting in no significant immediate effects. 
This can be interpreted as a time-lag effect of policy imple-
mentation. However, when considering the overall trend, 
the smart city pilot policy still appears to have a potential 
positive impact on urban green development levels.

Figure 1. Parallel Trends Test.

Table 4. Cont.
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4.3.	Robustness

4.3.1.	Placebo Tests

The placebo test examines whether the observed poli-
cy effects are influenced by random factors or data biases 
by simulating random policy interventions. Using Stata 
software, this study generates 500 random treatment and 
control groups based on the implementation of the smart 

city pilot policy. It then calculates 500 virtual regression 
coefficients and their corresponding p-values. The distribu-
tion of these estimated coefficients is plotted (see Figure 2). 
The results show that the estimated coefficients of the ficti-
tious difference-in-differences term are distributed around 
zero, approximating a normal distribution, with the mean 
far from the true value. This suggests that the influence of 
the smart city pilot policy on urban green development is 
reliable, and the main conclusions are robust.

Table 5. Results of the Propensity Score Matching.

Variable Matching
Mean

Standard Deviation t p-value
Treatment Group Control Group

urb U 5.443 4.650 77.2 10.25 0.000
M 5.443 4.650 6.8 0.77 0.441

eco U 11.07 10.507 99.3 13.03 0.000
M 11.07 11.045 4.3 0.51 0.611

hum U 99.544 97.554 40.9 4.42 0.000
M 99.544 99.557 −0.3 −0.20 0.840

inf U 12.364 11.505 54.4 7.63 0.000
M 12.364 12.266 6.2 0.67 0.501

ope U 0.3755 0.2935 28.8 4.13 0.000
M 0.3755 0.3545 7.4 0.76 0.448

agg U 7.0865 6.7872 31.4 4.33 0.000
M 7.0865 7.0804 0.6 0.07 0.945

Figure 2. Placebo Tests.

4.3.2.	Propensity Score Matching Test

To further ensure an accurate assessment of the true im-

pact of the policy and control for potential confounding fac-

tors, propensity score matching (PSM) is employed to find 

a control group with minimal differences from the treatment 

group. The sample is processed using PSM, as shown in 
Table 5. After matching, the standard deviations of the con-
trol variables between the treatment and control groups are 
significantly reduced, with all absolute values falling below 
10%. Furthermore, the p-values for all control variables are 
insignificant, indicating that the PSM effect is satisfactory.
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4.3.3.	Shortening the Sample Period

In the robustness tests, we shortened the sample period 
to verify the reliability and stability of the research conclu-
sions. The original sample period, which covered 2008 to 
2022, was shortened to 2009 to 2020 to exclude potential 
abnormal data fluctuations and other disturbances that may 
arise over a longer period. Utilizing the matched sample, 
the difference-in-differences (DID) method is employed 
for estimation, with the results displayed in Column (2) of 

Table 6. Column (3) shows that the regression results re-
main significant within the shortened sample period, and 
the coefficient of the core explanatory variable Treat*Time 
is close to that of the benchmark regression (Column (1)). 
This indicates that even with a shorter sample period, the 
policy effect remains stable in terms of both strength and 
direction. A series of tests confirms that the smart city pilot 
policy has a significant positive impact on urban green de-
velopment. 

Table 6. The Results of PSM-DID and Shortening the Sample Period.

(1) (2) (3)

UGD PSM-DID UGD
Treat*Time 0.054*** 0.046*** 0.0504***

(3.922) (3.446) (3.3365)
urb 0.000 −0.001 0.0042

(1.057) (−0.139) (0.9104)
eco −0.039** 0.033** −0.0346*

(−2.504) (2.018) (−1.7948)
hum −0.001 −0.001 0.0008

(−0.778) (−0.978) (0.5816)
inf −0.004 −0.005 0.0045

(−0.804) (−1.128) (0.8218)
ope −0.030** −0.044*** −0.0207

(−2.028) (−3.031) (−1.3965)
agg −0.064*** −0.024** −0.0513***

(−5.271) (−1.974) (−4.0973)
_cons 1.013*** −0.009*** 0.6971***

(5.308) (−11.607) (3.1216)
N 2244 2242 1864

Individual Effects Yes Yes Yes
Time Effects Yes Yes Yes

t statistics in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

4.3.4.	Endogeneity

When exploring the relationship between the smart 
city pilot policy and urban green development, bidirec-
tional causality between the two could trigger endogeneity 
issues, which might undermine the accuracy and reliability 
of the research results. To address this, the total volume 
of postal and telecommunications services in the region is 
used as an instrumental variable for endogeneity testing. 
Typically, regions with higher volumes of postal and tele-
communications services have efficient information trans-

mission and developed communication networks, which 
provide a strong foundation for smart city construction and 
correlate highly with the smart city pilot policy. As an ob-
jective reflection of the scale of information and commu-
nication activities, the total volume of postal and telecom-
munications services is an exogenous factor, independent 
of other random disturbances affecting urban green devel-
opment, thus satisfying the exogeneity requirement.

The endogenous variable Treat exists in the form of 
an interaction term (Treat*Time), so the actual endoge-
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nous variable in this study is the interaction term Treat*-
Time. When using instrumental variables for analysis, 
the instrumental variable corresponding to the interaction 
term Treat*Time is set as IV*Time. In the first stage of re-
gression, the instrumental variable IV is multiplied by the 
variable Time to construct the interaction term IV*Time, 
which is then introduced into the regression model to rig-
orously test the relevance of the instrumental variable. The 
regression results are shown in Table 7. As indicated by 
the first-stage regression results in Column (1), the coef-

ficient of the instrumental variable interaction term “IV*-

Time” exhibits significant statistical characteristics. In the 

second-stage regression results of Column (2), the coeffi-

cient of the core explanatory variable Treat*Time remains 

significantly positive. This suggests that after successfully 

addressing endogeneity, the positive impact of the smart 

city pilot policy on urban green development remains sig-

nificant, confirming that the benchmark regression results 

are not due to sample selection bias.

Table 7. Endogeneity.

(1) (2)

UGD UGD

IV*Time 0.025***

(5.108)

Treat*Time 1.425**

(2.186)
urb −0.001 0.019

(−0.270) (1.331)
eco −0.045*** 0.050

(−2.908) (0.906)
hum −0.001 0.009

(−0.400) (1.569)
inf −0.003 −0.005

(−0.640) (−0.501)
ope −0.021 −0.080*

(−1.392) (−1.906)
agg −0.063*** −0.065**

(−5.204) (−2.278)
_cons 1.018*** −0.681

(5.358) (−0.740)
N Yes Yes

Individual Effects Yes Yes
Time Effects 2241 2241

t statistics in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

4.4.	Moderating Effects

To further explore the mechanisms of influence, in-
dustrial structure upgrading and technological progress are 
set as mediating variables. This study follows Jiang’s rec-
ommendation for the two-step method in mediating effect 
analysis to effectively elaborate and verify the proposed 
mechanisms [22].

Table 8 presents the mediating effect results. Column 

(2) indicates that the regression coefficient for the impact 

of smart city construction on industrial structure upgrading 

is positive and significant at the 1% level, suggesting that 

smart city initiatives can boost industrial structure upgrad-

ing. Column (3) shows that the regression coefficient for 

the impact of smart city construction on technological prog-
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ress is positive and significant at the 5% level, indicating 
that smart city initiatives can enhance technological prog-
ress. This suggests that smart city pilot policy contributes 

to urban green development by optimizing the industrial 
structure, thereby confirming Hypothesis 2, and through 
technological progress, thus confirming Hypothesis 3.

Table 8. Moderating Effects.

(1) (2) (3)

UGD Structure Progress
Treat*Time 0.054*** 0.116*** 0.068**

(3.922) (4.278) (2.471)
urb 0.000 −0.026*** −0.020**

(1.057) (−3.031) (−2.294)
eco −0.039** 0.246*** 0.228***

(−2.504) (14.289) (13.094)
hum −0.001 0.009*** 0.012***

(−0.778) (3.229) (4.396)
inf −0.004 0.086*** 0.071***

(−0.804) (9.207) (7.590)
ope −0.030** −0.122*** −0.148***

(−2.028) (−4.025) (−4.830)
agg −0.064*** −0.286*** −0.291***

(−5.271) (−12.649) (−12.745)
_cons 0.054*** −2.601*** −1.528***

(3.922) (−8.771) (−5.108)
N 2242 2242 2242

Individual Effects Yes Yes Yes
Time Effects Yes Yes Yes

t statistics in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

4.5.	Heterogeneity

The analysis results in the preceding text show that 
the smart city pilot policy has played a significant role in 
promoting urban green development. However, whether 
this role still exists for different types of cities and whether 
there are differences in its effects are questions that need to 
be addressed.

Urban resource endowments can influence the effi-
ciency of resource utilization and the industrial structure 
of economic entities, thus affecting a city’s sustainable 
development [23]. First, we examine the heterogeneity from 
the perspective of resource endowment. In accordance 
with the “National Plan for the Sustainable Development 
of Resource-Based Cities (2013–2020)”, the 191 sam-
ple cities are categorized into resource-based and non-
resource-based cities (with 78 resource-based cities and 

113 non-resource-based cities), and grouped regressions 
are conducted. Columns (1) to (2) of Table 9 show that the 
smart city pilot policy has a significant impact on the green 
development level of non-resource-based cities, while its 
effect on resource-based cities is not significant.

There may also be differences in this impact across 
cities of varying sizes. Based on the permanent population 
in urban areas, the “Notice of the State Council of China 
on Adjusting the Standards for Classifying City Sizes” cat-
egorizes cities by size. According to this classification, cit-
ies with a permanent population of less than or equal to 1 
million are small cities, cities with populations greater than 
1 million but less than or equal to 5 million are large cities, 
and cities with populations greater than 5 million are meg-
acities. The results in Columns (3) to (5) of Table 9 show 
that the smart city pilot policy significantly impacts the 
green development level of small cities.
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Table 9. Heterogeneity.

(1) (2) (3) (4) (5)

Non-Resource-Based Resource-Based Small Large Mega

Treat*Time 0.072*** 0.022 0.102*** 0.008 0.005

(3.680) (1.259) (5.757) (0.348) (0.068)
urb 0.010 −0.021*** −0.002 0.008 0.015

(1.494) (−3.245) (−0.509) (0.537) (0.380)

eco −0.019 −0.053*** −0.064*** 0.051 0.014

(−0.609) (−3.526) (−3.927) (1.260) (0.171)
hum 0.001 −0.001 −0.002* 0.022*** −0.059

(0.390) (−0.626) (−1.673) (4.006) (−1.606)
inf −0.003 0.000 0.005 0.009 −0.027

(−0.477) (0.033) (0.894) (0.956) (−1.065)

ope −0.040** 0.035 0.014 −0.029 −0.138**

(−2.041) (1.440) (0.802) (−0.847) (−2.481)

agg −0.081*** −0.044*** −0.065*** −0.086*** −0.025

(−4.354) (−3.002) (−4.951) (−3.152) (−0.378)
_cons 0.625 1.546*** 1.309*** −0.801 7.103*

(1.409) (7.716) (6.726) (−1.259) (1.871)
N 1335 907 1417 622 203

Individual Effects Yes Yes Yes Yes Yes
Time Effects Yes Yes Yes Yes Yes

t statistics in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01

5.	 Discussion
Based on panel data from 191 cities over the period 

from 2008 to 2022, this study employs the DID method to 
empirically examine the impact of the smart city pilot poli-
cy on urban green development levels. The results reveal:

(1)	 The direct influence of the smart city pilot poli-
cy on urban green development is seen in three key areas: 
resources, environment, and technology. Smart cities opti-
mize water-recycling monitoring, ensure safe gas-system 
operations, and advance waste reduction through secure 
data platforms. Real-time environmental monitoring and 
big-data analytics enable rapid issue resolution, improving 
urban conditions and social sustainability [24,25]. In terms of 
technology, data serves as the core resource of smart cities’ 
digital infrastructure. Data, the core asset of digital infra-
structure, is processed by sensor-rich, IoT-enabled energy 
platforms [26]. This fosters the integration of energy net-
works, the Internet, and IoT, enabling digital supervision 
and analysis of energy data.

(2)	 The smart city pilot policy promotes urban green 
development by optimizing the industrial structure. Empir-
ical evidence shows that smart cities shift from traditional 
to innovation-driven growth, channeling resources toward 
high-tech and emerging sectors aligned with the new eco-
nomic model [27]. The structural dividend hypothesis sug-
gests that adjustments in industrial structure can create 
“structural dividends” [28], which are critical for enhancing 
green development efficiency [29]. Upgrading the struc-
ture boosts productivity and energy use, steers inputs to-
ward low-carbon technologies, and drives high-precision, 
green-certified manufacturing, thereby markedly improv-
ing urban green efficiency [30]. Consequently, the structural 
effect of the smart-city pilot policy becomes a key driver 
of urban green development.

(3)	 The smart city pilot policy promotes urban green 
development through technological innovation. Existing 
research confirms that accelerating technological inno-
vation is a critical policy strategy to improve green de-
velopment levels. The technological innovations actively 
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promoted in China have been pivotal in advancing green 
development [31]. Green-manufacturing innovations drive 
industrial green growth by cutting energy use and emis-
sions, restructuring energy mixes, and generating knowl-
edge spillovers. Consequently, smart-city-led technological 
advances will bolster urban sustainability.

(4)	 Smart city pilots yield heterogeneous impacts on 
green development. Resource-based cities, historically an-
chored in natural-resource extraction, confront entrenched 
barriers to industrial transformation and green innovation 
[32]. While the pilot policy aims to promote the intelligent 
and informatized development of cities, resource-based 
cities face considerable challenges in transitioning from 
traditional industries to green and sustainable ones. This 
transition requires substantial time and investment. Non-
resource-based counterparts, benefiting from diverse, dy-
namic economies and steadier growth, integrate the pilot 
more readily [33]. These cities prioritize upgrading tradi-
tional sectors and nurturing high-tech services, leveraging 
information technologies to raise efficiency and advance 
green development. Small cities, owing to compact size, 
experience lower implementation resistance and fast-
er structural adjustment, whereas large and mega-cities 
- marked by dense populations, intricate industries, and 
heightened environmental pressures - struggle to roll out 
uniform policies, delaying visible impacts.

6.	 Conclusions
Based on the above research conclusions, this article 

puts forward the following policy suggestions:
Increased investment should be directed toward smart 

city construction, and the widespread adoption of informa-
tion technology across industries should be promoted. In 
particular, traditional industries should be encouraged to 
utilize big data, the Internet of Things, and other technolo-
gies to achieve intelligent transformation, thus improving 
production efficiency while reducing energy consumption 
and environmental pollution. Policies should be designed 
to attract high-tech and green industries to these areas, le-
veraging smart city advantages to provide a better develop-
ment environment. Efforts should be made to cultivate and 
attract talent, offering intellectual support for smart city 
development and industrial optimization. This includes 

training professionals skilled in information technology 
and green development, as well as attracting outstanding 
domestic and international talent for urban development. 
A robust evaluation system for industrial structure adjust-
ments should be established to regularly assess changes in 
the industrial structure and green development under the 
smart city pilot policy, and to promptly adjust policy direc-
tions as necessary.

Government departments should strengthen their guid-
ance and regulation of smart city construction and techno-
logical innovation. Increased investment in research and 
development of smart city-related technologies is essential, 
with the establishment of specialized research funds to en-
courage universities, research institutions, and businesses 
to focus on green technological innovations. A smart city 
innovation platform should be created to promote cooper-
ation among industry, academia, and research institutions, 
accelerating the transformation and application of tech-
nological advancements. Preferential policies should be 
introduced to attract technology companies, offering tax 
exemptions and financial subsidies to those making signif-
icant contributions to green technological innovations. A 
technology innovation evaluation system should be set up 
to regularly assess technological achievements and green 
development levels under the smart city pilot policy, ad-
justing policies as necessary.

Bolster green-development momentum by prioritizing 
urban innovation. Expand dedicated funds for pilot smart 
cities to accelerate green-manufacturing R&D and deploy-
ment, maximizing its environmental gains. Create innova-
tion-exchange platforms to disseminate technologies across 
cities and upgrade collective capabilities. On the other 
hand, institute a regional-coordination framework that en-
ables experience sharing and collaboration among areas 
with diverse geographies and resource endowments. Pol-
icies must account for this heterogeneity through tailored 
support and evaluation criteria. Prioritize non-resource 
cities, monitor smart-city progress and green outcomes, 
and dynamically adjust measures to maintain precision and 
impact.

The main limitations of this study are as follows: First, 
the limitations of the indicator system. The evaluation sys-
tem used to measure urban green development does not 
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comprehensively cover all aspects of green development, 
such as the value of ecosystem services. Second, while 
the study focuses on two primary mechanisms - industrial 
structure upgrading and technological progress - it does not 
fully explore other potential factors, such as the optimiza-
tion of social governance structures or the enhancement of 
public environmental awareness. These factors may also 
play important roles, but their mechanisms have not yet 
been fully explored.

Future research will focus on several areas: First, ex-
panding the concept of green development by incorpo-
rating more indicators related to ecosystem services for a 
more comprehensive assessment. The level of smart city 
construction will also be examined in greater depth, con-
sidering improvements in information technology applica-
tion, the development of intelligent infrastructure, and data 
sharing. Second, future research will explore additional 
mechanisms through which the smart city pilot policy af-
fects urban green development. This includes studying the 
role of social governance optimization in promoting green 
development, with a focus on policy implementation effi-
ciency and resource allocation effects under various gov-
ernance models. Further attention will also be paid to the 
role of public environmental awareness in the implementa-
tion process, including public perception and participation 
in smart city construction and green development.
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