Electrochemical Energy Storage Studies on Sustainably Synthesized Co3O4 Nanoparticles for Supercapacitor Electrodes

Authors

  • Helen Osora

    School of Applied Physics, Papua New Guinea Univers·ity of Technology, Lae 411, Papua New Guinea

  • T. Jebakumar Immanuel Edison

    Department of Chemistry, Sethu Institute of Technology, Kariapatti 626115, India

  • David Kolkoma

    School of Applied Physics, Papua New Guinea Univers·ity of Technology, Lae 411, Papua New Guinea

  • Gabriel Anduwan

    School of Applied Physics, Papua New Guinea Univers·ity of Technology, Lae 411, Papua New Guinea

  • Mathew Waimbo

    School of Applied Physics, Papua New Guinea Univers·ity of Technology, Lae 411, Papua New Guinea

  • Senthilkumar Velusamy *

    Department of Chemistry, Sethu Institute of Technology, Kariapatti 626115, India

DOI:

https://doi.org/10.55121/nefm.v4i2.689

Keywords:

Hydrothermal , Supercapacitor, Cyclic Voltammetry, Symmetrical Device

Abstract

In this study, a facile hydrothermal technique was used, and the commercially important cobalt oxide nanoparticles were synthesised for pseudocapacitor electrodes in supercapacitor applications. The prepared particles were subjected to different characterization techniques to determine their phase structure, topography, and elemental composition by XRD, FE-SEM, TEM, and EDAX. The XRD pattern confirmed the formation of pure cubic spinel Co₃O₄ phase with well-defined diffraction peaks and without any impurity phases, indicating high crystallinity of the synthesized nanoparticles. In addition, Raman spectroscopy exhibited prominent vibrational modes at around 469, 514, and 684 cm⁻¹, corresponding to the F₂g and A₁g modes of the spinel Co₃O₄ structure, further confirming the successful formation of phase-pure cobalt oxide with strong crystalline quality. Further, the particles electrochemical properties were investigated in an alkaline electrolyte at 3 M. The electrochemical studies confirmed that during galvanostatic charge and discharge studies, the built electrode displays a maximal specific capacitance value of 450 Fg⁻¹ at 6 Ag⁻¹. In addition, the cyclic stability experiments confirmed that the prepared electrode exhibits a retaining ability of 87% even after cycles at 10 Ag⁻¹. Further, the constructed symmetrical structure achieved a highest power density of 1312 W kg⁻¹ with an energy density of 19 Wh kg⁻¹, measured at a current density of 10 Ag⁻¹. These results demonstrate that hydrothermally synthesized Co₃O₄ nanoparticles are promising, low-cost, environmentally benign electrode materials for high-power supercapacitor applications such as power buffering in renewable-energy systems and short-duration
backup for portable electronics.

References

[1] Hu, X., Wei, L., Chen, R., et al., 2020. Reviews and Prospectives of Co₃O₄-Based Nanomaterials for Supercapacitor Application. Chemistry Select. 5(17), 5268–5288. DOI: https://doi.org/10.1002/slct.201904485

[2] Zhang, J., Gu, M., Chen, X., 2023. Supercapacitors for Renewable Energy Applications: A Review. Micro Nano Engineering. 100229. DOI: https://doi.org/10.1016/j.mne.2023.100229

[3] Muzaffar, A., Ahamed, M.B., Deshmukh, K., et al., 2019. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renewable and Sustainable Energy Reviews. 101, 123–145. DOI: https://doi.org/10.1016/j.rser.2018.10.026

[4] Gogotsi, Y., Simon, P., 2011. True Performance Metrics in Electrochemical Energy Storage. Science. 334(6058), 917–918. DOI: https://doi.org/10.1126/science.1213003

[5] Wei, T.Y., Chen, C.H., Chien, H.C., et al., 2010. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol–Gel Process. Advanced Materials. 22(3), 347–351. DOI: https://doi.org/10.1002/ADMA.200902175

[6] Martha, S.K., Pappu, S., Sarada, B.V., et al., 2022. Concept of Thermodynamic Studies in Electrochemical Storage and Conversion Systems. Encyclopedia of Energy Storage. 1, 264–274. DOI: https://doi.org/10.1016/B978-0-12-819723-3.00135-9

[7] Najib, S., Erdem, E., 2019. Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review. Nanoscale Advances. 1(8), 2817–2827. DOI: https://doi.org/10.1039/C9NA00345B

[8] Gür, T.M., 2018. Review of Electrical Energy Storage Technologies, Materials and Systems: Challenges and Prospects for Large-Scale Grid Storage. Energy & Environmental Science. 11(10), 2696–2767. DOI: https://doi.org/10.1039/C8EE01419A

[9] Osora, H., Kolkoma, D., Anduwan, G., et al., 2024. Hydrothermally Grown SnO₂ and SnO₂/rGO Nanocomposite and Its Physio-Electrochemical Studies for Pseudocapacitor Electrode Applications. Journal of Cluster Science. 35(3), 891–901. DOI: https://doi.org/10.1007/s10876-023-02517-5

[10] Lokhande, P.E., Kadam, V., Jagtap, C., 2024. Comparative Performance of Aqueous and Ionic Liquid-Based Gel Electrolytes in Co(OH)₂/rGO-Based Supercapacitor. Energy Technology. 12, 2400995. DOI: https://doi.org/10.1002/ente.202400995

[11] Lokhande, P.E., Chavan, U.S., 2020. Cyclic Voltammetry Behavior Modeling of Fabricated Nanostructured Ni(OH)₂ Electrode Using Artificial Neural Network for Supercapacitor Application. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234(13), 2563–2568. DOI: https://doi.org/10.1177/0954406220907615

[12] Lokhande, P.E., Chavan, U.S., 2019. Inorganic Electrolytes in Supercapacitor. Materials Research Foundations. 61, 11–30. DOI: https://doi.org/10.21741/9781644900499-2

[13] Lokhande, P.E., Chavan, U.S., Deokar, S., et al., 2019. Surfactant-Free Chemically Deposited Wheat Spike-Like Nanostructure on Cu Foam for Supercapacitor Applications. Materials Today: Proceedings. 18, 979–985. DOI: https://doi.org/10.1016/j.matpr.2019.06.537

[14] Mohite, D.D., Chavan, S.S., Dubal, S., et al., 2024. Electrochemical Evaluation of ZnO and PAN-Based Carbon Nanofibers Composite for High-Performance Supercapacitor Application. Ionics. 30(12), 8469–8480. DOI: https://doi.org/10.1007/s11581-024-05869-8

[15] Lokhande, P.E., Kadam, V., Jagtap, C., et al., 2025. Fast Synthesis of Co3O4-MXene Nanocomposites via Microwave Assistance for Energy Storage Applications. Diamond and Related Materials. 154, 112191. DOI: https://doi.org/10.1016/j.diamond.2025.112191

[16] Wang, Y., Lei, Y., Li, J., et al., 2014. Synthesis of 3D-Nanonet Hollow Structured Co3O4 for High Capacity Supercapacitor. ACS Applied Materials & Interfaces. 6(9), 6739–6747. DOI: https://doi.org/10.1021/am500464n

[17] Samuel, E., Joshi, B., Kim, M.W., et al., 2019. Hierarchical Zeolitic Imidazolate Framework-Derived Manganese-Doped Zinc Oxide Decorated Carbon Nanofiber Electrodes for High-Performance Flexible Supercapacitors. Chemical Engineering Journal. 371, 657–665. DOI: https://doi.org/10.1016/j.cej.2019.04.065

[18] Senthilkumar, V., Kadumudi, F.B., Ho, N.T., et al., 2016. NiO Nanoarrays of a Few Atoms Thickness on 3D Nickel Network for Enhanced Pseudocapacitive Electrode Applications. Journal of Power Sources. 303, 363–371. DOI: https://doi.org/10.1016/j.jpowsour.2015.11.034

[19] Zhu, G., He, Z., Chen, J., et al., 2014. Highly Conductive Three-Dimensional MnO2–Carbon Nanotube–Graphene–Ni Hybrid Foam as a Binder-Free Supercapacitor Electrode. Nanoscale. 6(2), 1079–1085. DOI: https://doi.org/10.1039/C3NR04495E

[20] Wu, Z.S., Wang, D.W., Ren, W., et al., 2010. Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. Advanced Functional Materials. 20(20), 3595–3602. DOI: https://doi.org/10.1002/adfm.201001054

[21] Farahmandjou, M., 2016. Fabrication and Characterization of Nanoporous Co Oxide (Co₃O₄) Prepared by Simple Sol–Gel Synthesis. Physical Chemistry Research. 4(2), 153–160. DOI: https://doi.org/10.22036/pcr.2016.12909

[22] Li, W.Y., Xu, L.N., Chen, J., 2005. Co₃O₄ Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Advanced Functional Materials. 15(5), 851–857. DOI: https://doi.org/10.1002/adfm.200400429

[23] Ping, Y., Zhang, H., Meng, S., 2025. Reduced Graphene Oxide/Porous Cobalt Oxides With Oxygen Vacancies as Electrode Materials for High-Performance Supercapacitor. Diamond and Related Materials. 158, 112694. DOI: https://doi.org/10.1016/j.diamond.2025.112694

[24] Casas-Cabanas, M., Binotto, G., Larcher, D., et al., 2009. Defect Chemistry and Catalytic Activity of Nanosized Co₃O₄. Chemistry of Materials. 21(9), 1939–1947. DOI: https://doi.org/10.1021/cm900328g

[25] Rabani, I., Yoo, H.S., Kim, H.S., et al., 2021. Highly Dispersive Co₃O₄ Nanoparticles Incorporated into a Cellulose Nanofiber for a High-Performance Flexible Supercapacitor. Nanoscale. 13(1), 355–370. DOI: https://doi.org/10.1039/D0NR06982E

[26] Zhang, Y., Tang, Y., Liu, X., et al., 2012. Three-Dimensional CdS-Titanate Composite Nanomaterials for Enhanced Visible-Light-Driven Hydrogen Evolution. Small. 9(7), 996–1002. DOI: https://doi.org/10.1002/smll.201202156

[27] Sharma, R.K., Sharma, S., Dutta, S., et al., 2015. Fe₃O₄ (Iron Oxide)-Supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions. Green Chemistry. 18(11), 3207–3230. DOI: https://doi.org/10.1039/C6GC00864J

[28] Lokhande, P.E., Khasim, S., Hamdalla, T.A., et al., 2025. Electrochemical Evaluation of NiFe-LDH/PANI Based Composite Electrode Synthesized via Microwave Assisted Method for Supercapacitor Application. Inorganic Chemistry Communications. 179, 114802. DOI: https://doi.org/10.1016/j.inoche.2025.114802

[29] Deng, M.J., Huang, F.L., Sun, I.W., et al., 2009. An Entirely Electrochemical Preparation of a Nano-Structured Cobalt Oxide Electrode with Superior Redox Activity. Nanotechnology. 20(17), 175602. DOI: https://doi.org/10.1088/0957-4484/20/17/175602

[30] Yan, N., Hu, L., Li, Y., et al., 2012. Co₃O₄ Nanocages for High-Performance Anode Material in Lithium-Ion Batteries. Journal of Physical Chemistry C. 116(12), 7227–7235. DOI: https://doi.org/10.1021/jp2126009

[31] Agarwal, K., Mondal, S., Rai, H., 2023. Quantum Dots: An Overview of Synthesis, Properties, and Applications. Materials Research Express. 10(6), 062001. DOI: https://doi.org/10.1088/2053-1591/acda17

[32] Senthilkumar, V., Vickraman, P., Jayachandran, M., et al., 2010. Structural and Optical Properties of Indium Tin Oxide (ITO) Thin Films with Different Compositions Prepared by Electron Beam Evaporation. Vacuum. 84, 864–869. DOI: https://doi.org/10.1016/j.vacuum.2009.11.017

[33] Edison, T.N.J.I., Baral, E.R., Lee, Y.R., et al., 2016. Biogenic Synthesis of Silver Nanoparticles Using Cnidium officinale Extract and Their Catalytic Reduction of 4-Nitroaniline. Journal of Cluster Science. 27, 285–298. DOI: https://doi.org/10.1007/s10876-015-0929-z

[34] Prabhu, Y.T., Rao, K.V., Kumar, V.S.S., et al., 2014. X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering. 4(1), 21–28. DOI: https://doi.org/10.4236/wjnse.2014.41004

[35] Kushwaha, P., Chauhan, P., 2021. Microstructural Evaluation of Iron Oxide Nanoparticles at Different Calcination Temperature by Scherrer, Williamson-Hall, Size-Strain Plot and Halder-Wagner Methods. Phase Transitions. 94(10), 731–753. DOI: https://doi.org/10.1080/01411594.2021.1969396

[36] Das, R., Sarkar, S., 2015. Determination of Intrinsic Strain in Poly (Vinylpyrrolidone)-Capped Silver Nano-Hexapod Using X-Ray Diffraction Technique. Current Science. 109(4), 775–778. Available from: https://www.jstor.org/stable/24905739 (cited 16 August 2025).

[37] Kumarage, G.W.C., Zappa, D., Mihalcea, C.G., et al., 2023. Revolutionizing n-type Co3O4 Nanowire for Hydrogen Gas Sensing. Advanced Energy and Sustainability Research. 4, 2300067. DOI: https://doi.org/10.1002/aesr.202300067

[38] Sivachidambaram, M., Vijaya, J.J., Kaviyarasu, K., et al., 2017. A Novel Synthesis Protocol for Co₃O₄ Nanocatalysts and Their Catalytic Applications. RSC Advances. 7, 38861–38870. DOI: https://doi.org/10.1039/C7RA06996K

[39] Rivas-Murias, B., Salgueiriño, V., 2017. Thermodynamic CoO–Co₃O₄ Crossover Using Raman Spectroscopy in Magnetic Octahedron-Shaped Nanocrystals. Journal of Raman Spectroscopy. 48(6), 837–841. DOI: https://doi.org/10.1002/jrs.5129

[40] Samal, R., Dash, B., Sarangi, C.K., et al., 2017. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co₃O₄ Nanocubes for Supercapacitor Applications. Nanomaterials. 7(11), 356. DOI: https://doi.org/10.3390/nano7110356

[41] Premlatha, S., Chandrasekaran, M., Bapu, G.N.K.R., 2017. Preparation of Cobalt-RuO₂ Nanocomposite Modified Electrode for Highly Sensitive and Selective Determination of Hydroxylamine. Sensors and Actuators B: Chemical. 252, 375–384. DOI: https://doi.org/10.1016/j.snb.2017.06.013

[42] Conway, B.E., 2013. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer Science and Business Media: Berlin/Heidelberg, Germany. pp. 1–685.

[43] Meher, S.K., Justin, P., Ranga Rao, G., 2011. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Applied Materials & Interfaces. 3(6), 2063–2073. DOI: https://doi.org/10.1021/am200294k

[44] Pell, W.G., Conway, B.E., 2001. Voltammetry at a de Levie Brush Electrode as a Model for Electrochemical Supercapacitor Behaviour. Journal of Electroanalytical Chemistry. 500(1–2), 121–133. DOI: https://doi.org/10.1016/S0022-0728(00)00423-X

[45] Wang, X., Li, M., Chang, Z., et al., 2015. Co₃O₄@MWCNT Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces. 7(4), 2280–2285. DOI: https://doi.org/10.1021/am5062272

[46] Yan, S-X., Yan, X., Tian, X., et al., 2024. Elevation of the Electrochemical Stability Performance of Co3O4/g-C3N4 for an Asymmetric Supercapacitor. 38(17), 17076–17086. DOI: https://doi.org/10.1021/acs.energyfuels.4c03229

[47] Senthilkumar, V., Kim, Y.S., Chandrasekaran, S., et al., 2015. Comparative Supercapacitance Performance of CuO Nanostructures for Energy Storage Device Applications. RSC Advances. 5(26), 20545–20553. DOI: https://doi.org/10.1039/C5RA00035A

[48] Edison, T.N.J.I., Atchudan, R., Karthik, N., et al., 2017. Ultrasonic Synthesis, Characterization and Energy Applications of Ni–B Alloy Nanorods. Journal of the Taiwan Institute of Chemical Engineers. 80, 901–907. DOI: https://doi.org/10.1016/j.jtice.2017.07.034

[49] Edison, T.N.J.I., Atchudan, R., Lee, Y.R., 2018. Binder-Free Electro-Synthesis of Highly Ordered Nickel Oxide Nanoparticles and Its Electrochemical Performance. Electrochimica Acta. 283, 1609–1617. DOI: https://doi.org/10.1016/j.electacta.2018.07.101

[50] Chodankar, N.R., Dubal, D.P., Ji, S.H. et al., 2018. Superfast Electrodeposition of Newly Developed RuCo₂O₄ Nanobelts over Low-Cost Stainless Steel Mesh for High-Performance Aqueous Supercapacitor. Advanced Materials Interfaces. 5(15), 1800283. DOI: https://doi.org/10.1002/admi.201800283

[51] Liu, X., Lu, Y., Xiao, G., et al., 2023. MnO₂ Loaded Flower-Like Carbon Microspheres Derived from Polyimides for High-Performance Supercapacitors. Electrochimica Acta. 454, 142417. DOI: https://doi.org/10.1016/j.electacta.2023.142417

[52] Ji, S.-H., Chodankar, N.R., Kim, D.-H., 2019. Aqueous Asymmetric Supercapacitor Based on RuO₂–WO₃ Electrodes. Electrochimica Acta. 325, 134879. DOI: https://doi.org/10.1016/j.electacta.2019.134879

[53] Howli, P., Das, S., Sarkar, S., et al., 2017. Co₃O₄ Nanowires on Flexible Carbon Fabric as a Binder-Free Electrode for All Solid-State Symmetric Supercapacitor. ACS Omega. 2(8), 4216–4226. DOI: https://doi.org/10.1021/acsomega.7b00702

Downloads

How to Cite

Osora, H., Immanuel Edison, T. J., Kolkoma, D., Anduwan, G., Waimbo, M., & Velusamy, S. (2025). Electrochemical Energy Storage Studies on Sustainably Synthesized Co3O4 Nanoparticles for Supercapacitor Electrodes. New Environmentally-Friendly Materials, 4(2), 1–13. https://doi.org/10.55121/nefm.v4i2.689