Degradable biopolymers from agro and food waste: potentials and challenges: Degradable biopolymers

Degradable biopolymers from agro and food waste: potentials and challenges

Degradable biopolymers

Authors

  • Udayamathi M Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.
  • Bhavani Poojitha V Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.
  • Harini B. Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.
  • Gowtham S.S. Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.
  • Yuvaraj Dinakarkumar Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College

DOI:

https://doi.org/10.55121/nefm.v2i2.83

Keywords:

bio plastic, waste management, biological waste, packaging industries, biomaterials

Abstract

The synthesis of biodegradable plastics from various biological resources has been receiving considerable interest in the past few years. The demand for petroleum-based plastics is increasing in day-to-day life. These plastics, in turn, are very hazardous since it is non-degradable and produced from harmful chemicals. Generally, disposing of solid waste is a great threat in highly populated countries like India. In particular, biodegradable waste from various sectors like agriculture, industries and domestic plays a major role in environmental threats and controlling such waste has been a great challenge to date. Hence, it is essential to give importance to waste management in various aspects which are having a greater impact on the environment. Such biologically treated waste has been found to have various organic materials from which biodegradable plastic can be synthesized. Biodegradable plastics are considered to be nature-friendly plastics synthesized from renewable biomass. The synthesis of biodegradable plastic from various biomaterials is the current and future technology in regulating the environmental threats caused by commercial plastics and waste being dumped in landfill. Hence, this review provides data about the importance of bio-based plastics from various biological waste resources and their applications in various fields.

Author Biography

Udayamathi M, Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, Tamil Nadu, India.

Assistant Professor / Department of Biotechnology

References

[1] References:

[2] Abdel-Shafy, H. I., Mansour, M. S. M., 2018. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 27, 1275–1290.

[3] Abhishek Dutt Tripathi, Ajay Yadav, Alok Jha, S. K. Srivastava, 2012. Utilizing of Sugar Refinery Waste (Cane Molasses) for Production of Bio-Plastic Under Submerged Fermentation Process, J Polym Environ. 20, 446-452.

[4] Abidin, N. D. Z., Azhar, N. S., Sarip, M. N., Hamid, H. A., & Nasir., 2021. Production of bioplastic from cassava peel with different concentrations of glycerol and CaCO3 as filler, AIP Conference Proceedings, 2332, 020004.

[5] Akshay R. Mankar, Ashish Pandey, Pant, K. K., 2022. Microwave-assisted extraction of lignin from coconut coir using deep eutectic solvents and its valorization to aromatics, Bioresour Technol., 345, 126528.

[6] Akshaya Krishnamurthy & Pavithra Amritkumar., 2019. Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources., SN Applied Sciences, 1, 1432.

[7] Alashwal, Basma Y., Mohamed Saad Bala, Arun Gupta, Swati Sharma, and Puranjan Mishra., 2020. Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. J. King Saud Univ. Sci. 32, 853-857.

[8] Alastair Iles, Abigail. N, Martin., 2013, Expanding bioplastics production: sustainable business innovation in the chemical industry”, J. Clean. Prod. 45, 38-49.

[9] Albuquerque, P. B. S., Malafaia, C. B., 2018. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. Int. J. Biol. Macromol.107, 615–625.

[10] Ana Paula Bilck, Carmen Maria Olivera Müller, Juliana Bonametti Olivato, Suzana Mali, Maria Victoria Eiras Grossmann and Fabio Yamashita., 2015. Using glycerol produced from biodiesel as a plasticiser in extruded biodegradable film, Polimeros, 25, 331-335.

[11] Anonymous, 2018. Waste management is key to sustainable global growth. Oxford Analytica Daily Brief.

[12] Araújoa, C. S., Rodriguesa, A. M. C., Peixoto Joeleb, M. R. S., Araújoa, E. A. F., Lourenço, L. F. H., 2018. Optimizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology, Food Packag. Shelf Life, 16, 23-30.

[13] Babalola, O. A., Olorunnisola, A. O., 2019. Evaluation of coconut (Cocos nucifera) husk fibre as a potential reinforcing material for bioplastic production. Materials Research Proceedings. 11, 195-200.

[14] Borja Fernández-d’Arlas., 2019. Tough and Functional Cross-linked Bioplastics from Sheep Wool Keratin, Sci. Rep. 9, 14810.

[15] Chengjun Zhu, Steven Chiu James P. Nakas Christopher T. Nomura., 2013. Bioplastics from Waste Glycerol Derived from Biodiesel Industry, J. Appl. Polym. Sci., 130, 1-13

[16] Chidambarampadmavathy, K., Karthikeyan, O. P., Heimann, K., 2017. Sustainable bio-plastic production through landfill methane recycling, Renew. Sustain. Energy Rev., 71, 555–562.

[17] Chodijah, S., Husaini, A., Zaman, M., 2019. Extraction of pectin from banana peels (musa paradiasica fomatypica) for biodegradable plastic films. J. Phys. Conf. Ser. 1167, 012061

[18] Choi, J., Yang, I., Kim, S. S., Cho, S. Y., Lee, S. 2022. Upcycling Plastic Waste into High Value-Added Carbonaceous Materials. Macromol. Rapid Commun., 43, 2100467.

[19] Chrysanthos Maraveas, 2020. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers. 12, 1127.

[20] Daniel Hoornweg and Perinaz Bhada-Tata, 2012. What a Waste:A Global Review of Solid Waste Management. Urban Development Series, Knowledge papers, World Bank, Washington, DC.

[21] Dasumiati. N, Saridewi, M Malik., 2019. Food packaging development of bioplastic from basic waste of cassava peel (manihot uttilisima) and shrimp shell, IOP Conf. Ser.: Mater. Sci. Eng., 602, 012053.

[22] Divya, S., Daniel, R. R., 2021. A Study on the Characterization and Utilization of the Banana Peel, Shells of Egg and Prawn for the production of Bioplastics. J. adv. appl. sci., 3, 26-31.

[23] Eleda Maria Paixão Xavier Neves, Rayanne Rocha Pereira, Glauce Vasconcelos da Silva Pereira, Gleice Vasconcelos da Silva Pereira, Lorena Limão Vieira, Lúcia de Fátima Henriques Lourenço., 2019. Effect of polymer mixture on bioplastic development from fish waste. Bol Inst Pesca, 45, e518.

[24] Ezgi Bezirhan Arıkan, H. Duygu Bilgen., 2019. Production of bioplastic from potato peel waste and investigation of its biodegradability. Int. j. adv. eng. res. sci., 3, 093-097.

[25] Fabio Seigi Murakami, Patrik Oening Rodrigues, Célia Maria Teixeira De Campos, Marcos Antônio Segatto Silva., 2007. Physicochemical study of CaCO3 from egg shells. Food Sci. Technol., 27, 658-662.

[26] Fabjola Bilo, Stefano Pandini, Luciana Sartore, Laura E. Depero, Giovanna Gargiulo, Andrea Bonassi, Stefania Federici, Elza Bontempi, 2018, A sustainable bioplastic obtained from rice straw, J. Clean. Prod., 200, 357-368.

[27] Huang, J., Veksha, A., Chan, W. P., Giannis, A., Lisak, G., 2022. Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renew. Sust. Energ. Rev., 154, 111866.

[28] Huda Al-Battashi, Neelamegam Annamalai, Shatha Al-Kindi, Anu Sadasivan Nair, Saif Al-Bahry, Jay Prakash Verma, Nallusamy Sivakumar., 2019. Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari, J. Clean. Prod., 214, 236-247.

[29] Hudson, Reuben, Samuel Glaisher, Alexandra Bishop, and Jeffrey L. Katz., 2015. From lobster shells to plastic objects: a bioplastics activity., J. Chem. Educ., 92, 1882-1885.

[30] Huzaisham, N. A., Marsi, N., 2020. Utilization of Banana (Musa Paradisiaca) Peel as Bioplastic for Planting Bag Application. Int. j. adv. eng. technol. (IJARET), 11, 108–118.

[31] Jabeen, N., Majid, I., & Nayik, G. A., 2015. Bioplastics and food packaging: A review. Cogent Food & Agriculture, 1, 1117749.

[32] Jayachandra S. Yaradoddi, Nagaraj R. Banapurmath, Sharanabasava V. Ganachari, Manzoore Elahi M. Soudagar, Ashok M. Sajjan, Shrinidhi Kamat, M.A. Mujtaba, Ashok S. Shettar, Ali E. Anqi, Mohammad Reza Safaei, Ashraf Elfasakhany, Md Irfanul Haque Siddiqui, Masood Ashraf Ali., 2022. Bio-based material from fruit waste of orange peel for industrial applications, J. Mater. Res. Technol., 17, 3186-3197.

[33] Jeanette M. Cardamone, Alberto Nunez, Rafael A. Garcia, and Mila Aldema-Ramos., 2009. Characterizing Wool Keratin, Res. Lett. Mater. Sci., 2009, 147175.

[34] José J. Benítez, Paula M. Castillo, José C. del Río, Manuel León-Camacho, Eva Domínguez, Antonio Heredia, Susana Guzmán-Puyol, Athanassia Athanassiou., José A. Heredia-Guerrero., 2018. Valorization of Tomato Processing By-Products: Fatty Acid Extraction and Production of Bio-Based Materials. Mater., 11, 2211.

[35] Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., Singh, S. P., 2007. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci., 7, 255–277.

[36] Khare, A., Deshmukh, S., 2016. Studies Toward Producing Eco-Friendly Plastics. J. Plast. Film Sheeting., 22, 193–211.

[37] Kiran V, G., Varsha A, K., M, V., Govindaraj, V., M, A., N, V., M, G., Nithila, E. E., Bebin, M., Prasath, T. A., Chezhiyan, P., 2022. Synthesis and Characterization of Banana Peel Starch-based Bioplastic for Intravenous Tubes Preparation. Mater. Today Commun., 33, 104464.

[38] Krishnan, Padmanabhan. 2020. Cashew Nut Shell Liquid (CNSL) Based Bio-Derived Resin and Composites for Advanced Structural, Automotive, Electronic Packaging and Medical applications-A Review., Org. polym. mater. res., 1, 1754.

[39] Kumar, Prasun, Sanjeet Mehariya, Subhasree Ray, Anjali Mishra, and Vipin Chandra Kalia., 2015. Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics., Microbial factories., Springer India, pp. 105-119.

[40] Larruama Vasconcelos, Marthyna de Souza, Juliana de Oliveira, Edson Silva Filho, André Silva, Selma Elaine Mazzetto, Elzânia Sales Pereira, Ronaldo Lopes Oliveira, Leilson Bezerra., 2021. Elaboration and Characterization of Bioactive Films Obtained from the Incorporation of Cashew Nut Shell Liquid into a Matrix of Sodium Alginate., Antioxidants, 10, 1378.

[41] Le Quang Dien, Thai Dinh Cuong, Nguyen Thi Minh Phuong, Phan Huy Hoang, Dao Ngọc Truyen, Nguyen Thị Minh Nguyet., 2019. Nanocellulose fabrication from Oryza sativa L. rice straw using combined treatment by hydrogen peroxide and dilute sulfuric acid solution., Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Taylor and Francis

[42] Leow, Y., Sequerah, V., Tan, Y. C., Yu, Y., Peterson, E. C., Jiang, C., Zhang, Z., Yang, L., Loh, X. J., Kai, D., 2022. A tough, biodegradable and water-resistant plastic alternative from coconut husk. Composites Part B: Eng. J., 241, 110031.

[43] Li Xue, Gang Liu, Julian Parfitt, Xiaojie Liu, 2017. Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste Data. Environ. Sci. Technol., 51, 6618-6633.

[44] Lim, C., Yusoff, S., Ng, C.G., Lim, P.E. and Ching, Y.C., 2021. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng., 9, 105895.

[45] Listyarini, Risnita Vicky, Esther Natalia Nukung Susilawatib, Esther Natalia Nukung, and Maria Anastasia Toyo Yuaa., 2020. Bioplastic from pectin of dragon fruit (Hylocereus polyrhizus) peel. J. kim. sains apl., 23, 203-208.

[46] Liu, Shuai, Kaibing Huang, Han Yu, Fenxia Wu., 2018. Bioplastic based on 1, 8‐octanediol‐plasticized feather keratin: A material for food packaging and biomedical applications. J. Appl. Polym. Sci., 135, 46516.

[47] Lorenz Anthony T. Fernando, Myra Ruth S. Poblete, Aileen Grace M. Ongkiko, Leslie Joy L. Diaz., 2016. Chitin Extraction and Synthesis of Chitin-Based Polymer Films from Philippine Blue Swimming Crab (Portunus pelagicus) Shells. Procedia Chem., 19, 462-468

[48] Lubis, M., Harahap, M. B., Manullang, A., Ginting, M. H. S., Sartika, M., 2017. Utilization starch of jackfruit seed (Artocarpus heterophyllus) as raw material for bioplastics manufacturing using sorbitol as plasticizer and chitosan as filler. In J. Phys. Conf. 801, 012014.

[49] Maragkaki, A., Sampathianakis, I., Katrini, K., Michalodimitraki, E., Gryparis, C., Raptis, V., Manios, T., 2020. Bio-waste to Bio-plastic (B2B): Production of Compostable Bio-Plastics from Food Waste., MDPI, 30, 47.

[50] Maria Yuliana, Lien- Huong Huynh, Phong Quoc Ho, Chi-Thanh Truong., 2012. Defatted Cashew Nut Shell Starch as Renewable Polymeric Material: Isolation and Characterization., Carbohydr. Polym., 87, 2576-2581

[51] Marium Waheed, Muhammad Yousaf, Aamir Shehzad, Muhammad Inam-Ur-Raheem, Muhammad Kashif Iqbal Khan, Moazzam Rafiq Khan, Naveed Ahmad, Abdullah, Rana Muhammad Aadil, 2020. Channelling eggshell waste to valuable and utilizable products: A comprehensive review, Trends Food Sci. Technol., 106, 78-90.

[52] Maulida, M Siagian, P Tarigan., 2016. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Cellulose Avicel PH101 Using Sorbitol as Plasticizer, J. Phys. Conf. Ser., 710, 012012.

[53] Maysarah, Siti., 2020. Utilization of Cocoa (Theobroma cacao L.) pod husk as fillers for bioplastic from Jackfruit (Artocarpus heterophyllus) seed starch with Ethylene Glycol Plasticizer. Mater. Sci. Eng., 801, 012084.

[54] Medeiros Garcia Alcântara, J., Distante, F., Storti, G., Moscatelli, D., Morbidelli, M., Sponchioni, M., 2020. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnol. Adv., 42, 107582.

[55] Melissa B Agustin, Bashir Ahmmad, Shanna Marie M Alonzo and Famille M Patriana., 2014. Bioplastic based on starch and cellulose nanocrystals from rice straw. J. Reinf. Plast. Compos., 33, 1-9.

[56] Memon, A. H., Hussain Peerzada, M., Muhammad, K., Memon, S. A., Mangi, S. A., & Mujtaba, G., 2019. Recent Eco-Friendly Developments in Personal Protective Clothing Materials for Reducing Plastic Pollution: A Review., Eng. Appl. Sci. Res, 9, 4012–4018.

[57] Naheed, N., Jamil, N., 2014. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2., Braz. J. Microbiol., 45, 417-426.

[58] Navina Ramakrishnan, Swati Sharma, Arun Gupta, Basma Yahya Alashwal., 2018. Keratin based bioplastic film from chicken feathers and its characterization., Int. J. Biol. Macromol., 111, 352-358.

[59] Norhafezah Kasmuri and Muhammad Safwan Abu Zait., 2018. Enhancement of Bio-plastic using Eggshells and Chitosan on Potato Starch Based, Int. J. Eng. Technol., 7, 110-115.

[60] Nur Hanani Z.A., Cheng Yee F., Nor-Khaizura M.A.R., 2019. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging., Food Hydrocoll., 89, 253-259.

[61] Nuramidah Hamidon, Mariana Binti Hamidun, Nur Aini Arish, N.M. Sunar, R. Ali, H. A. Hamid, H. Harun, M.S. Muhamad., 2018. Potential of production of bioplastic from potato starch., Sustainable Environmental Technology, pp. 115-123.

[62] Pal, J., Verma, H., Munka, V., Maurya, S. K., Roy, D., Kumar, J., 2014. Biological Method of Chitin Extraction from Shrimp Waste an Eco-friendly low Cost Technology and its Advanced Application., Int. j. fish. aquat., 1, 104-107.

[63] Pawlak, F., Aldas, M., Parres, F, López-Martínez, J, Arrieta, M.P., 2020.Silane-Functionalized Sheep Wool Fibers from Dairy Industry Waste for the Development of Plasticized PLA Composites with Maleinized Linseed Oil for Injection-Molded Parts., Polymers., 12, 2523

[64] Rajendran, N., Sharanya Puppala, Sneha Raj M., Ruth Angeeleena B., Rajam, C., 2012. Seaweeds can be a new source for bioplastics., J. Pharm. Res., 5, 1476-1479.

[65] Ramesh Shruthy, Stephen Jancy, Radhakrishnan Preetha., 2020. Cellulose nanoparticles synthesised from potato peel for the development of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) during frozen storage, Int. J. Food Sci. Technol., 56, 3991-3999.

[66] Reichert, C. L., Bugnicourt, E., Coltelli, M. B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martínez, B. M., Alonso, R., Agostinis, L., Verstichel, S., Six, L., De Mets, S., Gómez, E. C., Ißbrücker, C., Geerinck, R., Nettleton, D. F., Campos, I., Sauter, E., Schmid, M., 2020. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers., 12, 1558.

[67] Renata Ferreira Santana, Renata Cristina Ferreira Bonomo, Olga Reinert Ramos Gandolfi, Luciano Brito Rodrigues, Leandro Soares Santos, Ana Clarissa dos Santos Pires, Cristiane Patrı´cia de Oliveira., 2018. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol., J. Food Sci. Technol., 55, 278-256

[68] Richard C., Thompson., Charles J., Moore., Frederick S., Saal., Shanna H., Swan., 2009. Plastics, the environment and human health: current consensus and future trends., Philos. Trans. R. Soc. B., 364, 2153-2166.

[69] Riya Singh, Arivoli Dakshinamoorthy, 2019. Comparative study of bioplastic sheet from different varieties of banana peel, Summer Research Fellowship Programme of India’s Science Academics, 20428.

[70] Pandharipande S.L., Prakash H., Bhagat., 2016. Synthesis of Chitin from Crab Shells and its Utilization in Preparation of Nanostructured Film., Int. J. Eng. Res. Technol., 5, 1378-1383.

[71] Sain, Mukul. 2020., Production of bioplastics and sustainable packaging materials from rice straw to eradicate stubble burning: A Mini-Review., Environ. Conserv. J., 21, 1-5.

[72] Sarebanha, S., Farhan, A., 2018. Eco-friendly Composite Films Based on Polyvinyl Alcohol and Jackfruit Waste Flour. J Package Technol Res., 2, 181–190.

[73] Satita Thiangtham, James Runt, Nagahiro Saito, Hathaikarn Manuspiya. 2020., Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method., Cellulose., 27, 1367-1384.

[74] Shafqat A., Tahir A., Mahmood A., Tabinda A. B., Yasar A., Pugazhendhi, A., 2020. A review on environmental significance carbon foot prints of starch-based bio-plastic: A substitute of conventional plastics., ISBAB., 27, 101540.

[75] Shalini, R., D. K. Gupta., 2010. Utilization of Pomace from Apple Processing Industries: A Review. J. Food Sci. Technol., 47, 365-371.

[76] Sharma, Poonam, Vivek Kumar Gaur, Sang-Hyoun Kim, Ashok Pandey., 2020. Microbial strategies for bio-transforming food waste into resources., Bioresour. Technol., 299, 122580.

[77] Siti Amirah Alias., Ku Marsilla Ku Ishak., 2020. Preparation and Characterization of Protein Bioplastics from Fish Waste Using Different Plasticizers., MSF., 982, 67-72.

[78] Siti Nuurul Huda Mohammad Azmin, Najah Aliah binti Mohd Hayat, Mohd Shukri Mat Nor., 2020. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre., J. Bioresour. Bioprod., 5, 248-255.

[79] Song, J. H., Murphy, R. J., Narayan, R., Davies, G. B. H., 2009. Biodegradable and compostable alternatives to conventional plastics., Philos. Trans. R. Soc. B: Biological Sciences, 364, 2127–2139.

[80] Srivastava, A. N., Chakma, S., 2022. Bioreactor landfills: sustainable solution for disposal of municipal solid waste. Advanced Organic Waste Management: Sustainable Practices and Approaches, Elsevier, pp. 315–328.

[81] Stevens, E. S., 2002. Green Plastics: An Introduction to the New Science of Biodegradable Plastics, Princeton University Press, United States.

[82] Sudhakar, Muthiyal Prabakaran, Dhassiah Magesh Peter., Gopal Dharani., 2021. Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii)., Environ. Sci. Pollut. Res., 26, 33899-33913.

[83] Supratim Ghosh, Rima Gnaim, Semion Greiserman, Ludmila Fadeev, Michael Gozin, Alexander Golberg., 2019. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei,, Bioresour Technol., 271, 166-173.

[84] Suresh S., Suryawanshi., Sushant S., Sarje, Prakash C., Loni., Sourabh bhujbal., Prajakta P. Kamble, 2020. Bioconversion of Sugarcane Molasses into Bioplastic (Polyhydroxybutyrate) using Bacillus cereus 2156 under Statistically Optimized Culture Conditions., Anal. Chem. Lett., 10, 80-92.

[85] Surya Parthasarathy., Sundaramanickam Arumugam., Ajith Nithin., Parthasarathy Iswarya., 2022. Eco-Friendly Preparation and Characterization of Bioplastic Films from Marine Fish Wastes. Environ. Sci. Pollut. Res.

[86] Tafa, T. G., Engida, A. M., 2022. Preparation of green film with improved physicochemical properties and enhanced antimicrobial activity using ingredients from cassava peel, bamboo leaf and rosemary leaf. Heliyon., 8, e10130.

[87] Tamrat Tesfaye, Bruce Sithole, Deresh Ramjugernath., 2018. Preparation, Characterization and Application of Keratin Based Green Biofilms from Waste Chicken Feathers, Int. J. Chem. Sci., 16, 281.

[88] Thammahiwes, Supakorn, Sa-Ad Riyajan, Kaewta Kaewtatip., 2018. Effect of shrimp shell waste on the properties of wheat gluten based-bioplastics., J Polym Environ., 26, 1775-1781.

[89] Ting Yen Chong, Ming Chiat Law, Yen San Chan., 2020. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites., J Polym Environ., 29, 363-381.

[90] Troiano, M., Carlo Santulli, Graziella Roselli, Gluseppe Di Girolami., 2018. DIY Bioplastics from Peanut Hulls Waste in a Starch- Milk Based Matrix., FME Trans., 46, 503-512.

[91] Ukaogo, P. O., Ewuzie, U., Onwuka, C. V., 2020. Environmental pollution: causes, effects, and the remedies. Microorganisms for Sustainable Environment and Health. Elsevier, pp. 419–429

[92] Van Leeuwen K., de Vries E., Koop S., Roest K., 2018. The Energy & Raw Materials Factory: Role and Potential Contribution to the Circular Economy of the Netherlands. Environmental Management., 61, 786–795.

[93] Veronika Bátori., 2019. Fruit wastes to biomaterials: Development of biofilms and 3D objects in a circular economy system, Doctoral Thesis, University of Borås.

[94] Vinod, A., M. R. Sanjay, Siengchin Suchart, and Parameswaranpillai Jyotishkumar., 2020. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod., 258, 120978.

[95] Yang Jiang, Leonie Marang, Jelmer Tamis, Mark C.M. van Loosdrecht , Henk Dijkman, Robbert Kleerebezema., 2012. Waste to resource: Converting paper mill wastewater to bioplastic, Water Res., 46, 5517-5530.

[96] Yaradoddi, Jayachandra S., Nagaraj R. Banapurmath, Sharanabasava V. Ganachari, Manzoore Elahi M. Soudagar, Ashok M. Sajjan, Shrinidhi Kamat, M. A. Mujtaba., 2022. Bio-based material from fruit waste of orange peel for industrial applications., J. Mater. Res. Technol., 2022, 3186-3197.

[97] Yiu Fai Tsang., Vanish Kumar., Pallabi Samadar., Yi Yang, Jechan Lee., Yong Sik Ok., Hocheol Song., Ki-Hyun Kim., Eilhann E. Kwon., Young Jae Jeon., 2019. Production of bioplastic through food waste valorization, Environ. Int., 127, 625-644.

[98] Yu P. H., Chua H., Huang A. L., Lo W., Chen G. Q., 1998. Conversion of food industrial wastes into bioplastics, Appl. Biochem. Biotechnol., 70, 603-614.

[99] Zhangfeng Luo, Ping Li, Di Cai, Qiuchi Chen, Peiyong Qin, Tianwei Tan, Hui Cao, 2017. Comparison of performances of corn fiber plastic composites made from different parts of corn stalk, Ind Crops Prod., 95, 521–527

Downloads

Published

2023-12-11

How to Cite

M, U., V, B. P., B, H., S.S., G., & Dinakarkumar, Y. (2023). Degradable biopolymers from agro and food waste: potentials and challenges: Degradable biopolymers. New Environmentally-Friendly Materials, 2(2), 10–24. https://doi.org/10.55121/nefm.v2i2.83

Issue

Section

Articles
Loading...