Next-Generation Biodegradable Polymers: From Synthesis to Industrial Applications

Authors

  • Ismat Ullah Khan *

    Government Post Graduate College Lakki Marwat, Lakki Marwat 28420, Pakistan

     

DOI:

https://doi.org/10.55121/nefm.v1i1.860

Keywords:

Biodegradable Polymers, Bio-Based Feedstocks, Environmental Sustainability, Polymer Synthesis, Industrial Applications

Abstract

Biodegradable polymers of the next generation have become a hopeful move towards reducing the increasing environmental issues regarding the problem of plastic pollution. Being made out of renewable bio-based feedstock, these polymers also possess the option of naturally degrading within the environment, minimizing plastic waste and the impact it has on the environment. This review will be discussing the synthesis process, characteristics as well as commercial uses of biodegradable polymers with a given emphasis on their mechanical, thermal, and biodegradability properties. Two to three major advances in the polymerization technologies, materials design and functionality have been discussed in the article and they play a significant role in improving the performance of biodegradable polymers in numerous applications such as in packaging, agriculture, biomedical, and textile industries. Though it has a bright future, there are challenges associated with it, including cost, scalability, performance ceiling, and waste management that still exist, and it is necessary to tackle these problems to complete the mass adoption of biodegradable polymers. The future trends in development of new materials with high performance, low costs and potential with environmental responsibility are addressed where there is a need of continued innovation in this area so as to facilitate more sustainable and circular economy.

References

[1] Shen, M., Song, B., Zeng, G., et al., 2020. Are Biodegradable Plastics a Promising Solution to Solve the Global Plastic Pollution? Environmental Pollution. 263, 114469. DOI: https://doi.org/10.1016/j.envpol.2020.114469

[2] Yadav, G.D., Sontakke, J.B., 2013. Methods for Separation, Recycling and Reuse of Biodegradation Products. In Biodegradation–Engineering and Technology. IntechOpen: London, UK. pp. 277–311. DOI: https://doi.org/10.5772/56241

[3] Aziz, T., Ullah, A., Ali, A., et al., 2022. Manufactures of Bio-Degradable and Bio-Based Polymers for Bio-Materials in the Pharmaceutical Field. Journal of Applied Polymer Science. 139(29), e52624. DOI: https://doi.org/10.1002/app.52624

[4] Čolnik, M., Knez-Hrnčič, M., Škerget, M., et al., 2020. Biodegradable Polymers, Current Trends of Research and Their Applications: A Review. Chemical Industry and Chemical Engineering Quarterly. 26(4), 401–418. Available from: https://doiserbia.nb.rs/Article.aspx?id=1451-93722000018C

[5] Bucknall, D.G., 2020. Plastics as a Materials System in a Circular Economy. Philosophical Transactions of the Royal Society A. 378(2176), 20190268. DOI: https://doi.org/10.1098/rsta.2019.0268

[6] Smith, O., Brisman, A., 2021. Plastic Waste and the Environmental Crisis Industry. Critical Criminology. 29(2), 289–309. DOI: https://doi.org/10.1007/s10612-021-09562-4

[7] Haider, T.P., Völker, C., Kramm, J., et al., 2019. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie International Edition. 58(1), 50–62. DOI: https://doi.org/10.1002/anie.201805766

[8] Naser, A.Z., Deiab, I., Defersha, F., et al., 2021. Expanding Poly(Lactic Acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects. Polymers. 13(23), 4271. DOI: https://doi.org/10.3390/polym13234271

[9] Boey, J.Y., Mohamad, L., Khok, Y.S., et al., 2021. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(Lactic Acid) and Its Composites. Polymers. 13(10), 1544. DOI: https://doi.org/10.3390/polym13101544

[10] Sun, J., Shen, J., Chen, S., et al., 2018. Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers. 10(5), 505. DOI: https://doi.org/10.3390/polym10050505

[11] Pillai, C.K.S., 2010. Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Designed Monomers and Polymers. 13(2), 87–121. DOI: https://doi.org/10.1163/138577210X12634696333190

[12] Mohanty, A.K., Wu, F., Mincheva, R., et al., 2022. Sustainable Polymers. Nature Reviews Methods Primers. 2(1), 46.

[13] RameshKumar, S., Shaiju, P., O’Connor, K.E., 2020. Bio-Based and Biodegradable Polymers—State-of-the-Art, Challenges and Emerging Trends. Current Opinion in Green and Sustainable Chemistry. 21, 75–81. DOI: https://doi.org/10.1016/j.cogsc.2019.12.005

[14] Lambert, S., Wagner, M., 2017. Environmental Performance of Bio-Based and Biodegradable Plastics: The Road Ahead. Chemical Society Reviews. 46(22), 6855–6871. DOI: https://doi.org/10.1039/C7CS00149E

[15] Maraveas, C., 2020. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers. 12(5), 1127. DOI: https://doi.org/10.3390/polym12051127

[16] Fletcher, C.A., Niemenoja, K., Hunt R., et al., 2021. Addressing Stakeholder Concerns Regarding the Effective Use of Bio-Based and Biodegradable Plastics. Resource. 10(10), 95. DOI: https://doi.org/10.3390/resources10100095

[17] Prasad, A., Chakraborty, G., Kumar, A., et al., 2022. Introduction to Biodegradable Polymers. In: Biodegradable Composites for Packaging Applications. CRC Press: Boca Raton, FL,USA. pp. 1–12.

[18] Bher, A., Mayekar, P.C., Auras, R.A., et al., 2022. Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. International Journal of Molecular Sciences. 23(20), 12165. DOI: https://doi.org/10.3390/ijms232012165

[19] Engelberg, I., Kohn, J., 1991. Physico-Mechanical Properties of Degradable Polymers Used in Medical Applications: A Comparative Study. Biomaterials. 12(3), 292–304. DOI: https://doi.org/10.1016/0142-9612(91)90037-B

[20] Nayak, P.L., 1999. Biodegradable Polymers: Opportunities and Challenges. Journal of Macromolecular Science (Part C). 39(3), 481–505. DOI: https://doi.org/10.1081/MC-100101425

[21] Bakir, M., 2019. Design and Characterization of Aromatic Thermosetting Copolyester Resin for Polymer Matrix Nanocomposites [PhD thesis]. University of Illinois: Urbana–Champaign, IL, USA. pp. 1–377.

[22] Moshood, T.D., Nawanir, G., Mahmud, F., 2022. Sustainability of Biodegradable Plastics: A Review on Social, Economic, and Environmental Factors. Critical Reviews in Biotechnology. 42(6), 892–912. DOI: https://doi.org/10.1080/07388551.2021.1973954

[23] Scaffaro, R., Maio, A., Sutera, F., et al., 2019. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers. 11(4), 651. DOI: https://doi.org/10.3390/polym11040651

[24] Luckachan, G.E., Pillai, C., 2011. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment. 19(3), 637–676. DOI: https://doi.org/10.1007/s10924-011-0317-1

[25] Garrison, T.F., Murawski, A., Quirino, R.L., 2016. Bio-Based Polymers with Potential for Biodegradability. Polymers. 8(7), 262. DOI: https://doi.org/10.3390/polym8070262

[26] Mülhaupt, R., 2013. Green Polymer Chemistry and Bio-Based Plastics: Dreams and Reality. Macromolecular Chemistry and Physics. 214(2), 159–174. DOI: https://doi.org/10.1002/macp.201200439

[27] Satoh, K., 2015. Controlled/Living Polymerization of Renewable Vinyl Monomers into Bio-Based Polymers. Polymer Journal. 47(8), 527–536. DOI: https://doi.org/10.1038/pj.2015.31

[28] Isikgor, F.H., Becer, C.R., 2015. Lignocellulosic Biomass: A Sustainable Platform for the Production of Bio-Based Chemicals and Polymers. Polymer Chemistry. 6(25), 4497–4559. DOI: https://doi.org/10.1039/C5PY00263J

[29] Cywar, R.M., Rorrer, N.A., Hoyt, C.B., et al., 2022. Bio-Based Polymers with Performance-Advantaged Properties. Nature Reviews Materials. 7(2), 83–103. DOI: https://doi.org/10.1038/s41578-021-00363-3

[30] Ishizu, K., Tsubaki, K., Mori, A., et al., 2003. Architecture of Nanostructured Polymers. Progress in Polymer Science. 28(1), 27–54. DOI: https://doi.org/10.1016/S0079-6700(02)00025-4

[31] Zhu, X., Zhou, Y., Yan, D., 2011. Influence of Branching Architecture on Polymer Properties. Journal of Polymer Science Part B: Polymer Physics. 49(18), 1277–1286. DOI: https://doi.org/10.1002/polb.22320

[32] Seo, S.E., Hawker, C.J., 2020. The Beauty of Branching in Polymer Science. ACS Publications. Macromolecules. 53(9), 3257–3261. DOI: https://doi.org/10.1021/acs.macromol.0c00286

[33] Arefin, A.M., Khatri, N.R., Kulkarni, N., et al., 2021. Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications. Polymers. 13(9), 1499. DOI: https://doi.org/10.3390/polym13091499

[34] Friedrich, K., Fakirov, S., Zhang, Z., 2005. Polymer Composites: From Nano-to Macro-Scale. Springer Science & Business Media: Dordrecht, Netherlands. pp. 1–600.

[35] Peponi, L., Puglia, D., Torre, L., et al., 2014. Processing of Nanostructured Polymers and Advanced Polymeric-Based Nanocomposites. Materials Science and Engineering: R: Reports. 85, 1–46. DOI: https://doi.org/10.1016/j.mser.2014.08.002

[36] Keledi, G., Hári, J., Pukánszky, B., 2012. Polymer Nanocomposites: Structure, Interaction, and Functionality. Nanoscale. 4(6), 1919–1938. DOI: https://doi.org/10.1039/C2NR11442A

[37] Armentano, I., Puglia, D., Luzi, F., et al., 2018. Nanocomposites Based on Biodegradable Polymers. Materials. 11(5), 795. DOI: https://doi.org/10.3390/ma11050795

[38] Bari, S.S., Chatterjee, A., Mishra, S., 2016. Biodegradable Polymer Nanocomposites: An Overview. Polymer Reviews. 56(2), 287–328. DOI: https://doi.org/10.1080/15583724.2015.1118123

[39] Hetemi, D., Pinson, J., 2017. Surface Functionalisation of Polymers. Chemical Society Reviews. 46(19), 5701–5713. DOI: https://doi.org/10.1039/C7CS00150A

[40] Blasco, E., Sims, M.B., Goldmann, A.S., et al., 2017. 50th Anniversary Perspective: Polymer Functionalization. Macromolecules. 50(14), 5215–5252. DOI: https://doi.org/10.1021/acs.macromol.7b00465

[41] Mohan, K., 2011. Microbial Deterioration and Degradation of Polymeric Materials. Journal of Biochemical Technology. 2(4), 210–215.

[42] Visan, A.I., Popescu-Pelin, G., Socol, G., 2021. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery—A Basic Review. Polymers. 13(8), 1272. DOI: https://doi.org/10.3390/polym13081272

[43] Chen, Y., Zhou, S., Li, Q., 2011. Mathematical Modeling of Degradation for Bulk-Erosive Polymers: Applications in Tissue Engineering Scaffolds and Drug Delivery Systems. Acta Biomaterialia. 7(3), 1140–1149. DOI: https://doi.org/10.1016/j.actbio.2010.09.038

[44] Kocak, G., Tuncer, C., Bütün, V.J.P.C., 2017. pH-Responsive Polymers. Polymer Chemistry. 8(1), 144–176.

[45] Bohlmann, G.M., 2005. General Characteristics, Processability, Industrial Applications and Market Evolution of Biodegradable Polymers. In Handbook of Biodegradable Polymers. Rapra Technology Ltd: Shrewsbury, UK. pp. 183–218.

[46] Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., et al., 2018. Recent Progress in Biodegradable Polymers and Nanocomposite-Based Packaging Materials for Sustainable Environment. International Journal of Polymer Analysis and Characterization. 23(4), 383–395. DOI: https://doi.org/10.1080/1023666X.2018.1455382

[47] Majeed, Z., Ramli, N.K., Mansor, N., et al., 2015. A Comprehensive Review on Biodegradable Polymers and Their Blends Used in Controlled-Release Fertilizer Processes. Reviews in Chemical Engineering. 31(1), 69–95. DOI: https://doi.org/10.1515/revce-2014-0021

[48] Ulery, B.D., Nair, L.S., Laurencin, C.T., 2011. Biomedical Applications of Biodegradable Polymers. Journal of Polymer Science Part B: Polymer Physics. 49(12), 832–864. DOI: https://doi.org/10.1002/polb.22259

[49] Iqbal, N., Khan, A.S., Asif, A., et al., 2019. Recent Concepts in Biodegradable Polymers for Tissue Engineering Paradigms: A Critical Review. International Materials Reviews. 64(2), 91–126. DOI: https://doi.org/10.1080/09506608.2018.1460943

[50] Glaskova-Kuzmina, T., Starkova, O., Gaidukovs, S., et al., 2021. Durability of Biodegradable Polymer Nanocomposites. Polymers. 13(19), 3375. DOI: https://doi.org/10.3390/polym13193375

[51] Li, W., Liu, Q., Zhang, Y., et al., 2020. Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials. 32(33), 2001591. DOI: https://doi.org/10.1002/adma.202001591

[52] Rujnić-Sokele, M., Pilipović, A., 2017. Challenges and Opportunities of Biodegradable Plastics: A Mini Review. Waste Management & Research. 35(2), 132–140. DOI: https://doi.org/10.1177/0734242X16683272

[53] Ren, X., 2003. Biodegradable Plastics: A Solution or a Challenge? Journal of Cleaner Production. 11(1), 27–40. DOI: https://doi.org/10.1016/S0959-6526(02)00020-3

[54] Mazhandu, Z.S., Muzenda, E., Mamvura, T.A., et al., 2020. Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. Sustainability. 12(20), 8360. DOI: https://doi.org/10.3390/su12208360

[55] Platt, D.K., 2006. Biodegradable Polymers: Market Report. iSmithers Rapra Publishing: Shropshire, UK. pp. 1–170.

[56] Filiciotto, L., Rothenberg, G., 2021. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem. 14(1), 56–72. DOI: https://doi.org/10.1002/cssc.202002044

[57] Kijchavengkul, T., Auras, R., 2008. Compostability of Polymers. Polymer International. 57(6), 793–804. DOI: https://doi.org/10.1002/pi.2420

[58] Yin, G.Z., Yang, X.M., 2020. Biodegradable Polymers: A Cure for the Planet, but a Long Way to Go. Journal of Polymer Research. 27(2), 38. DOI: https://doi.org/10.1007/s10965-020-2004-1

[59] Schneiderman, D.K., Hillmyer, M.A., 2017. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules. 50(10), 3733–3749. DOI: https://doi.org/10.1021/acs.macromol.7b00293

[60] do Val Siqueira, L., Arias, C.I.L.F., Maniglia, B.C., et al., 2021. Starch-Based Biodegradable Plastics: Methods of Production, Challenges and Future Perspectives. Current Opinion in Food Science. 38, 122–130. DOI: https://doi.org/10.1016/j.cofs.2020.10.020

Downloads

How to Cite

Khan, I. U. (2022). Next-Generation Biodegradable Polymers: From Synthesis to Industrial Applications. New Environmentally-Friendly Materials, 1(1), 42–64. https://doi.org/10.55121/nefm.v1i1.860

Issue

Section

Article