When the Bear Comes to Town: How the City Could Create Nature

When the Bear Comes to Town: How the City Could Create Nature

Authors

  • Rob Roggema

    School of Architecture, Arts and Design, Tecnológico de Monterrey, Monterrey, 64849, Mexico

  • Diego Rodriguez

    School of Architecture, Arts and Design, Tecnológico de Monterrey, Monterrey, 64849, Mexico

  • Nico Tillie

    Faculty of Architecture, Delft University of Technology, Delft, 2628, The Netherlands

DOI:

https://doi.org/10.55121/upc.v2i2.147

Keywords:

Urban ecology, Nature-based solutions, Human-nature relationship, Monterrey, Urban design, Symbiocene

Abstract

The relationship between humans and nature is in permanent change. Where the city and nature used to be seen as enemies that needed to be kept away from each other, the current paradigm looks at a more symbiotic relationship. In this, man is seen as part of nature, and the city is seen as a determining factor in providing conditions for a rich urban ecology. In this study, urban conditions are seen as the starting point for urban design, enabling biodiversity to thrive. The aim of the research is to distill design strategies that enhance nature in an urban context. These strategies are derived from existing theories, the typical relationship between the city and nature, and the understanding of the natural landscape, and are applied in the heated, dry, and rocky conditions in the metropolitan region of Monterrey, Mexico. The main finding is that the city contains ecologies with their own characteristics, often distinct from rural or natural ecologies. These specific conditions can be amplified using adequate design strategies, which may lead to a greater biodiversity. For improving urban biodiversity, the perspective on the city shall be transformed from seeing it as an enemy of nature towards a symbiotic relationship between the two. At the same time, this perspective requires additional research into two main aspects: the way the city is able to create its own climatic conditions, and how landscape-based design can enhance the urban conditions in a way nature occupies these novel ecological niches.

References

[1] Coman, I.A., Cooper-Norris, C.E., Longing, S., et al., 2022. It is a wild world in the city: Urban wildlife conservation and communication in the age of COVID-19. Diversity. 14(7), 539. DOI: https://doi.org/10.3390/d14070539

[2] Silva-Rodríguez, E.A., Gálvez, N., Swan, G.J., et al., 2021. Urban wildlife in times of COVID-19: What can we infer from novel carnivore records in urban areas?. Science of the Total Environment. 765, 142713. DOI: https://doi.org/10.1016/j.scitotenv.2020.142713

[3] Zellmer, A.J., Wood, E.M., Surasinghe, T., et al., 2020. What can we learn from wildlife sightings during the COVID‐19 global shutdown?. Ecosphere. 11(8), e03215. DOI: https://doi.org/10.1002/ecs2.3215

[4] Mittermeier, R.A., Turner, W.R., Larsen, F.W., et al., 2011. Global biodiversity conservation: The critical role of hotspots. Biodiversity hotspots: Distribution and protection of conservation priority areas. Springer-Verlag: Berlin. pp. 3–22.

[5] Reid, W.V., 1998. Biodiversity hotspots. Trends in Ecology & Evolution. 13(7), 275–280. DOI:https://doi.org/10.1016/S0169-5347(98)01363-9

[6] Trew, B.T., Maclean, I.M., 2021. Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography. 30(4), 768–783. DOI: https://doi.org/10.1111/geb.13272

[7] How do Humans Affect Biodiversity? [Internet]. The Royal Society. [cited 2023 Mar 26]. Available from: https://royalsociety.org/topics-policy/projects/biodiversity/human-impact-on-biodiversity/

[8] Schilthuizen, M., 2018. Darwin comes to town. How the urban jungle drives evolution. Quercus: London.

[9] Tucker, M.A., Schipper, A.M., Adams, T.S., et al., 2023. Behavioral responses of terrestrial mammals to COVID-19 lockdowns. Science. 380(6649), 1059–1064. DOI: https://doi.org/10.1126/science.abo6499

[10] Almond, R.E.A., Grooten, M., Juffe Bignoli, D., et al., 2022. Living Planet Report 2022—Building a nature positive society. WWF: Gland.

[11] Sweet, F.S.T., Apfelbeck, B., Hanusch, M., et al., 2022. Data from public and governmental databases show that a large proportion of the regional animal species pool occur in cities in Germany. Journal of Urban Ecology. 8(1). DOI: https://doi.org/10.1093/jue/juac002

[12] Sukopp, H., 2008. On the early history of urban ecology in Europe. Urban ecology: An international perspective on the interactions between humans and nature. Springer: Berlin. pp. 79–97.

[13] Secretariat of the Convention on Biological Diversity, 2012. Cities and biodiversity outlook. CBD: Montreal.

[14] Chocholoušková, Z., Pyšek, P., 2003. Changes in composition and structure of urban flora over 120 years: A case study of the city of Plzeň. Flora-Morphology, Distribution, Functional Ecology of Plants. 198(5), 366–376. DOI: https://doi.org/10.1078/0367-2530-00109

[15] Gaston, K.J., Warren, P.H., Thompson, K., et al., 2005. Urban domestic gardens (IV): The extent of the resource and its associated features. Biodiversity & Conservation. 14, 3327–3349. DOI: https://doi.org/10.1007/s10531-004-9513-9

[16] Jaganmohan, M., Vailshery, L.S., Nagendra, H., 2013. Patterns of insect abundance and distribution in urban domestic gardens in Bangalore, India. Diversity. 5(4), 767–778. DOI: https://doi.org/10.3390/d5040767

[17] Smith, R.M., Thompson, K., Hodgson, J.G., et al., 2006. Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biological Conservation. 129(3), 312–322. DOI: https://doi.org/10.1016/j.biocon.2005.10.045

[18] Smith, R.M., Warren, P.H., Thompson, K., et al., 2006. Urban domestic gardens (VI): Environmental correlates of invertebrate species richness. Biodiversity & Conservation. 15, 2415–2438. DOI: https://doi.org/10.1007/s10531-004-5014-0

[19] Zerbe, S., Maurer, U., Schmitz, S., et al., 2003. Biodiversity in Berlin and its potential for nature conservation. Landscape and Urban Planning. 62(3), 139–148. DOI: https://doi.org/10.1016/S0169-2046(02)00145-7

[20] Freitag, B.M., Nair, U.S., Niyogi, D., 2018. Urban modification of convection and rainfall in complex terrain. Geophysical Research Letters. 45(5), 2507–2515. DOI: https://doi.org/10.1002/2017GL076834

[21] Ginzburg, A.S., Dokukin, S.A., 2021. Influence of thermal air pollution on the urban climate (estimates using the COSMO-CLM model). Izvestiya, Atmospheric and Oceanic Physics. 57, 47–59. DOI: https://doi.org/10.1134/S0001433821010059

[22] Paul, S., Ghosh, S., Mathew, M., et al., 2018. Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization. Scientific Reports. 8, 3918. DOI: https://doi.org/10.1038/s41598-018-22322-9

[23] Sobstyl, J.M., Emig, T., Qomi, M.A., et al., 2018. Role of city texture in urban heat islands at nighttime. Physical Review Letters. 120(10), 108701. DOI: https://doi.org/10.1103/PhysRevLett.120.108701

[24] Lombardi, J.V., Stasey, W.C., Caso, A., et al., 2022. Ocelot density and habitat use in Tamaulipan thornshrub and tropical deciduous forests in Northeastern México. Journal of Mammalogy. 103(1), 57–67. DOI: https://doi.org/10.1093/jmammal/gyab134

[25] Domínguez Gómez, T.G., González Rodríguez, H., Ramírez Lozano, R.G., et al., 2013. Structural diversity of the tamaulipan thornscrub during dry and wet seasons. Forestales. 4(17), 106–123. (in Spanish).

[26] Digital Observatory for Protected Areas (DOPA) Explorer, Tamaulipan Matorral [Internet]. European Commission. [cited 2023 Apr 6]. Available from: https://dopa-explorer.jrc.ec.europa.eu/ecoregion/51311

[27] Digital Observatory for Protected Areas (DOPA) Explorer, Tamaulipan Mesquital [Internet]. European Commission. [cited 2023 Apr 6]. Available from: https://dopa-explorer.jrc.ec.europa.eu/ecoregion/51312

[28] Tamaulipan Matorral [Internet]. OneEarth. [cited 2023 Apr 5]. Available from: https://www.oneearth.org/ecoregions/tamaulipan-matorral/

[29] Tamaulipan Mezquital [Internet]. OneEarth. [cited 2023 Apr 5]. Available from: https://www.oneearth.org/ecoregions/tamaulipan-mezquital/

[30] Gilbert, O.L., 1989. The ecology of urban habitats. Chapman and Hall: London.

[31] McPhearson, T., Pickett, S.T., Grimm, N.B., et al., 2016. Advancing urban ecology toward a science of cities. BioScience. 66(3), 198–212. DOI: https://doi.org/10.1093/biosci/biw002

[32] Pickett, S.T., Cadenasso, M.L., Childers, D.L., et al., 2016. Evolution and future of urban ecological science: Ecology in, of, and for the city. Ecosystem Health and Sustainability. 2(7), e01229. DOI: https://doi.org/10.1002/ehs2.1229

[33] Wu, J., 2014. Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning. 125, 209–221. DOI: https://doi.org/10.1016/j.landurbplan.2014.01.018

[34] Alberti, M., Marzluff, J.M., Shulenberger, E., et al., 2003. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience. 53(12), 1169–1179. DOI: https://doi.org/10.1641/0006-3568(2003)053[1169:IHIEOA]2.0.CO;2

[35] Shochat, E., 2004. Credit or debit? Resource input changes population dynamics of city‐slicker birds. Oikos. 106(3), 622–626. DOI: https://doi.org/10.1111/j.0030-1299.2004.13159.x

[36] Wandeler, P., Funk, S.M., Largiader, C.R., et al., 2003. The city‐fox phenomenon: genetic consequences of a recent colonization of urban habitat. Molecular Ecology. 12(3), 647–656. DOI: https://doi.org/10.1046/j.1365-294X.2003.01768.x

[37] Shochat, E., Lerman, S.B., Katti, M., et al., 2004. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: Field experiments with artificial food patches. The American Naturalist. 164(2), 232–243. DOI: https://doi.org/10.1086/422222

[38] Imhoff, M.L., Tucker, C.J., Lawrence, W.T., et al., 2000. The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Transactions on Geoscience and Remote Sensing. 38(6), 2549–2556. DOI: https://doi.org/10.1109/36.885202

[39] Kaye, J.P., McCulley, R.L., Burke, I.C., 2005. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global Change Biology. 11(4), 575–587. DOI: https://doi.org/10.1111/j.1365-2486.2005.00921.x

[40] Parris, K.M., Hazell, D.L., 2005. Biotic effects of climate change in urban environments: The case of the grey-headed flying-fox (Pteropus poliocephalus) in Melbourne, Australia. Biological Conservation. 124(2), 267–276. DOI: https://doi.org/10.1016/j.biocon.2005.01.035

[41] Hatzofe, O., Yom-Tov, Y., 2002. Global warming and recent changes in Israel’s avifauna note. Israel Journal of Zoology. 48(4), 351–357.

[42] Murgui, E., Valentin, A., 2003. Relationships between the characteristics of the urban landscape and the introduced bird community in the city of Valencia (Spain). ARDEOLA. 50(2), 201–214.

[43] Marzluff, J.M., 2008. Island biogeography for an urbanizing world: How extinction and colonization may determine biological diversity in human-dominated landscapes. Urban ecology. Springer: Boston. pp. 355–371.

[44] McIntyre, N.E., 2011. Urban ecology: Definitions and goals. The Routledge handbook of urban ecology. Routledge: Abingdon. pp. 7–16.

[45] McKinney, M.L., 2008. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems. 11, 161–176. DOI: https://doi.org/10.1007/s11252-007-0045-4

[46] Pouyat, R.V., Yesilonis, I.D., Szlavecz, K., et al., 2008. Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecology. 23, 1187–1203. DOI: https://doi.org/10.1007/s10980-008-9288-6

[47] Wu, J.G., Buyantuyev, A., Jenerette, G.D., et al., 2011. Quantifying spatiotemporal patterns and ecological effects of urbanization: A multiscale landscape approach. Applied urban ecology: A global framework. Blackwell: Oxford. pp. 35–53.

[48] Connell, J.H., 1978. Diversity in tropical rain forests and coral reefs: High diversity of trees and corals is maintained only in a nonequilibrium state. Science. 199(4335), 1302–1310. DOI: https://doi.org/10.1126/science.199.4335.1302

[49] Callaghan, C.T., Poore, A.G., Major, R.E., et al., 2021. How to build a biodiverse city: Environmental determinants of bird diversity within and among 1581 cities. Biodiversity and Conservation. 30, 217–234. DOI: https://doi.org/10.1007/s10531-020-02088-1

[50] de Carvalho, C.A., Raposo, M., Pinto-Gomes, C., et al., 2022. Native or exotic: A bibliographical review of the debate on ecological science methodologies: Valuable lessons for urban green space design. Land. 11(8), 1201. DOI: https://doi.org/10.3390/land11081201

[51] Fidino, M., Gallo, T., Lehrer, E.W., et al., 2021. Landscape‐scale differences among cities alter common species’ responses to urbanization. Ecological Applications. 31(2), e02253. DOI: https://doi.org/10.1002/eap.2253

[52] Beninde, J., Veith, M., Hochkirch, A., 2015. Biodiversity in cities needs space: A meta‐analysis of factors determining intra‐urban biodiversity variation. Ecology Letters. 18(6), 581–592. DOI: https://doi.org/10.1111/ele.12427

[53] Lokatis, S., Jeschke, J.M., Bernard-Verdier, M., et al., 2023. Hypotheses in urban ecology: Building a common knowledge base. Biological Reviews. 98(5), 1530–1547. DOI: https://doi.org/10.1111/brv.12964

[54] Kinzig, A.P., Warren, P., Martin, C., et al., 2005. The effects of human socioeconomic status and cultural characteristics on urban patterns of biodiversity. Ecology and Society. 10(1).

[55] Catterall, C.P., Cousin, J.A., Piper, S., et al., 2010. Long‐term dynamics of bird diversity in forest and suburb: decay, turnover or homogenization?. Diversity and Distributions. 16(4), 559–570. DOI: https://doi.org/10.1111/j.1472-4642.2010.00665.x

[56] Oberndorfer, E., Lundholm, J., Bass, B., et al., 2007. Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience. 57(10), 823–833. DOI: https://doi.org/10.1641/B571005

[57] Williams, N.S., Lundholm, J., Scott MacIvor, J., 2014. Do green roofs help urban biodiversity conservation?. Journal of Applied Ecology. 51(6), 1643–1649. DOI: https://doi.org/10.1111/1365-2664.12333

[58] Pysek, P., 1989. On the richness of Central European urban flora. Preslia. 61, 329–334.

[59] Grime, J.P., 1973. Competitive exclusion in herbaceous vegetation. Nature. 242, 344–347. DOI: https://doi.org/10.1038/242344a0

[60] Luck, G.W., 2007. A review of the relationships between human population density and biodiversity. Biological Reviews. 82(4), 607–645. DOI: https://doi.org/10.1111/j.1469-185X.2007.00028.x

[61] MacArthur, R.H., Wilson, E.O., 1967. The theory of island biogeography. Princeton University Press: Princeton.

[62] Blair, R.B., 2001. Birds and butterflies along urban gradients in two ecoregions of the United States: Is urbanization creating a homogeneous fauna? Biotic homogenization. Kluwer Academic/Plenum Publishers: New York. pp. 33–56.

[63] Miles, L.S., Rivkin, L.R., Johnson, M.T., et al., 2019. Gene flow and genetic drift in urban environments. Molecular Ecology. 28(18), 4138–4151. DOI: https://doi.org/10.1111/mec.15221

[64] Sartori, R.A., Gomes, A., Narcizo, A., et al., 2023. Urban ecology and biological studies in Brazilian cities: A systematic review. Urban Ecosystems. 26, 547–558. DOI: https://doi.org/10.1007/s11252-022-01324-6

[65] Costa, S., 2018. Entangled inequalities, state, and social policies in contemporary Brazil. The social life of economic inequalities in contemporary Latin America. Palgrave Macmillan: Cham. pp. 59–80.

[66] Gould, K.A., Lewis, T.L., 2017. Green gentrification: Urban sustainability and the struggle for environmental justice. Routledge: Abingdon.

[67] Rigolon, A., Browning, M.H., Lee, K., et al., 2018. Access to urban green space in cities of the Global South: A systematic literature review. Urban Science. 2(3), 67. DOI: https://doi.org/10.3390/urbansci2030067

[68] Schwarz, K., Fragkias, M., Boone, C.G., et al., 2015. Trees grow on money: Urban tree canopy cover and environmental justice. PloS One. 10(4), e0122051. DOI: https://doi.org/10.1371/journal.pone.0122051

[69] Schell, C.J., Dyson, K., Fuentes, T.L., et al., 2020. The ecological and evolutionary consequences of systemic racism in urban environments. Science. 369(6510), eaay4497. DOI: https://doi.org/10.1126/science.aay4497

[70] van Zyl, B., Cilliers, E.J., Lategan, L.G., et al., 2021. Closing the gap between urban planning and urban ecology: A South African perspective. Urban Planning. 6(4), 122–134. DOI: https://doi.org/10.17645/up.v6i4.4456

[71] Pickett, S.T.A., Burch, W.R., Dalton, S.E., et al., 1997. Integrated urban ecosystem research. Urban Ecosystems. 1, 183–184. DOI: https://doi.org/10.1023/A:1018579628818

[72] Childers, D.L., Cadenasso, M.L., Grove, J.M., et al., 2015. An ecology for cities: A transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability. 7(4), 3774–3791. DOI: https://doi.org/10.3390/su7043774

[73] Grove, J.M., Childers, D.L., Galvin, M., et al., 2016. Linking science and decision making to promote an ecology for the city: Practices and opportunities. Ecosystem Health and Sustainability. 2(9), e01239. DOI: https://doi.org/10.1002/ehs2.1239

[74] Schwarz, K., Herrmann, D.L., 2016. The subtle, yet radical, shift to ecology for cities. Frontiers in Ecology and the Environment. 14(6), 296–297. DOI: https://doi.org/10.1002/fee.1288

[75] McDonnell, M.J., MacGregor-Fors, I., 2016. The ecological future of cities. Science. 352(6288), 936–938. DOI: https://doi.org/10.1126/science.aaf3630

[76] Osmond, P., Pelleri, N., 2017. Urban ecology as an interdisciplinary area. Encyclopedia of sustainable technologies. Elsevier: Amsterdam. pp. 31–42.

[77] Tan, P.Y., 2017. Perspectives on greening of cities through an ecological lens. Greening cities. Springer: Cham. pp. 15–39.

[78] Heymans, A., Breadsell, J., Morrison, G.M., et al., 2019. Ecological urban planning and design: A systematic literature review. Sustainability. 11(13), 3723. DOI: https://doi.org/10.3390/su11133723

[79] Byrne, L.B., 2022. Ecology with cities. Urban Ecosystems. 25, 835–837. DOI: https://doi.org/10.1007/s11252-021-01185-5

[80] Kowarik, I., 2023. Urban biodiversity, ecosystems and the city. Insights from 50 years of the Berlin School of urban ecology. Landscape and Urban Planning. 240, 104877. DOI: https://doi.org/10.1016/j.landurbplan.2023.104877

[81] McDonnell, M.J., Hahs, A.K., 2013. The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosystems. 16, 397–409. DOI: https://doi.org/10.1007/s11252-013-0315-2

[82] Knapp, S., von der Lippe, M., Kowarik, I., 2022. Interactions of functional traits with native status and ecosystem novelty explain the establishment of plant species within urban ecosystems: Evidence from Berlin, Germany. Frontiers in Ecology and Evolution. 10, 790340. DOI: https://doi.org/10.3389/fevo.2022.790340

[83] Rega-Brodsky, C.C., Aronson, M.F., Piana, M.R., et al., 2022. Urban biodiversity: State of the science and future directions. Urban Ecosystems. 25, 1083–1096. DOI: https://doi.org/10.1007/s11252-022-01207-w

[84] Aronson, M.F., Lepczyk, C.A., Evans, K.L., et al., 2017. Biodiversity in the city: Key challenges for urban green space management. Frontiers in Ecology and the Environment. 15(4), 189–196. DOI: https://doi.org/10.1002/fee.1480

[85] Nilon, C.H., Aronson, M.F., Cilliers, S.S., et al., 2017. Planning for the future of urban biodiversity: A global review of city-scale initiatives. BioScience. 67(4), 332–342. DOI: https://doi.org/10.1093/biosci/bix012

[86] Parris, K.M., Amati, M., Bekessy, S.A., et al., 2018. The seven lamps of planning for biodiversity in the city. Cities. 83, 44–53. DOI: https://doi.org/10.1016/j.cities.2018.06.007

[87] Puskás, N., Abunnasr, Y., Naalbandian, S., 2021. Assessing deeper levels of participation in nature-based solutions in urban landscapes—A literature review of real-world cases. Landscape and Urban Planning. 210, 104065. DOI: https://doi.org/10.1016/j.landurbplan.2021.104065

[88] Parker, J., Zingoni de Baro, M.E., 2019. Green infrastructure in the urban environment: A systematic quantitative review. Sustainability. 11(11), 3182. DOI: https://doi.org/10.3390/su11113182

[89] Pauleit, S., Ambrose-Oji, B., Andersson, E., et al., 2019. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban Forestry & Urban Greening. 40, 4–16. DOI: https://doi.org/10.1016/j.ufug.2018.10.006

[90] Donati, G.F., Bolliger, J., Psomas, A., et al., 2022. Reconciling cities with nature: Identifying local Blue-Green Infrastructure interventions for regional biodiversity enhancement. Journal of Environmental Management. 316, 115254. DOI: https://doi.org/10.1016/j.jenvman.2022.115254

[91] Molné, F., Donati, G.F., Bolliger, J., et al., 2023. Supporting the planning of urban blue-green infrastructure for biodiversity: A multi-scale prioritisation framework. Journal of Environmental Management. 342, 118069. DOI: https://doi.org/10.1016/j.jenvman.2023.118069

[92] Ding, G., Yi, D., Yi, J., et al., 2023. Protecting and constructing ecological corridors for biodiversity conservation: A framework that integrates landscape similarity assessment. Applied Geography. 160, 103098. DOI: https://doi.org/10.1016/j.apgeog.2023.103098

[93] Shen, J., Wang, Y., 2023. An improved method for the identification and setting of ecological corridors in urbanized areas. Urban Ecosystems. 26, 141–160. DOI: https://doi.org/10.1007/s11252-022-01298-5

[94] de Freitas, W.K., Magalhães, L.M.S., de Santana, C.A.A., et al., 2020. Tree composition of urban public squares located in the Atlantic Forest of Brazil: A systematic review. Urban Forestry & Urban Greening. 48, 126555. DOI: https://doi.org/10.1016/j.ufug.2019.126555

[95] Avolio, M.L., Swan, C., Pataki, D.E., et al., 2021. Incorporating human behaviors into theories of urban community assembly and species coexistence. Oikos. 130(11), 1849–1864. DOI: https://doi.org/10.1111/oik.08400

[96] Hayes, S., Desha, C., Gibbs, M., 2019. Findings of case-study analysis: System-Level biomimicry in built-environment design. Biomimetics. 4(4), 73. DOI: https://doi.org/10.3390/biomimetics4040073

[97] Pedersen Zari, M., 2018. Regenerative urban design and ecosystem biomimicry. Routledge: London.

[98] Odum, E.P., 1969. The strategy of ecosystem development: An understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science. 164(3877), 262–270. DOI: https://doi.org/10.1126/science.164.3877.262

[99] Blanco, E., Pedersen Zari, M., Raskin, K., et al., 2021. Urban ecosystem-level biomimicry and regenerative design: Linking ecosystem functioning and urban built environments. Sustainability. 13(1), 404. DOI: https://doi.org/10.3390/su13010404

[100] Jepson, P., 2019. Recoverable Earth: A twenty-first century environmental narrative. Ambio. 48, 123–130. DOI: https://doi.org/10.1007/s13280-018-1065-4

[101] Lorimer, J., Sandom, C., Jepson, P., et al., 2015. Rewilding: Science, practice, and politics. Annual Review of Environment and Resources. 40, 39–62. DOI: https://doi.org/10.1146/annurev-environ-102014-021406

[102] Svenning, J.C., Pedersen, P.B., Donlan, C.J., et al., 2016. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proceedings of the National Academy of Sciences. 113(4), 898–906. DOI: https://doi.org/10.1073/pnas.1502556112

[103] Barua, M., 2011. Mobilizing metaphors: The popular use of keystone, flagship and umbrella species concepts. Biodiversity and Conservation. 20, 1427–1440. DOI: https://doi.org/10.1007/s10531-011-0035-y

[104] Jepson, P., Barua, M., 2015. A theory of flagship species action. Conservation and Society. 13(1), 95–104. DOI: https://doi.org/10.4103/0972-4923.161228

[105] Lorimer, J., 2007. Nonhuman charisma. Environment and Planning D: Society and Space. 25(5), 911–932. DOI: https://doi.org/10.1068/d71j

[106] Clancy, C., Ward, K., 2020. Auto-rewilding in post-industrial cities: The case of inland cormorants in urban Britain. Conservation and Society. 18(2), 126–136. DOI: https://doi.org/10.4103/cs.cs_19_71

[107] Overend, D., Lorimer, J., 2018. Wild performatives: Experiments in rewilding at the Knepp Wildland Project. GeoHumanities. 4(2), 527–542. DOI: https://doi.org/10.1080/2373566X.2018.1478742

[108] Buller, H., 2014. Reconfiguring wild spaces: The porous boundaries of wild animal geographies. Routledge handbook of human-animal studies. Routledge: Abingdon. pp. 233–245.

[109] Bunce, S., 2018. Sustainability policy, planning, and gentrification in cities. Earthscan/Routledge: Abingdon.

[110] Rutt, R.L., Gulsrud, N.M., 2016. Green justice in the city: A new agenda for urban green space research in Europe. Urban Forestry & Urban Greening. 19, 123–127. DOI: https://doi.org/10.1016/j.ufug.2016.07.004

[111] Danford, R.S., Strohbach, M.W., Warren, P.S., et al., 2018. Active Greening or rewilding the city: How does the intention behind small pockets of urban green affect use?. Urban Forestry & Urban Greening. 29, 377–383. DOI: https://doi.org/10.1016/j.ufug.2017.11.014

[112] Farahani, L.M., Maller, C., 2019. Investigating the benefits of ‘leftover’ places: Residents’ use and perceptions of an informal greenspace in Melbourne. Urban Forestry & Urban Greening. 41, 292–302. DOI: https://doi.org/10.1016/j.ufug.2019.04.017

[113] Mills, J.G., Weinstein, P., Gellie, N.J., et al., 2017. Urban habitat restoration provides a human health benefit through microbiome rewilding: The Microbiome Rewilding Hypothesis. Restoration Ecology. 25(6), 866–872. DOI: https://doi.org/10.1111/rec.12610

[114] Threlfall, C.G., Kendal, D., 2018. The distinct ecological and social roles that wild spaces play in urban ecosystems. Urban Forestry & Urban Greening. 29, 348–356. DOI: https://doi.org/10.1016/j.ufug.2017.05.012

[115] Kowarik, I., 2018. Urban wilderness: Supply, demand, and access. Urban Forestry & Urban Greening. 29, 336–347. DOI: https://doi.org/10.1016/j.ufug.2017.05.017

[116] Collard, R.C., Dempsey, J., Sundberg, J., 2015. A manifesto for abundant futures. Annals of the Association of American Geographers. 105(2), 322–330. DOI: https://doi.org/10.1080/00045608.2014.973007

[117] Hunold, C., 2019. Green infrastructure and urban wildlife: Toward a politics of sight. Humanimalia. 11(1), 89–108. DOI: https://doi.org/10.52537/humanimalia.9479

[118] Aronson, M.F., La Sorte, F.A., Nilon, C.H., et al., 2014. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences. 281(1780). DOI: https://doi.org/10.1098/rspb.2013.3330

[119] Ives, C.D., Lentini, P.E., Threlfall, C.G., et al., 2016. Cities are hotspots for threatened species. Global Ecology and Biogeography. 25(1), 117–126. DOI: https://doi.org/10.1111/geb.12404

[120] Evans, M., 2021. Rewilding European urban spaces. European Journal of Public Health. 31(Supplement_3), ckab165.217. DOI: https://doi.org/10.1093/eurpub/ckab165.217

[121] Owens, M., Wolch, J., 2019. Rewilding cities. Cambridge University Press: Cambridge.

[122] Mathey, J., Rink, D., 2010. Urban wastelands: A chance for biodiversity in cities? Ecological aspects, social perceptions, and acceptance of wilderness by residents. Urban biodiversity and design. Wiley-Blackwell: Hoboken. pp. 406–424.

[123] Tsing, A., 2017. The buck, the bull, and the dream of the stag: Some unexpected weeds of the Anthropocene. Suomen Antropologi: Journal of the Finnish Anthropological Society. 42(1), 3–21. DOI: http://orcid.org/0000-0002-0411-959X

[124] Pettorelli, N., Durant, S., Du Toit, J., 2019. Rewilding. Cambridge University Press: Cambridge.

[125] Lehmann, S., 2021. Growing biodiverse urban futures: Renaturalization and rewilding as strategies to strengthen urban resilience. Sustainability. 13(5), 2932. DOI: https://doi.org/10.3390/su13052932

[126] Bishop, P., Martinez Perez, A., Roggema, R., et al., 2020. Repurposing the green belt in the 21st century. UCL Press: London. DOI: http://dx.doi.org/10.14324/111.9781787358843

[127] Roggema, R., Keeffe, G., 2022. Design for emergencies. Future talks. Inholland University of Applied Sciences: Alkmaar. pp. 145–159.

[128] Sijmons, D., 2019. Contrast, contact, contract; Pathways to pacify urbanization and natural processes. Nature driven urbanism. Springer: Dordrecht. pp. 9–42.

[129] Taylor, G.R., 1915. Satellite cities: A study of industrial suburbs. D. Appleton and Company: New York/London.

[130] Howard, E., 1902. Garden cities of tomorrow. S. Sonnenschein & Co., Ltd.: London.

[131] Faludi, A., Van der Valk, A.J., 1990. The growth centers as the cornerstones of the Dutch planning dopctrine. Van Gorcum: Assen. (in Dutch).

[132] Grabowski, Z.J., McPhearson, T., Matsler, A.M., et al., 2022. What is green infrastructure? A study of definitions in US city planning. Frontiers in Ecology and the Environment. 20(3), 152–160. DOI: https://doi.org/10.1002/fee.2445

[133] Berg, P.G., Ignatieva, M., Granvik, M., et al., 2014. Green-blue infrastructure in urban-rural landscapes-introducing resilient citylands. Nordic Journal of Architectural Research. 25(2).

[134] Chiesura, A., 2004. The role of urban parks for the sustainable city. Landscape and Urban Planning. 68(1), 129–138. DOI: https://doi.org/10.1016/j.landurbplan.2003.08.003

[135] Hautamäki, R., 2021. Constructing the green wedge in the planning discourse-a case study of Central Park in Helsinki, Finland. Landscape Research. 46(6), 878–893. DOI: https://doi.org/10.1080/01426397.2021.1918653

[136] Rombaut, E.P. (editor), 2008. Urban planning and biodiversity: Thoughts about an ecopolis, plea for a lobe-city. Casestudy of the Belgian cities Sint-Niklaas and Aalst. Commemorative International Conference of the Occasion of the 4th Cycle Anniversary of KMUTT Sustainable Development to Save the Earth: Technologies and Strategies Vision 2050; 2009 Apr 7–9; Bangkok, Thailand.

[137] Bolund, P., Hunhammar, S., 1999. Ecosystem services in urban areas. Ecological Economics. 29(2), 293–301. DOI: https://doi.org/10.1016/S0921-8009(99)00013-0

[138] Dehaene, M., 2002. Broadacre City: The city in the eye of the beholder. Journal of Architectural and Planning Research. 19(2), 91–109.

[139] Haas, T., Locke, R., 2018. Reflections on the ReUrbanism paradigm: Re-weaving the urban fabric for urban regeneration and renewal. Quaestiones Geographicae. 37(4), 5–21. DOI: https://doi.org/10.2478/quageo-2018-0037

[140] McCann, A., 1998. Introduction: Subtopia, or the problem of suburbia. Australian Literary Studies.

[141] Zaffi, L., D’Ostuni, M., 2020. Metabolic cities of the future. Between agriculture and architecture. Agathón| International Journal of Architecture, Art and Design. 8, 82–93. DOI: https://doi.org/10.19229/2464-9309/882020

[142] Gardner, G., 2016. The city: A system of systems. State of the world. Island Press: Washington DC. pp. 27–44.

[143] Roggema, R., 2020. Nature-driven urbanism. Springer: Dordrecht.

[144] Roggema, R., 2021. From nature-based to nature-driven: Landscape first for the design of Moeder Zernike in Groningen. Sustainability. 13(4), 2368. DOI: https://doi.org/10.3390/su13042368

[145] Scott, M., Lennon, M., Haase, D., et al., 2016. Nature-based solutions for the contemporary city/Re-naturing the city/Reflections on urban landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and climate change adaptation: Brownfield greening as an adaptation strategy for vulnerable communities?/Delivering green infrastructure through planning: Insights from practice in Fingal, Ireland/Planning for biophilic cities: From theory to practice. Planning Theory & Practice. 17(2), 267–300. DOI: https://doi.org/10.1080/14649357.2016.1158907

[146] Delumeau, J., O’Connell, M., 2000. History of paradise: The Garden of Eden in myth and tradition. University of Illinois Press: Champaign IL.

[147] Taylor Buck, N., 2017. The art of imitating life: The potential contribution of biomimicry in shaping the future of our cities. Environment and Planning B: Urban Analytics and City Science. 44(1), 120–140. DOI: https://doi.org/10.1177/0265813515611417

[148] Roggema, R., Monti, S., 2021. Nature driven planning for the FEW-Nexus in Western Sydney. TransFEWmation: Towards design-led food-energy-water systems for future urbanization. Springer: Cham. pp. 59–94.

[149] Roggema, R., Tillie, N., Keeffe, G., 2021. Nature-based urbanization: Scan opportunities, determine directions and create inspiring ecologies. Land. 10(6), 651. DOI: https://doi.org/10.3390/land10060651

[150] Roggema, R., Tillie, N., Hollanders, M., 2021. Designing the adaptive landscape: Leapfrogging stacked vulnerabilities. Land. 10(2), 158. DOI: https://doi.org/10.3390/land10020158

[151] Nijhuis, S., 2022. Landscape-based urbanism: Cultivating urban landscapes through design. Design for regenerative cities and landscapes: Rebalancing human impact and natural environment. Springer: Dordrecht. pp. 249–277.

[152] Nijhuis, S., Xiong, L., Cannatella, D., 2020. Towards a landscape-based regional design approach for adaptive transformation in urbanizing deltas. Research in Urbanism Series. 6, 55–80. DOI: https://doi.org/10.7480/rius.6.94

[153] Crutzen, P.J., Stoermer, E.F., Steffen, W., 2000. The “Anthropocene”. The future of nature. Yale University Press: London.

[154] Albrecht, G., Sartore, G.M., Connor, L., et al., 2007. Solastalgia: The distress caused by environmental change. Australasian Psychiatry. 15(1_suppl), S95–S98. DOI: https://doi.org/10.1080/10398560701701288

[155] Albrecht, G.A., 2020. Negating solastalgia: An emotional revolution from the Anthropocene to the Symbiocene. American Imago. 77(1), 9–30. DOI: https://doi.org/10.1353/aim.2020.0001

[156] Albrecht, G., 2014. Ecopsychology in the symbiocene. Ecopsychology. 6(1), 58–59.

[157] Albrecht, G.A., 2019. Earth emotions: New words for a new world. Cornell University Press: Ithaka.

[158] Prescott, S.L., Logan, A.C., 2017. Down to earth: Planetary health and biophilosophy in the symbiocene epoch. Challenges. 8(2), 19. DOI: https://doi.org/10.3390/challe8020019

[159] Weintraub, P., 1984. The new epoch: Jonas Salk. The Omni interviews. Ticknor and Fields: Boston MA. pp. 94–115.

[160] Latour, B., 2015. Facing Gaia. Eight conferences on the New Climate Regime. Éditions La Découverte: Paris. (in French).

[161] Ahern, J., 2013. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landscape Ecology. 28, 1203–1212. DOI: https://doi.org/10.1007/s10980-012-9799-z

[162] Forman, R.T.T., 2008. Urban regions: Ecology and planning beyond the city. Cambridge University Press: Cambridge.

[163] Jones, K.B., Zurlini, G., Kienast, F., et al., 2013. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landscape Ecology. 28, 1175–1192. DOI: https://doi.org/10.1007/s10980-012-9794-4

[164] Lee, Y.C., Yeh, C.T., Huang, S.L., 2013. Energy hierarchy and landscape sustainability. Landscape Ecology. 28, 1151–1159. DOI: https://doi.org/10.1007/s10980-012-9706-7

[165] Musacchio, L.R., 2009. The scientific basis for the design of landscape sustainability: A conceptual framework for translational landscape research and practice of designed landscapes and the six Es of landscape sustainability. Landscape Ecology. 24, 993–1013. DOI: https://doi.org/10.1007/s10980-009-9396-y

[166] Musacchio, L.R., 2011. The grand challenge to operationalize landscape sustainability and the design-in-science paradigm. Landscape Ecology. 26, 1–5. DOI: https://doi.org/10.1007/s10980-010-9562-2

[167] Wu, J., 2008. Making the case for landscape ecology: An effective approach to urban sustainability. Landscape Journal. 27(1), 41–50. DOI: https://doi.org/10.3368/lj.27.1.41

[168] Wu, J., 2010. Landscape of culture and culture of landscape: Does landscape ecology need culture?. Landscape Ecology. 25, 1147–1150. DOI: https://doi.org/10.1007/s10980-010-9524-8

[169] Forman, R.T.T., 1995. Land mosaics: The ecology of landscapes and regions. Cambridge University Press: Cambridge.

[170] Forman, R.T.T., 2008. The urban region: Natural systems in our place, our nourishment, our home range, our future. Landscape Ecology. 23, 251–253. DOI: https://doi.org/10.1007/s10980-008-9209-8

[171] Cerro El Topochko, NL, MX [Internet]. Available from: https://www.naturalista.mx/places/cerro-el-topochico#/places/cerro-el-topochico= (in Spanish).

[172] Martínez, M., 1998. Floristic inventory of the Sierra de San Carlos, Tamps. Autonomous University of Tamaulipas. Institute of Applied Ecology. Final report SNIB-CONABIO Project No. P024, México, D.F., México. (in Spanish).

[173] Tamaulipan Floodplain [Internet]. [cited 2023 Apr 29]. Available from: https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/emst/woody-wetlands-and-riparian/tamaulipan-floodplain

[174] Rio Grande Delta Thorn Woodland and Shrubland [Internet]. [cited 2023 Apr 29]. Available from: https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/emst/woody-wetlands-and-riparian/rio-grande-delta-thorn-woodland-and-shrubland

[175] Tamaulipan Palm Grove Riparian Forest [Internet]. [cited 2023 Apr 29]. Available from: https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/emst/woody-wetlands-and-riparian/tamaulipan-palm-grove-riparian-forest

[176] Southern North America: Southern United States into Northeastern Mexico [Internet]. [cited 2023 Apr 29]. Available from: https://www.worldwildlife.org/ecoregions/na1312

[177] Loflin, B., Loflin, S., 2009. Texas cacti. Texas A&M University Press: College Station TX.

[178] Hernández, H.M., Gómez-Hinostrosa, C., 2011. Mapping the cacti of Mexico: Their geographical distribution based on referenced records. Dh Books: Milborne Port.

[179] Tamaulipan Calcareous Thornscrub [Internet]. [cited 2023 Apr 29]. Available from: https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/emst/shrublands/tamaulipan-calcareous-thornscrub

[180] Tamaulipan Mixed Deciduous Thornscrub [Internet]. [cited 2023 Apr 29]. Available from: https://tpwd.texas.gov/landwater/land/programs/landscape-ecology/ems/emst/shrublands/tamaulipan-mixed-deciduous-thornscrub

[181] Elsabina National Park [Internet]. Available from: https://www.gob.mx/semarnat/articulos/parque-nacional-el-sabinal (in Spanish).

[182] Marroquín, J.S., Borja, G., Velázquez, R., et al., 1981. Ecological and forestry study of the arid zones of northern Mexico, Special Publication 2. Mexico City: Instituto Nacional de Investigaciones Forestales, SARH: Mexico. (in Spanish).

[183] Theobald, D.M., Spies, T., Kline, J., et al., 2005. Ecological support for rural land‐use planning. Ecological Applications. 15(6), 1906–1914. DOI: https://doi.org/10.1890/03-5331

[184] McDonnell, M.J., Pickett, S.T., 1990. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology. 71(4), 1232–1237. DOI: https://doi.org/10.2307/1938259

[185] McDonnell, M.J., Pickett, S.T., Groffman, P., et al., 2008. Urban ecology: An international perspective on the interaction between humans and nature. Springer: New York. DOI: https://doi.org/10.1007/978-0-387-73412-5

[186] Pauleit, S., Breuste, J., Qureshi, S., et al., 2010. Transformation of rural-urban cultural landscapes in Europe: Integrating approaches from ecological, socio-economic and planning perspectives. Landscape Online. 20. DOI: https://doi.org/10.3097/LO.201020

[187] Haase, D., Frantzeskaki, N., Elmqvist, T., 2014. Ecosystem services in urban landscapes: Practical applications and governance implications. AMBIO. 43, 407–412. DOI: https://doi.org/10.1007/s13280-014-0503-1

[188] Garrard, G.E., Williams, N.S., Mata, L., et al., 2018. Biodiversity sensitive urban design. Conservation Letters. 11(2), e12411. DOI: https://doi.org/10.1111/conl.12411

[189] Niemelä, J., 1999. Ecology and urban planning. Biodiversity & Conservation. 8, 119–131. DOI: https://doi.org/10.1023/A:1008817325994

[190] Pickett, S.T.A., Cadenasso, M.L., McGrath, B., 2013. Ecology of the city as a bridge to urban design. Resilience in ecology and urban design. Springer: Dordrecht. DOI: https://doi.org/10.1007/978-94-007-5341-9_1

[191] Steiner, F., 2016. The application of ecological knowledge requires a pursuit of wisdom. Landscape and Urban Planning. 155, 108–110. DOI: https://doi.org/10.1016/j.landurbplan.2016.07.015

[192] Yli-Pelkonen, V., Kohl, J., 2005. The role of local ecological knowledge in sustainable urban planning: perspectives from Finland. Sustainability: Science, Practice and Policy. 1(1), 3–14. DOI: https://doi.org/10.1080/15487733.2005.11907960

[193] Yli-Pelkonen, V., Niemelä, J., 2005. Linking ecological and social systems in cities: Urban planning in Finland as a case. Biodiversity & Conservation. 14, 1947–1967. DOI: https://doi.org/10.1007/s10531-004-2124-7

Downloads

Published

2024-03-29

Issue

Section

Research article
Loading...