Assessment of the Research and Production Bridgehead of the Rare Earth Industry of the People’s Republic of China

Authors

  • Aleksandr Kirsanov

    Institute of Non-Ferrous Metals, Siberian Federal University, Krasnoyarsk 660041, Russian Federation

  • Semjon Pervykh *

    Institute of Non-Ferrous Metals, Siberian Federal University, Krasnoyarsk 660041, Russian Federation

  • Anastasia Zdonis

    Institute of Non-Ferrous Metals, Siberian Federal University, Krasnoyarsk 660041, Russian Federation

DOI:

https://doi.org/10.55121/nc.v4i2.460

Keywords:

Mining, Patents, Rare Earth Elements, Rare Earth Metals, Technological Chains, China

Abstract

Since 2010, the growth in demand for and consumption of rare earth elements has more than doubled, due to a fairly wide area of their possible use in various high-tech devices and products. Today, the People’s Republic of China continues to be the world leader in reserves and production output of this type of minerals due to the presence of large deposits, as well as well-structured production chains, which are often combined to create closed cycles for the extraction and processing of rare earth elements. This study provides a comprehensive assessment of China’s rare earth sector by analyzing the structure, specialization, and technological capabilities of major domestic producers. Particular attention is given to their production capacities and innovative technologies. Using publicly available patent data from international sources, the study evaluates the current state of technological development in areas such as mineral extraction, chemical processing, waste minimization, and environmental protection. The analysis confirms that China’s innovation potential in the REE industry continues to grow at a high pace. Moreover, the emergence and expansion of strategic industries based on rare earth materials – such as electric vehicles, wind energy, and advanced electronics—further strengthen the country’s position as a technological leader. The findings provide useful insights for researchers, policymakers, and industry stakeholders interested in sustainable development, strategic resource management, and the future of rare earth innovation in a global context.

References

[1] U.S. Geological Survey, 2022. Mineral commodity summaries 2025. U.S. Geological Survey: Reston, Virginia. DOI: https://doi.org/10.3133/mcs2025.

[2] Sergeev, I.B., Ponomarenko, T.V., 2015. Incentives for creating a competitive rare earth industry in Russia in conditions of global competition. Journal of Mining Institute. 211, 104–116.

[3] Kondratyev, V.B., 2017. Global market of rare earth metals [in Russian]. Mining Industry [in Russian]. 4(134), 48–54.

[4] Balaram, V., 2019. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers. 10(4), 1285–1303. DOI: https://doi.org/10.1016/j.gsf.2018.12.005.

[5] Kumari, A., Pand, R., Jha, M.K., et al., 2015. Process development to recover rare earth metals from monazite mineral: A review. Minerals Engineering. 79, 102–115. DOI: https://doi.org/10.1016/j.mineng.2015.05.003.

[6] García, M.V.R., Krzemień, A., del Campo, M.Á.M., et al., 2017. Rare earth elements mining investment: It is not all about China. Resources Policy. 53, 66–76. DOI: https://doi.org/10.1016/j.resourpol.2017.05.004.

[7] Goecke, F., Jerez, C.G., Zachleder, V., et al., 2015. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Frontiers in Microbiology. 6(4), 2. DOI: https://doi.org/10.3389/fmicb.2015.00002.

[8] Mikhailov, V.A., 2010. Rare earth ores of the world: Geology, resources, economics [In Russian]. Publishing and Printing Center "Kyiv University": Kyiv, Ukraine. URL: https://www.geokniga.org/books/21794.

[9] Makrygina, V.A., Suvorova, L.F., Antipin, V.S., et al., 2018. Rare metal pegmatoid granites-markers of the beginning of the Hercynian intraplate stage of development in the Olkhon region of the Baikal region [in Russian]. Geology and Geophysics [in Russian]. 59(12), 2040–2054. DOI: https://doi.org/10.15372/GiG20181208.

[10] Elderfield, H., Upstill-Goddard, R., Sholkovitz, E.R., 1990. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta. 54(4), 971–991. DOI: https://doi.org/10.1016/0016-7037(90)90432-K.

[11] Prego, R., Caetano, M., Bernárdez, P., et al., 2012. Rare earth elements in coastal sediments of the northern Galician shelf: Influence of geological features. Continental Shelf Research. 35, 75–85. DOI: https://doi.org/10.1016/j.csr.2011.12.010.

[12] Wright, J., Schrader, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta. 51(3), 631–644. DOI: https://doi.org/10.1016/0016-7037(87)90075-5.

[13] Picard, S., Lécuyer, Ch., Barrat, J.-A., et al., 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Chemical Geology. 186(1–2), 1–16. DOI: https://doi.org/10.1016/S0009-2541(01)00424-7.

[14] Ichihashi, H., Morita, H., Tatsukawa, R., 1992. Rare earth elements (REEs) in naturally grown plants in relation to their variation in soils. Environmental Pollution. 76(2), 157–162. DOI: https://doi.org/10.1016/0269-7491(92)90103-H.

[15] Williams, C.T., Henderson, P., Marlow, C.A., et al., 1997. The environment of deposition indicated by the distribution of rare earth elements in fossil bones from Olduvai Gorge, Tanzania. Applied Geochemistry. 12(4), 537–547. DOI: https://doi.org/10.1016/S0883-2927(97)00033-4.

[16] Ullmann, P.V., Grandstaff, D.E., Ash, R.D., et al., 2020. Geochemical taphonomy of the Standing Rock Hadrosaur Site: Exploring links between rare earth elements and cellular and soft tissue preservation. Geochimica et Cosmochimica Acta. 269, 223–237. DOI: https://doi.org/10.1016/j.gca.2019.10.030.

[17] Macfadden, B.J., Purdy, B.A., Church, K., et al., 2012. Humans were contemporaneous with late Pleistocene mammals in Florida: evidence from rare earth elemental analyses. Journal of Vertebrate Paleontology. 32(3), 708–716. DOI: https://doi.org/10.1080/02724634.2012.655639.

[18] Salgansky, E.A., Tsvetkov, M.V., Kadiev, K.M., et al., 2019. Rare and valuable metals in oils and coals of the Russian Federation: content and methods of extraction (review) [in Russian]. Journal of Applied Chemistry [in Russian]. 92(12), 1514–1533. DOI: https://doi.org/10.1134/S0044461819120028.

[19] Verkhozin, S.S., 2021. Gold production in countries of the world [in Russian]. Zolotodb.ru. Available from: https://zolotodb.ru/article/11330/?page=all (cited 25 December 2022).

[20] Pavel, C.C., Lacal-Arántegui, R., Marmier, A., et al., 2017. Substitution strategies for reducing the use of rare earths in wind turbines. Resources Policy. 52, 349–357. DOI: https://doi.org/10.1016/j.resourpol.2017.04.010.

[21] Li, J., Peng, K., Wang, P., Zhang, N., et al., 2020. Critical rare-earth elements mismatch global wind-power ambitions. One Earth. 3(1), 116–125. DOI: https://doi.org/10.1016/j.oneear.2020.06.009.

[22] Golroudbary, S. R. 2022. Global environmental cost of using rare earth elements in green energy technologies. Science of the Total Environment. 832, 155022. DOI: https://doi.org/10.1016/j.scitotenv.2022.155022.

[23] Sun, J., Yang, X., Sun, Sh., et al., 2022. Recent progress of rare earth conversion material in perovskite solar cells: A mini review. Inorganic Chemistry Communications. 143, 109731. DOI: https://doi.org/10.1016/j.inoche.2022.109731.

[24] United Nations. Day of Eight Billion, 15 November 2022. URL: https://www.un.org/development/desa/pd/events/day-eight-billion.

[25] Bairoliya, N., Miller, R., 2021. Demographic transition, human capital and economic growth in China. Journal of Economic Dynamics and Control. 127, 104117. DOI: https://doi.org/10.1016/j.jedc.2021.104117.

[26] Lupi, V., Marsiglio, S., 2021. Population growth and climate change: A dynamic integrated climate-economy-demography model. Ecological Economics. 184, 107011. DOI: https://doi.org/10.1016/j.ecolecon.2021.107011.

[27] Ezeh, A.C., Bongaarts, J., Mberu, B., 2012. Global population trends and policy options. The Lancet. 380(9837), 142–148. DOI: https://doi.org/10.1016/S0140-6736(12)60696-5.

[28] Xiao, C., Feng, Z., You, Z., Zheng, F., 2022a. Population boom in the borderlands globally. Journal of Cleaner Production. 371, 133685. DOI: https://doi.org/10.1016/j.jclepro.2022.133685.

[29] Samsonov, N.Yu., Semyagin, I.N., 2014. Review of the world and Russian market of rare earth metals. [In Russian] All-Russian ECO Journal. 2, 45–54.

[30] Du, X., Graedel, T.E., 2013. Uncovering the end uses of the rare earth elements. Science of the Total Environment. 461, 781–784. DOI: https://doi.org/10.1016/j.scitotenv.2013.02.099.

[31] Charalampides, G., Vatalis, K.I., Apostoplos, B., et al., 2015. Rare earth elements: industrial applications and economic dependency of Europe. Procedia Economics and Finance. 24, 126–135. DOI: https://doi.org/10.1016/S2212-5671(15)00630-9.

[32] Serpell, O., Paren, B., Chu, W.-Y., 2021. Rare earth elements: A resource constraint of the Energy Transition. Kleiman Center for Energy Policy: Philadelphia, PA, USA. Available from: https://kleinmanenergy.upenn.edu/wp-content/uploads/2021/05/KCEP-Rare-Earth-Elements.pdf (cited 25 December 2022).

[33] Yang, X.J., Lin, A., Li, X.L., et al., 2013. China's ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development. 8, 131–136. DOI: https://doi.org/10.1016/j.envdev.2013.03.006.

[34] Wang, D., Zhao, Z., Yu, Y., et al., 2018. Exploration and research progress on ion-adsorption type REE deposit in South China. China Geology. 1(3), 415–424. DOI: https://doi.org/10.31035/cg2018022.

[35] Zhou, H., Greig, A., Tang, J., et al., 2012. Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater. Geochimica et Cosmochimica Acta. 83, 1–18. DOI: https://doi.org/10.1016/j.gca.2011.12.027.

[36] Xiao, S., Geng, Y., Rui, X., et al., 2022b. Behind of the criticality for rare earth elements: Surplus of China's yttrium. Resources Policy. 76, 102624. DOI: https://doi.org/10.1016/j.resourpol.2022.102624.

[37] Lian, Z., Han, Y., Zhao, X., et al., 2022. Rare earth elements in the upland soils of northern China: Spatial variation, relationships, and risk assessment. Chemosphere. 307, 136062. DOI: https://doi.org/10.1016/j.chemosphere.2022.136062.

[38] Kogarko, L.N., 2020. Geochemistry of rare earth metals in the eudialyte ore complex of the Lovozero rare metal deposit [in Russian]. Reports of the Russian Academy of Sciences. Geosciences [in Russian]. 491(2), 51–55. DOI: https://doi.org/10.31857/S2686739720040088.

[39] Tarkhanov, A.V., Kurkov, A.V., Ilyin, A.K., 2012. Prospects for the development of complex rare metal – rare earth eudialyte ores of the Lovozero deposit. Mining Journal. 4, 54–56.

[40] Cheremisina, O.V., Cheremisina, E., Ponomareva, M.A., et al., 2020. Sorption of coordination compounds of rare earth elements. Journal of Mining Institute. 244, 474–481. DOI: https://doi.org/10.31897/pmi.2020.4.10.

[41] Andreyev, M.N., 2014. Analysis of the current state of mining and enrichment of rare earth metals in Russia. Journal of Mining Institute. 207, 9–11.

[42] Kryukov, V.A., Yatsenko, V.A., Kryukov, Ya.V., 2020. Rare earth industry – to realize existing opportunities [in Russian]. Mining Industry [in Russian]. 5, 68–84. DOI: https://doi.org/10.30686/1609-9192-2020-5-68-84.

[43] World Intellectual Property Organization (WIPO), 2025. Patent applications related to rare earth elements. Available from: https://www.wipo.int/portal/en/index.html (cited 28.06.2025).

[44] Mu, K.G., Chen, Q., Li, Y., et al. (inventors), 2019. Organic rare earth complex with functions of growth promotion and disease resistance and preparation method and application of organic rare earth complex [in Chinese]. China Patent. CN110178845. 2019 August 30.

[45] Zhu, J.Y., Xiong, C., Yang, H., et al. (inventors), 2021. Rare earth extraction process prediction control method and system [in Chinese]. China Patent. CN113126501. 2021 July 16.

[46] Deng, B., Lu, R.X., Yang, H., et al. (inventors), 2022. Rare earth element component content prediction method and system [in Chinese]. China Patent. CN114743060. 2022 July 12.

[47] Xu, H., Sang, X.Y., Li, T.T., et al. (inventors), 2019. Device for continuously removing sulfate radicals from rare earth solution [in Chinese]. China Patent. CN209292445. 2019 August 23.

[48] Sang, X.Y., Liu, W., Liu, R.J., et al. (inventors), 2019. Emulsion processing device and processing method in productive process of rare earth extraction [in Chinese]. China Patent. CN109295302. 2019 February 1.

[49] Zhao, Z.H., Sang, X.Y., Liu, R.J., et al. (inventors), 2019. Device and method for continuously producing crystalline rare earth carbonate [in Chinese]. China Patent. CN109264763. 2019 January 25.

[50] Liu, Z.B., Wang, W.W., Du, S.C., et al. (inventors), 2020. Rare earth oxide extraction device [in Chinese]. China Patent. CN210596201. 2020 May 22.

[51] Liu, Z.B., Wang, W.W., Sun, N.L., et al. (inventors), 2019. Rare earth deposition device [in Chinese]. China Patent. CN109182742. 2019 January 11.

[52] Lu, L.H., Cai, W., Zeng, Y.C., et al. (inventors), 2022a. A method for removing fluorine from rare earth chloride mixed solution obtained by acid-base combination treatment [in Chinese]. China Patent. CN111636002A. 2022 April 19.

[53] Feng, Z.Y., Chen, S.L., Huang, X.W., et al. (inventors), 2022. A kind of method for preparing pure sulfuric acid rare earth solution [in Chinese]. China Patent. CN113373326B. 2022 October 4.

[54] Lu, L.H., Cai, W., Zeng, Y.C., et al. (inventors), 2022. A method for removing non-rare earth impurities in rare earth hydrometallurgy [in Chinese]. China Patent. CN113667842B. 2022 September 20.

[55] Lu, L.H., Cai, W., Zeng, Y.C., et al. (inventors), 2021. A method for recovering organic and rare earth from bastnaesite extraction three phases [in Chinese]. China Patent. CN111647744B. 2021 September 21.

[56] Yang, Q.H., Wu, J.L., Chen, Y., et al. (inventors), 2021. A method for decomposing bastnaesite [in Chinese]. China Patent. CN110205503B. 2021 April 6.

[57] Zhu, S.Y., Lin, X., Dong, G., et al. (inventors), 2021. A method of removal is containing iron ion in neodymium, praseodymium, dysprosium and ferrous solution [in Chinese]. China Patent. CN109593977A. 2021 November 23.

[58] Sun, G.L., Li, C.Q., Zheng, L.J., et al. (inventors), 2022. A method for removing impurities and recovering emulsified organic phase by rare earth extraction [in Chinese]. China Patent. CN111118313B. 2022 March 25.

[59] Zhang, J.H., Zhang, Y.L. (inventors), 2019. Rare earth processing waste water processing method [in Chinese]. China Patent. CN110156217. 2019 August 23.

[60] Liu, R.L., Wang, Z.J., Fan, Y.C., et al. (inventors), 2020. A method for extracting rare earth oxides from polishing powder waste [in Chinese]. China Patent. CN108531735B. 2020 March 31.

[61] Wang, X., Wang, Z.G., He, X.C., et al. (inventors), 2020. Ecological restoration type rare earth tailings [in Chinese]. China Patent. CN211922648. 2020 November 13.

[62] Guo, S.H., Wang, D.N., Chi, J.Z., et al. (inventors), 2019. A method of extracting lanthanum from fly ash [in Chinese]. China Patent. CN105969994B. 2019 April 5.

[63] Lebrouhi, B.E., et al., 2022. Critical materials for electrical energy storage: Li-ion batteries. Journal of Energy Storage. 55, 105471. DOI: https://doi.org/10.1016/j.est.2022.105471.

[64] Hayes, S.M., McCullough, E.A., 2018. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resources Policy. 59, 192–199. DOI: https://doi.org/10.1016/j.resourpol.2018.06.015.

[65] McNulty, B.A., Jowitt, S.M., 2021. Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply. IScience. 24(7), 102809. DOI: https://doi.org/10.1016/j.isci.2021.102809.

Downloads

How to Cite

Kirsanov, A., Pervykh, S., & Zdonis, A. (2025). Assessment of the Research and Production Bridgehead of the Rare Earth Industry of the People’s Republic of China. New Countryside, 4(2), 54–71. https://doi.org/10.55121/nc.v4i2.460