Discovery of Structural Elements that Form Amorphous Materials

Authors

  • Olexandr Kucherov *

    Institute of Structural Information Technologies, Kyiv 03680, Ukraine

  • Alexandr D. Rud

    G.V. Kurdyumov Institute for Metal Physics of NASU, Kiev 03142, Ukraine

DOI:

https://doi.org/10.55121/nefm.v4i1.400

Keywords:

Amorphous Solids, Polygons in Amorphous Solids, Unpaired Electron, Covalent Bond, Real-Life Electron Orbital

Abstract

One of the important and unresolved problems of materials science is the structure of amorphous solids. This paper reveals the secret of the structure of amorphous materials through picoscopic visualization of electron orbitals. Picoscopy is a precision experimental method for measuring the thickness of a real electron orbital body in the metric unit picometers. The results of the study of thousands of electron orbitals in amorphous carbon revealed the absence of crystal-forming elements: a) short-range order and b) strong covalent chemical bonds. However, it was found that atoms in amorphous solids are bound by unpaired valence electrons, which form weak interactions due to dipole polarization. Therefore, chemical bonds in amorphous solids are different from those in crystals. Accordingly, the amorphous solids are allotropes. This study shows that unpaired electron interactions form previously unknown polygons with the general formula Cn: a) triangle (C3); b) quadrangle (C4); c) pentagon (C5); d) hexagon (C6). The polygons create the short-range structure of the amorphous solids. It is polygons that are responsible for the universal spatial parameter of the order of ~300 pm, with which the structure of amorphous solids of various natures (semiconductor, dielectric, and metallic) is associated. The unpaired electron interaction and polygons play a fundamental role in the nature of amorphous materials.

References

[1] Thorpe, M.F., Tichy, L., 2001. Properties and Applications of Amorphous Materials, 1st ed. Springer: Dordrecht, Netherlands. pp. 1–11.

[2] Kump, K., Grantors, P., Pla, F., et al., 1998. Digital X-ray detector technology. RBM-News. 20(9), 221–226. DOI: https://doi.org/10.1016/S0222-0776(99)80006-6

[3] American Physical Society, 2009. April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell. APS News. Available from: https://www.aps.org/apsnews/2009/04/bell-labs-silicon-solar-cell (cited 28 April 2025).

[4] Apelian, D., 2009. Aluminum Cast Alloys: Enabling Tools for Improved Performance. North American Die Casting Association: Wheeling, IL, USA. Available from: https://aluminium-guide.com/wp-content/uploads/2019/05/WWR_AluminumCastAlloys.pdf (cited 28 April 2025).

[5] World Health Organization, 2023. Web Annex A: World Health Organization model list of essential medicines: 23rd list, 2023. In: World Health Organization (ed.). The selection and use of essential medicines 2023: Executive summary of the report of the 24th WHO Expert Committee on the Selection and Use of Essential Medicines, 24–28 April 2023. World Health Organization: Geneva, Switzerland. WHO/MHP/HPS/EML/2023.02.

[6] Sheka, E.F., Holderna-Natkaniec, K., Natkaniec, I., et al., 2019. Computationally supported neutron scattering study of natural and synthetic amorphous carbons. Journal of Physical Chemistry C. 123(25), 15841–15850. DOI: https://doi.org/10.1021/acs.jpcc.9b03675

[7] Golubev, Ye.A., Rozhkova, N.N., Kabachkov, E.N., et al., 2019. sp2 Amorphous carbons in view of multianalytical consideration: normal, expeсted and new. Journal of Non-Crystalline Solids. 524, 119608. DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119608

[8] Sheka, E.F., Natkaniec, I., Ipatova, E.U., et al., 2020. Heteroatom necklaces of sp2 amorphous carbons. XPS supported INS and DRIFT spectroscopy. Fullerenes Nanotubes and Carbon Nanostructures. 28(12), 1010–1029. DOI: https://doi.org/10.1080/1536383X.2020.1794849

[9] Sheka, E.F., Golubev, Ye.A., Popova, N.A., 2020. Graphene domain signature of Raman spectra of sp2 amorphous carbons. Preprint. eprint arXiv:2007.06532. DOI: https://doi.org/10.48550/arXiv.2007.06532

[10] Elliott, S.R., 1991. Medium-range structural order in covalent amorphous solids. Nature. 354(6353), 445–452. DOI: https://doi.org/10.1038/354445a0

[11] Stachurski, Z.H., 2011. On Structure and Properties of Amorphous Materials. Materials. 4(9), 1564–1598. DOI: https://doi.org/10.3390/ma4091564

[12] Malinovskii, V.K., 1999. Disordered solids: Universal behavior of structure, dynamics, and transport phenomena. Physics of the Solid State. 41(4), 725–728. DOI: https://doi.org/10.1134/1.1130858

[13] Cheng, Y.Q., Ma, E., 2011. Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science. 56(4), 379–473. DOI: https://doi.org/10.1016/j.pmatsci.2010.12.002

[14] Mavracic, J., Mocanu, F.C., Deringer, V.L., et al., 2018. Similarity Between Amorphous and Crystalline Phases: The Case of TiO2. Journal of Physical Chemistry Letters. 9(11), 2985–2990. DOI: https://doi.org/10.1021/acs.jpclett.8b01067

[15] Borodin, V.A., 1999. Local atomic arrangements in polytetrahedral materials. Philosophical Magazine A. 79(8), 1887–1907. DOI: https://doi.org/10.1080/01418619908210398

[16] Sheng, H.W., Luo, W.K., Alamgir, F.M., et al., 2006. Atomic packing and short-to-medium range order in metallic glasses. Nature. 439(7075), 419–425. DOI: https://doi.org/10.1038/nature04421

[17] Rud, A.D., Kornienko, N.E., Kirian, I.M., et al., 2018. Local heteroallotropic structures of carbon. Materials Today: Proceedings. 5(12), 26089–26095. DOI: https://doi.org/10.1016/j.matpr.2018.08.035

[18] Esquinazi, P. (ed.), 1998. Tunneling Systems in Amorphous and Crystalline Solids. Springer: Berlin, Germany. DOI: https://doi.org/10.1007/978-3-662-03695-2

[19] Sakurai, J.J., Napolitano, J., 2020. Modern Quantum Mechanics, 3rd ed. Cambridge University Press: Cambridge, UK.

[20] Kucherov, O., 2022. Electron Cloud Densitometry of Core and Valence Electrons in Carbon Allotropes. Applied Functional Materials. 3, 36–43. DOI: https://doi.org/10.35745/afm2022v02.01.0002

[21] Kucherov, O.P., Mudryk, A.M., 2024. Atomic Orbitals Visualization by Picoscopy. American Journal of Engineering Research. 13(10), 37–43. Available from: http://www.ajer.org/papers/Vol-13-issue-10/13103743.pdf (cited 28 April 2025).

[22] Rud, A.D., Kirian, I.M., Lakhnik, A.M., 2022. Evolution of local atomic arrangements in ball-milled graphite. Applied Nanoscience. 13(7), 5021–5031. DOI: https://doi.org/10.1007/s13204-022-02671-8

[23] Kucherov, O.P., Rud, A.D., 2019. Direct visualization of individual molecules in molecular crystals by electron cloud densitometry. Molecular Crystals and Liquid Crystals. 674(1), 40–47. DOI: https://doi.org/10.1080/15421406.2019.1578510

[24] Plyushchay, I.V., Maistrenko, A.O., Tsaregradska, T.L., et al., 2023. First-Principle Modelling of Amorphization Process of Ni-Zr System Alloys [in Ukrainian]. Metallofizika i Noveishie Tekhnologii. 45(6), 733–741. DOI: https://doi.org/10.15407/mfint.45.06.0733

[25] Kucherov, O., Mudryk, A., 2023. Picoscopy Discoveries of the Binary Atomic Structure. Applied Functional Materials. 3(2), 1–7. DOI: https://doi.org/10.35745/afm2023v03.02.0001

[26] International Union of Pure and Applied Chemistry, 2025. IUPAC Compendium of Chemical Terminology, 5th ed. International Union of Pure and Applied Chemistry: Research Triangle Park, NC, USA.

[27] Foot, C.J., 2005. Atomic Physics. Oxford University Press: Oxford, UK. Available from: https://archive.org/details/atomicphysics0000foot (cited 28 April 2025).

Downloads

How to Cite

Kucherov, O., & D. Rud, A. (2025). Discovery of Structural Elements that Form Amorphous Materials. New Environmentally-Friendly Materials, 4(1), 48–56. https://doi.org/10.55121/nefm.v4i1.400