Curated Topics on Novel Exotic Eco-Friendly Materials for Sustainable Rechargeable Battery Technologies

Authors

  • Arvind Kasbe
  • Aqsa Nazir *
  • Swetarekha Ram
  • Henu Sharma
  • Kisor K Sahu

DOI:

https://doi.org/10.55121/nefm.v3i1.236

Keywords:

Global Energy Demand, Sustainable Practices, Novel Materials, Silicon-Based Anodes, Conductive Polymers, Metal-Organic Frameworks, Two-Dimensional Materials, Nanocomposites

Abstract

This work explores novel and eco-friendly materials that hold transformative potential in addressing the limitations of traditional rechargeable battery systems while aligning with sustainability goals. Beginning with a brief overview of global energy demand and rechargeable battery architectures, this curated study delves into four cutting-edge materials classes, each offering unique advantages. Nanocomposites for Silicon-based anodes represent a breakthrough in enhancing energy density and addressing volume expansion issues, which are the major limitations of silicon anodes. We explore the possibility of recycling silicon from photovoltaic (PV) panels and its associated Life Cycle Assessment (LCA) costs. The study then shifts focus to the realm of two-dimensional (2D) materials, highlighting their exceptional electrical, mechanical, and catalytic properties, which promise substantial improvements in (Li, Na, K-ion based) battery performance. Metal-organic frameworks (MOFs), with their tunable porosity and multifunctionality, are investigated for their role in polysulfide confinement and catalytic enhancement in lithium-sulfur and other battery chemistries. The next topic delves into bio-based catalysts, which have emerged as sustainable alternatives for facilitating electrochemical reactions, leveragin renewable resources to minimize environmental impact. Finally, conductive polymers are briefly considered for their ability to offer flexibility and conductivity, possibility of getting rid of inactive materials in batteries, paving the way for advanced, deformable energy storage devices. This compilation underscores the immense potential of these exotic materials in revolutionizing battery technologies, providing insights into their applications, challenges, and scalability. The discussion concludes with future perspectives on integrating these materials into commercial systems to achieve energy sustainability.

References

[1] Kardashev, N.S., 1964. Transmission of Information by Extraterrestrial Civilizations. Soviet Astronomy. 8, 217–221.

[2] Gray, R.H., 2020. The Extended Kardashev Scale. The Astronomical Journal. 159(228), 1–5. DOI: https://doi.org/10.3847/1538-3881/ab792b

[3] Li, F., Song, Z., Liu, W., 2014. China’s energy consumption under the global economic crisis: Decomposition and sectoral analysis. Energy Policy. 64, 193–202. DOI: https://doi.org/10.1016/j.enpol.2013.09.014

[4] Balatsky, A., Balatsky, G., Borysov, S., 2015. Resource Demand Growth and Sustainability Due to Increased World Consumption. Sustainability. 7(3), 3430–3440. DOI: https://doi.org/10.3390/su7033430

[5] Inshakov, O.V., Bogachkova, L.Y., Popkova, et al., 2019. The Transformation of the Global Energy Markets and the Problem of Ensuring the Sustainability of Their Development. In: Inshakov, O.V., Inshakova, A.O.,, Popkova, et al., (eds.). Energy Sector: A Systemic Analysis of Economy, Foreign Trade and Legal Regulations. Springer International Publishing: Cham, Switzerland. pp. 135–148.

[6] Gereffi, G., 2010. The Global Economy: Organization, Governance, and Development. In: Smelser, N.J., Swedberg, R. (eds.). The Handbook of Economic Sociology, 2ed. Princeton University Press: Princeton, USA. pp. 160–182.

[7] Vasant Kumar, R., Sarakonsri, T., 2023. Introduction to Electrochemical Cells. In: Kumar, R., Aifantis, K., Hu, P. (eds.). Rechargeable Ion Batteries. Wiley-VCH Verlag, Germany. pp. 1–20.

[8] Sharma, H., Katari, V., Sahu, K.K., Singh, A., 2024. Confluence of electronic structure calculations (DFT) and machine learning (ML) for lithium and sodium-ion batteries: a theoretical perspective. Engineering Research Express. 6(3), 032002. DOI: https://doi.org/10.1088/2631-8695/ad708f

[9] Peljo, P., Girault, H.H., 2018. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy & Environmental Science. 11(9), 2306–2309. DOI: https://doi.org/10.1039/C8EE01286E

[10] Chen, P., Lin, X., Yang, B., et al., 2024. Cellulose Separators for Rechargeable Batteries with High Safety: Advantages, Strategies, and Perspectives. Advanced Functional Materials. 34(49), 2409368. DOI: https://doi.org/10.1002/adfm.202409368

[11] Goodenough, J.B., 2013. Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research. 46(5), 1053–1061. DOI: https://doi.org/10.1021/ar2002705

[12] Cheng, A.L., Fuchs, E.R.H., Karplus, V.J., Michalek, J.J., 2024. Electric vehicle battery chemistry affects supply chain disruption vulnerabilities. Nature Communications. 15, 2143. DOI: https://doi.org/10.1038/s41467-024-46418-1

[13] Moon, J., Lee, H.C., Jung, H., et al., 2021. Interplay between electrochemical reactions and mechanical responses in silicon–graphite anodes and its impact on degradation. Nature Communications. 12, 2714. DOI: https://doi.org/10.1038/s41467-021-22662-7

[14] Zhang, X., Wang, D., Qiu, X., et al., 2020. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications. 11, 3826. DOI: https://doi.org/10.1038/s41467-020-17686-4

[15] Cabello, M., Gucciardi, E., Liendo, G., et al., 2021. A Study to Explore the Suitability of LiNi0.8Co0.15Al0.05O2/Silicon@Graphite Cells for High-Power Lithium-Ion Batteries. International Journal of Molecular Sciences. 22(19), 10331. DOI: https://doi.org/10.3390/ijms221910331

[16] Wang, W., Favors, Z., Li, C., et al., 2017. Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries. Scientific Reports. 7, 44838. DOI: https://doi.org/10.1038/srep44838

[17] Deng, R., Chang, N.L., Ouyang, Z., Chong, C.M., 2019. A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews. 109, 532–550. DOI: https://doi.org/10.1016/j.rser.2019.04.020

[18] Muraleedharan Pillai, M., Kalidas, N., Zhao, X., Lehto, V.-P., 2022. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes. Frontiers in Chemistry. 10, 882081. DOI: https://doi.org/10.3389/fchem.2022.882081

[19] Majeed, M.K., Saleem, A., Wang, C., et al., 2020. Simplified Synthesis of Biomass‐Derived Si/C Composites as Stable Anode Materials for Lithium‐Ion Batteries. Chemistry – A European Journal. 26(46), 10544–10549 (2020). DOI: https://doi.org/10.1002/chem.202000953

[20] Late, D.J., Wiemer, C., 2022. Advances in low dimensional and 2D materials. AIP Advances. 12(11), 110401. DOI: https://doi.org/10.1063/5.0129120

[21] 2024. Phase landscapes in low-dimensional structures. Nature Materials. 23, 1301. DOI: https://doi.org/10.1038/s41563-024-02017-5

[22] Shockley, W., Queisser, H.J., 1961. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics. 32(3), 510–519. DOI: https://doi.org/10.1063/1.1736034

[23] Battaglia, C., Cuevas, A., De Wolf, S., 2016. High-efficiency crystalline silicon solar cells: status and perspectives. Energy & Environmental Science. 9(5), 1552–1576. DOI: https://doi.org/10.1039/C5EE03380B

[24] Ugur, E., Said, A.A., Dally, P., et al., 2024. Enhanced cation interaction in perovskites for efficient tandem solar cells with silicon. Science. 385(6708), 533–538. DOI: https://doi.org/10.1126/science.adp1621

[25] Aydin, E., Allen, T.G., De Bastiani, M., et al., 2024. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science. 383(6679), eadh3849. DOI: https://doi.org/10.1126/science.adh3849

[26] Sohn, H., Létant, S., Sailor, M.J., Trogler, W.C., 2000. Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. Journal of the American Chemical Society. 122(22), 5399–5400. DOI: https://doi.org/10.1021/ja0006200

[27] Cheng, Z., Liang, J., Kawamura, K., et al., 2022. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nature Communications. 13, 7201. DOI: https://doi.org/10.1038/s41467-022-34943-w

[28] Yamasue, E., Susa, M., Fukuyama, H., et al., 2022. Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe. Journal of Crystal Growth. 234(1), 121–131. DOI: https://doi.org/10.1016/S0022-0248(01)01673-6

[29] Yamaoka, S., Diamantopoulos, N.-P., Nishi, H., et al., 2021. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nature Photonics. 15, 28–35. DOI: https://doi.org/10.1038/s41566-020-00700-y

[30] Jayasheel Kumar, K.A., Ramesha, C.M., Srinath, M.K., et al.,2022. Fabrication and post processing techniques to enhance the strength of Al-Si alloy. Materials Today: Proceedings. 59, 483–488. DOI: https://doi.org/10.1016/j.matpr.2021.11.470

[31] Eric, R.H., 2014. Production of Ferroalloys. In: Seetharaman, S. (eds.). Treatise on Process Metallurgy. Elsevier: Amsterdam, Netherlands. pp. 477–532.

[32] Choi, M., Lee, E., Sung, J., et al., 2024. Comparison of commercial silicon-based anode materials for the design of a high-energy lithium-ion battery. Nano Research. 17, 5270–5277. DOI: https://doi.org/10.1007/s12274-024-6512-x

[33] Rehman, W.U., Wang, H., Manj, R.Z.A., et al., 2021. When Silicon Materials Meet Natural Sources: Opportunities and Challenges for Low‐Cost Lithium Storage. Small. 17(9), 1904508. DOI: https://doi.org/10.1002/smll.201904508

[34] Nazir, A., Le, H.T.T., Kasbe, A., et al., 2021. Si nanoparticles confined within a conductive 2D porous Cu-based metal–organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries. Chemical Engineering Journal. 405, 126963. DOI: https://doi.org/10.1016/j.cej.2020.126963

[35] Tareq, F.K., Rudra, S., 2024. Enhancing the performance of silicon-based anode materials for alkali metal (Li, Na, K) ion battery: A review on advanced strategies. Materials Today Communications. 39, 108653. DOI: https://doi.org/10.1016/j.mtcomm.2024.108653

[36] Wang, F., Zhai, Z., Zhao, Z., et al., 2024. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nature Communications. 15, 4332. DOI: https://doi.org/10.1038/s41467-024-48779-z

[37] Deng, H., Aifantis, K.E., 2023. Applications of Lithium Batteries. In: Kumar, R., Aifantis, K., Hu, P. (eds.). Rechargeable Ion Batteries. Wiley: Wiley-VCH, Weinheim, Germany. pp. 83–103.

[38] Nitta, N., Wu, F., Lee, J.T., et al., 2015. Li-ion battery materials: present and future. Materials Today. 18(5), 252–264. DOI: https://doi.org/10.1016/j.mattod.2014.10.040

[39] Global battery alliance. (2019), A Vision for a Sustainable Battery Value Chain in 2030. https://www3.weforum.org/docs/WEF_A_Vision_for_a_Sustainable_Battery_Value_Chain_in_2030_Report.pdf

[40] Vera, M.L., Torres, W.R., Galli, C.I., et al., 2023. Environmental impact of direct lithium extraction from brines. Nature Reviews Earth & Environment. 4, 149–165. DOI: https://doi.org/10.1038/s43017-022-00387-5

[41] Tao, Y., Rahn, C.D., Archer, L.A., et al., 2021. Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances. 7(45), eabi7633. DOI: https://doi.org/10.1126/sciadv.abi7633

[42] Chamidah, N., Suzuki, A., Shimizu, T., et al., 2023. Kinetic analysis of silicon–lithium alloying reaction in silicon single crystal using soft X-ray absorption spectroscopy. RSC Advances. 13(25), 17114–17120. DOI: https://doi.org/10.1039/D3RA02554C

[43] Iwamura, S., Nishihara, H., Ono, Y., et al., 2015. Li-Rich Li-Si Alloy As A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries. Scientific Reports. 5, 8085. DOI: https://doi.org/10.1038/srep08085

[44] Li, H., Yamaguchi, T., Matsumoto, S., et al., 2020. Circumventing huge volume strain in alloy anodes of lithium batteries. Nature Communications 11, 1584. DOI: https://doi.org/10.1038/s41467-020-15452-0

[45] Yu, Y., Gong, H., He, X., et al., 2024. Alleviating the volume expansion of silicon anodes by constructing a high-strength ordered multidimensional encapsulation structure. Chemical Science. 15(38), 15891–15899 (2024). https://doi.org/10.1039/D4SC04751F

[46] Ashuri, M., He, Q., Shaw, L.L., 2016. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale. 8(1), 74–103. DOI: https://doi.org/10.1039/C5NR05116A

[47] Khan, M., Yan, S., Ali, M., et al., 2024. Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications. Nano-Micro Letters. 16, 179. DOI: https://doi.org/10.1007/s40820-024-01388-3

[48] Min, C., Nazir, A., Le, H.T.T., et al., 2022. Facile Fabrication of Highly Porous 3D Sponge‐Like Si@C Composites as High‐Performance Anode Materials for Lithium‐Ion Batteries. Batteries & Supercaps. 5(5), e202100403. https://doi.org/10.1002/batt.202100403

[49] Pathak, A.D., Chanda, U.K., Samanta, K., et al., 2019. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries. Electrochimica Acta. 317, 654–662. DOI: https://doi.org/10.1016/j.electacta.2019.06.040

[50] Wu, J., Cao, Y., Zhao, H., et al., 2019. The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries. Carbon Energy. 1(1), 57–76. DOI: https://doi.org/10.1002/cey2.2

[51] Wang, W., Yang, S., 2017. Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive. Journal of Alloys and Compounds. 695, 3249–3255. DOI: https://doi.org/10.1016/j.jallcom.2016.11.248

[52] Eshetu, G.G., Zhang, H., Judez, X., et al., 2021. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nature Communications. 12, 5459. DOI: https://doi.org/10.1038/s41467-021-25334-8

[53] IRENA, 2016. END-OF-LIFE MANAGEMENT: Solar Photovoltaic Panels. IEA-PVPS Report Number: T12-06:2016, June 2016

[54] Roser, M., 2020. Why did renewables become so cheap so fast? Available from: https://ourworldindata.org/cheap-renewables-growth' , 1st December 2020.

[55] Luo, F., Lyu, T., Wang, D., et al., 2023. A review on green and sustainable carbon anodes for lithium ion batteries: utilization of green carbon resources and recycling waste graphite. Green Chemistry. 25(22), 8950–8969. DOI: https://doi.org/10.1039/D3GC03078D

[56] Gao, S., Chen, X., Qu, J., et al., 2024. Recycling of silicon solar panels through a salt-etching approach. Nature Sustainability. 7, 920–930. DOI: https://doi.org/10.1038/s41893-024-01360-4

[57] Kim, S.K., Kim, H., Chang, H., et al., 2016. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries. Scientific Reports. 6, 33688. DOI: https://doi.org/10.1038/srep33688

[58] Huang, T.-Y., Selvaraj, B., Lin, H.-Y., et al., 2016. Exploring an interesting si source from photovoltaic industry waste and engineering It as a Li-Ion Battery High-Capacity Anode. ACS Sustainable Chemistry & Engineering. 4(10), 5769–5775. DOI: https://doi.org/10.1021/acssuschemeng.6b01749

[59] Ma, Q., Qu, J., Chen, X., et al., 2020. Converting micro-sized kerf-loss silicon waste to high-performance hollow-structured silicon/carbon composite anodes for lithium-ion batteries. Sustainable Energy & Fuels. 4(9), 4780–4788. DOI: https://doi.org/10.1039/D0SE00831A

[60] Yuan, Y., Wan, J., Zhao, Z., et al., 2024. ZIF-90 derived carbon-coated kerf-loss silicon for enhanced lithium storage. Journal of Alloys and Compounds. 970, 172429. DOI: https://doi.org/10.1016/j.jallcom.2023.172429

[61] Ji, H., Xu, X., Li, X., et al., 2024. A low-cost Si@C composite for lithium-ion batteries anode materials synthesized via freeze-drying process using kerf loss Si waste. Ionics. 30(5), 2585–2599. DOI: https://doi.org/10.1007/s11581-024-05485-6

[62] Kanaphan, Y., Klamchuen, A., Piyavarakorn, V., et al., 2023. Multilayer Silicene nanosheets derived from a recycling process using end-of-life solar cells producing a silicene/graphite composite for anodes in lithium-ion batteries. ACS Sustainable Chemistry & Engineering. 11(37), 13545–13553. DOI: https://doi.org/10.1021/acssuschemeng.3c02027

[63] Eshraghi, N., Berardo, L., Schrijnemakers, A., et al., 2020. Recovery of nano-structured silicon from end-of-life photovoltaic wafers with value-added applications in lithium-Ion Battery. ACS Sustainable Chemistry & Engineering. 8(15), 5868–5879. DOI: https://doi.org/10.1021/acssuschemeng.9b07434

[64] Qiu, J., Zhu, C., Ge, B., et al., 2025. Manufacturing lithium-ion anodes from silicon recovered from end-of-life solar panels. Applied Surface Science. 682, 161605. DOI: https://doi.org/10.1016/j.apsusc.2024.161605

[65] Granata, G., Pagnanelli, F., Moscardini, E., et al., 2014. Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells. 123, 239–248. DOI: https://doi.org/10.1016/j.solmat.2014.01.012

[66] Wang, O., Chen, Z., Ma, X., 2024. Advancing sustainable end-of-life strategies for photovoltaic modules with silicon reclamation for lithium-ion battery anodes. Green Chemistry. 26(7), 3688–3697. DOI: https://doi.org/10.1039/D4GC00357H

[67] Tao, M., Fthenakis, V., Ebin, B., et al., 2020. Major challenges and opportunities in silicon solar module recycling. Progress in Photovoltaics: Research and Applications. 28(10), 1077–1088. DOI: https://doi.org/10.1002/pip.3316

[68] Huang, S., et al., 2022. Solar Energy Technologies Office Photovoltaics End-of-Life Action Plan. Available from: https://www.energy.gov/sites/default/files/2022-03/Solar-Energy-Technologies-Office-PV-End-of-Life-Action-Plan_0.pdf (2 March 2022).

[69] Latunussa, C.E.L., Ardente, F., Blengini, G.A., Mancini, L., 2016. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells. 156, 101–111. DOI: https://doi.org/10.1016/j.solmat.2016.03.020

[70] Dias, P., Schmidt, L., Monteiro Lunardi, M., et al., 2021. Comprehensive recycling of silicon photovoltaic modules incorporating organic solvent delamination – technical, environmental and economic analyses. Resources, Conservation and Recycling. 165, 105241. DOI: https://doi.org/10.1016/j.resconrec.2020.105241

[71] Kordi, M., Farrokhi, N., Pech-Canul, M.I., Ahmadikhah, A., 2024. Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Science. 31(1), 14–32. DOI: https://doi.org/10.1016/j.rsci.2023.08.005

[72] Sun, L., Gong, K., 2001. Silicon-Based Materials from Rice Husks and Their Applications. Industrial & Engineering Chemistry Research. 40(25), 5861–5877. DOI: https://doi.org/10.1021/ie010284b

[73] Nzereogu, P.U., Omah, A.D., Ezema, F.I., et al., 2023. Silica extraction from rice husk: Comprehensive review and applications. Hybrid Advances. 4, 100111. DOI: https://doi.org/10.1016/j.hybadv.2023.100111

[74] Hossain, S.S., Mathur, L., Roy, P.K., 2018. Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. Journal of Asian Ceramic Societies. 6(4), 299–313. DOI: https://doi.org/10.1080/21870764.2018.1539210

[75] Shen, Y., 2017. Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review. Journal of Agricultural and Food Chemistry. 65(5), 995–1004. DOI: https://doi.org/10.1021/acs.jafc.6b04777

[76] Nazir, A., Le, H.T.T., Min, C.-W., et al., 2020. Coupling of a conductive Ni3 (2,3,6,7,10,11-hexaiminotriphenylene)2 metal–organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. Nanoscale. 12(3), 1629–1642. DOI: https://doi.org/10.1039/C9NR08038D

[77] Bao, Z., Weatherspoon, M.R., Shian, S., et al., 2007. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature. 446, 172–175. DOI: https://doi.org/10.1038/nature05570

[78] Cai, M., Zhao, Z., Qu, J., et al., 2021. Zincothermic reduction of silica to silicon: make the impossible possible. Journal of Materials Chemistry A. 9(37), 21323–21331. DOI: https://doi.org/10.1039/D1TA06073B

[79] Autthawong, T., Yodbunork, C., Yodying, W., et al., 2022. Fast-Charging Anode Materials and Novel Nanocomposite Design of Rice Husk-Derived SiO2 and Sn Nanoparticles Self-Assembled on TiO2 (B) Nanorods for Lithium-Ion Storage Applications. ACS Omega. 7(1), 1357–1367. DOI: https://doi.org/10.1021/acsomega.1c05982

[80] Liu, N., Huo, K., McDowell, M.T., et al., 2013. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports. 3, 1919. DOI: https://doi.org/10.1038/srep01919

[81] Cui, J., Cheng, F., Lin, J., et al., 2017. High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technology. 311, 1–8. DOI: https://doi.org/10.1016/j.powtec.2017.01.083

[82] Zhang, Y.-C., You, Y., Xin, S., et al., 2016. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy. 25, 120–127. DOI: https://doi.org/10.1016/j.nanoen.2016.04.043

[83] Zhang, C., Cai, X., Chen, W., et al., 2018. 3D Porous Silicon/N-Doped Carbon Composite Derived from Bamboo Charcoal as High-Performance Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering. 6(8), 9930–9939. DOI: https://doi.org/10.1021/acssuschemeng.8b01189

[84] Guo, X., Zhang, Y.-Z., Zhang, F., et al., 2019. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. Journal of Materials Chemistry A. 7(26), 15969–15974 (2019). https://doi.org/10.1039/C9TA04062E

[85] Das, S., Pegu, H., Sahu, K.K., et al., 2020. Machine learning in materials modeling—fundamentals and the opportunities in 2D materials. In: Yang, E-H., Datta, D., Ding, J., et al. (eds.). Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures. Elsevier: Amsterdam, Netherlands. pp. 445–468.

[86] Nazir, A., Le, H.T.T., Nguyen, A.-G., et al., 2021. Graphene analogue metal organic framework with superior capacity and rate capability as an anode for lithium ion batteries. Electrochimica Acta. 389, 138750. DOI: https://doi.org/10.1016/j.electacta.2021.138750

[87] Saxena, S., Johnson, M., Dixit, F., et al., 2023.Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact. Renewable and Sustainable Energy Reviews. 178, 113238. DOI: https://doi.org/10.1016/j.rser.2023.113238

[88] Xia, F., Kwon, S., Lee, W.W., et al., 2015. Graphene as an Interfacial Layer for Improving Cycling Performance of Si Nanowires in Lithium-Ion Batteries. Nano Letters. 15(10), 6658–6664. DOI: https://doi.org/10.1021/acs.nanolett.5b02482

[89] Ki, H.-S., Nazir, A., Le, H.T.T., et al., 2024. Nitrogen-doped carbon with antimony nanoparticles as a stable anode for potassium-ion batteries. Journal of Alloys and Compounds. 988, 174161. DOI: https://doi.org/10.1016/j.jallcom.2024.174161

[90] Fang, R., Chen, K., Yin, L., et al., 2019. The Regulating Role of Carbon Nanotubes and Graphene in Lithium‐Ion and Lithium–Sulfur Batteries. Advanced Materials. 31(9), 1800863. DOI: https://doi.org/10.1002/adma.201800863

[91] Zhang, Q., Huang, N., Huang, Z., et al., 2020. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life.Journal of Energy Chemistry. 40, 151–155. DOI: https://doi.org/10.1016/j.jechem.2019.03.006

[92] Nazir, A., Pathak, A., Hamal, D., et al., 2025. Targeted Electrocatalysis for High‐Performance Lithium–Sulfur Batteries. ENERGY & ENVIRONMENTAL MATERIALS. 8(2), e12844. DOI: https://doi.org/10.1002/eem2.12844

[93] Sharma, H., Nazir, A., Kasbe, A., et al., 2023. Computational materials discovery and development for Li and non-Li advanced battery chemistries: Review paper. Journal of Electrochemical Science and Engineering. 13(6), 839–879. DOI: https://doi.org/10.5599/jese.1713

[94] Yuan, W., Zhang, Y., Cheng, L., et al., 2016. The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries. Journal of Materials Chemistry A. 4(23), 8932–8951. DOI: https://doi.org/10.1039/C6TA01546H

[95] Askari, M.B., Salarizadeh, P., Veisi, P., et al., 2023. Transition-Metal Dichalcogenides in Electrochemical Batteries and Solar Cells. Micromachines. 14(3), 691. DOI: https://doi.org/10.3390/mi14030691

[96] Rai, A., 2019. Functionality enhancement of two-dimensional transition metal dichalcogenide-based transistors (PhD Dissertation). Austin, TX: The University of Texas at Austin. pp. 174.

[97] Zhao, L., Wang, Y., Wei, C., et al., 2024. MoS2-based anode materials for lithium-ion batteries: Developments and perspectives. Particuology. 87, 240–270. DOI: https://doi.org/10.1016/j.partic.2023.08.009

[98] Pervez, S.A., Madinehei, M., Moghimian, N., 2022. Graphene in Solid-State Batteries: An Overview. Nanomaterials. 12(13), 2310. DOI: https://doi.org/10.3390/nano12132310

[99] Lim, J.H., Kim, K., Kang, J.H., et al., 2024. Tailored Two‐Dimensional Transition Metal Dichalcogenides for Water Electrolysis: Doping, Defect, Phase, and Heterostructure. ChemElectroChem. 11(10), e202300614 (2024). DOI: https://doi.org/10.1002/celc.202300614

[100] Rojaee, R., Shahbazian-Yassar, R., 2020. Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS Nano. 14(3), 2628–2658. DOI:https://doi.org/10.1021/acsnano.9b08396

[101] Lacey, S.D., Kirsch, D.J., Li, Y., et al., 2018. Extrusion‐Based 3D Printing of 174Hierarchically Porous Advanced Battery Electrodes. Advanced Materials. 30(12), 1705651. DOI: https://doi.org/10.1002/adma.201705651

[102] Fu, K., Yao, Y., Dai, J., Hu, L., 2016. Progress in 3D Printing of Carbon Materials for Energy‐Related Applications. Advanced Materials. 29(9), 1603486. DOI: https://doi.org/10.1002/adma.201603486

[103] Nazir, A., Le, H.T.T., Nguyen, A.-G., et al., 2022. Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chemical Engineering Journal. 450, 138408. DOI: https://doi.org/10.1016/j.cej.2022.138408

[104] Rasheed, T., Anwar, M.T., 2023. Metal organic frameworks as self-sacrificing modalities for potential environmental catalysis and energy applications: Challenges and perspectives. Coordination Chemistry Reviews. 480, 215011. DOI: https://doi.org/10.1016/j.ccr.2022.215011

[105] Moutanassim, L., Aqil, M., Chari, A., et al., 2024. Disordered and defective semi-crystalline Fe-MOF as a high-power and high-energy anode material for lithium-ion batteries. Journal of Energy Storage. 93, 112055. DOI: https://doi.org/10.1016/j.est.2024.112055

[106] Choi, D., Lim, S., Han, D., 2021. Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries. Journal of Energy Chemistry. 53, 396–406. DOI: https://doi.org/10.1016/j.jechem.2020.07.024

[107] Jiang, Y., Zhao, H., Yue, L., et al., 2021. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochemistry Communications. 122, 106881. DOI: https://doi.org/10.1016/j.elecom.2020.106881

[108] Xu, J., Peng, Y., Xing, W., et al., 2022. Metal-organic frameworks marry carbon: Booster for electrochemical energy storage. Journal of Energy Storage. 53, 105104. DOI: https://doi.org/10.1016/j.est.2022.105104

[109] Zhou, J., Reddy, R.C.K., Zhong, A., et al., 2024. Metal–Organic Framework‐Based Materials for Advanced Sodium Storage: Development and Anticipation. Advanced Materials. 36(16), 2312471. DOI: https://doi.org/10.1002/adma.202312471

[110] Baumann, A.E., Burns, D.A., Liu, B., Thoi, V.S., 2019. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry. 2, 86. DOI: https://doi.org/10.1038/s42004-019-0184-6

[111] Lee, J., Choi, I., Kim, E., et al., 2024. Metal-organic frameworks for high-performance cathodes in batteries. iScience. 27(7), 110211. DOI: https://doi.org/10.1016/j.isci.2024.110211

[112] Hou, Y., Zhu, C., Ban, G., et al., 2024. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. International Journal of Nanomedicine. 2024(19), 6295–6317. DOI: https://doi.org/10.2147/IJN.S463144

[113] Wang, S., Huang, F., Zhang, Z., et al., 2021. Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries. Journal of Energy Chemistry. 63, 336–343. DOI: https://doi.org/10.1016/j.jechem.2021.08.037

[114] Shrivastav, V., Mansi, Gupta, B., et al., 2023. Recent advances on surface mounted metal-organic frameworks for energy storage and conversion applications: Trends, challenges, and opportunities. Advances in Colloid and Interface Science. 318, 102967. DOI: https://doi.org/10.1016/j.cis.2023.102967

[115] Xu, G., Nie, P., Dou, H., et al., 2017. Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today. 20(4), 191–209. DOI: https://doi.org/10.1016/j.mattod.2016.10.003

[116] Chui, S.S.-Y., Lo, S.M.-F., Charmant, J.P.H., et al., 1999. A Chemically Functionalizable Nanoporous Material [Cu3 (TMA)2 (H2 O)3 ]n . Science. 283(5405), 1148–1150. DOI: https://doi.org/10.1126/science.283.5405.1148

[117] Li, S., Fan, Z., 2021. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Materials. 34, 107–127. DOI: https://doi.org/10.1016/j.ensm.2020.09.005

[118] Hu, X., Huang, T., Zhang, G., et al., 2023. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coordination Chemistry Reviews. 475, 214879. DOI: https://doi.org/10.1016/j.ccr.2022.214879

[119] Zhang, X., Zhang, S., Tang, Y., et al., 2022. Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering. 230, 109532. DOI: https://doi.org/10.1016/j.compositesb.2021.109532

[120] Zhu, R., Jiang, Y., Sun, B., et al., 2024. MOF-derived Co–Mo bimetallic heterostructures for the selective trapping and conversion of polysulfides in lithium–sulfur batteries. Inorganic Chemistry Frontiers. 11(23), 8290–8299. DOI: https://doi.org/10.1039/D4QI01249F

[121] Mamidi, S., Na, D., Yoon, B., et al., 2024. Safe and stable Li–CO2 battery with metal-organic framework derived cathode composite and solid electrolyte. Journal of Power Sources. 591, 233867. DOI: https://doi.org/10.1016/j.jpowsour.2023.233867

[122] Chen, S., Zhang, Z., Wang, J., Dong, P., 2023. A Bimetallic Organic Framework with Mn in MIL-101(Cr) for Lithium–Sulfur Batteries. Materials. 16(10), 3794. DOI: https://doi.org/10.3390/ma16103794

[123] Chaudhary, M.L., Patel, R., Maley, N., Gupta, R.K., 2024. Rechargeable Li-S Batteries Using Bio-Based Carbon. In: Gupta, R.K. (eds.). ACS Symposium Series. American Chemical Society: Washington, DC., USA. pp. 91–120.

[124] Mandić, V., Bafti, A., Panžić, I., Radovanović-Perić, F., 2024. Bio-Based Aerogels in Energy Storage Systems. Gels. 10(7), 438. DOI: https://doi.org/10.3390/gels10070438

[125] Arkasalerks, P., Patra, A., Patnaik, K.S., et al., 2024. CoFe2 O4 Nanoparticles on Bio-Based Polymer Derived Nitrogen Doped Carbon as Bifunctional Electrocatalyst for Li-Air Battery. Journal of The Electrochemical Society. 171(8), 080538. DOI: https://doi.org/10.1149/1945-7111/ad69c9

[126] Subhani, T., Khademolqorani, S., Banitaba, S.N., et al., 2024. Advancements in Battery Materials: Bio-Based and Mineral Fillers for Next-Generation Solid Polymer Electrolytes. ACS Applied Materials & Interfaces. 16(46), 63089–63108. DOI: https://doi.org/10.1021/acsami.4c11214

[127] Xia, Y., Wang, L., Li, X., et al., 2024. Biomass‐based functional separators for rechargeable batteries. Battery Energy. 3(5), 20240015. DOI: https://doi.org/10.1002/bte2.20240015

[128] Tan, L., Sun, Y., Wei, C., et al., 2021. Design of Robust, Lithiophilic, and Flexible Inorganic‐Polymer Protective Layer by Separator Engineering Enables Dendrite‐Free Lithium Metal Batteries with LiNi0.8 Mn0.1 Co0.1 O2 Cathode. Small. 17(13), 2007717. DOI: https://doi.org/10.1002/smll.202007717

[129] Wang, L., Wang, Y., Yang, J., et al., 2024. An eco-friendly and flame-retardant bio-based fibers separator with fast lithium-ion transport towards high-safety lithium-ion batteries. Journal of Power Sources. 613, 234950. https://doi.org/10.1016/j.jpowsour.2024.234950

[130] Kim, P.J., Pol, V.G., 2018. High Performance Lithium Metal Batteries Enabled by Surface Tailoring of Polypropylene Separator with a Polydopamine/Graphene Layer. Advanced Energy Materials. 8(36), 1802665. DOI: https://doi.org/10.1002/aenm.201802665

[131] Lüken, A., Geiger, M., Steinbeck, et al., 2021. Biocompatible Micron‐Scale Silk Fibers Fabricated by Microfluidic Wet Spinning. Advanced Healthcare Materials. 10(20), 2100898. DOI: https://doi.org/10.1002/adhm.202100898

[132] Rahman, M.M., Mateti, S., Cai, Q., et al., 2019. High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials. 19, 352–359. https://doi.org/10.1016/j.ensm.2019.03.027

[133] Jiao, Z., Hu, J., Ma, M., et al., 2023. Research progress of cellulose-derived carbon-based composites for microwave absorption. Journal of Materials Science: Materials in Electronics. 34, 536. DOI: https://doi.org/10.1007/s10854-022-09811-4

[134] Wu, Y., Gao, X., Nguyen, T.T., et al., 2022. Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review. Polymers. 14(13), 2591. DOI: https://doi.org/10.3390/polym14132591

[135] Ahmed, N., Naeem, M.A., Rehman, A.U., et al., 2021. High Aspect Ratio Thin-Walled Structures in D2 Steel through Wire Electric Discharge Machining (EDM). Micromachines. 12(1), 1. DOI: https://doi.org/10.3390/mi12010001

[136] Shen, Y., Zhang, G., Wang, R., et al., 2022. Waste Lithium Ion Battery Evolves into Heteroatom Doped Carbon as Oxygen Reduction Electrocatalyst for Aqueous Al‐Air Batteries. ChemPlusChem. 87(12)f, e202200328. DOI: https://doi.org/10.1002/cplu.202200328

[137] Murugesan, C., Senthilkumar, B., Barpanda, P., 2022. Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium–Air Batteries. ACS Sustainable Chemistry & Engineering.10(28), 9077–9086. DOI: https://doi.org/10.1021/acssuschemeng.2c01300

[138] Dobryden, I., Montanari, C., Bhattacharjya, D., et al., 2023. Bio-Based Binder Development for Lithium-Ion Batteries. Materials. 16(16), 5553. DOI: https://doi.org/10.3390/ma16165553

[139] K, N., Rout, C.S., 2021. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances. 11(10), 5659–5697. DOI: https://doi.org/10.1039/D0RA07800J

[140] Heeger, A.J., 2001. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. The Journal of Physical Chemistry B. 105(36), 8475–8491. DOI: https://doi.org/10.1021/jp011611w

[141] Mecerreyes, D., Casado, N., Villaluenga, I., Forsyth, M., 2024. Current Trends and Perspectives of Polymers in Batteries. Macromolecules. 57(7), 3013–3025. DOI: https://doi.org/10.1021/acs.macromol.3c01971

[142] Del Olmo, R., Guzmán‐González, G., Santos‐Mendoza, I.O., et al., 2023. Unraveling the Influence of Li+ ‐cation and TFSI− ‐anion in Poly(ionic liquid) Binders for Lithium‐Metal Batteries. Batteries & Supercaps. 6(3), e202200519. DOI: https://doi.org/10.1002/batt.202200519

[143] Abdelhamid, M.E., O’Mullane, A.P., Snook, G.A., 2015. Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Advances. 5(15), 11611–11626. DOI: https://doi.org/10.1039/C4RA15947K

[144] Goujon, N., Aldalur, I., Santiago, A., et al., 2024. Opportunity for lithium-ion conducting polymer electrolytes beyond polyethers. Electrochimica Acta. 480, 143909. DOI: https://doi.org/10.1016/j.electacta.2024.143909

[145] Yang, J., Yang, J., Xu, Y., Li, Y., 2024. Towards Ultrahigh Capacity and High Cycling Stability Lithium-Conducting Polymer Batteries by In Situ Construction of Nanostructured Porous Cathodes. CCS Chemistry. 6(3), 749–760. DOI: https://doi.org/10.31635/ccschem.023.202302773

[146] Hu, X., Zhu, X., Ran, Z., et al., 2024. Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries. Molecules. 29(5), 1164. DOI: https://doi.org/10.3390/molecules29051164

[147] Masood, M., Hussain, S., Sohail, M., et al., 2024. Recent Progress, Challenges, and Opportunities of Conducting Polymers for Energy Storage Applications. ChemistrySelect. 9(23), e202302876. DOI: https://doi.org/10.1002/slct.202302876

Downloads

How to Cite

Kasbe, A., Nazir, A., Ram, S., Sharma, H., & Sahu, K. K. (2025). Curated Topics on Novel Exotic Eco-Friendly Materials for Sustainable Rechargeable Battery Technologies. New Environmentally-Friendly Materials, 3(1), 12–33. https://doi.org/10.55121/nefm.v3i1.236

Issue

Section

Review