Morphology and Functional Behavior of Polyacrylamide Hydrogels Reinforced with Sustainable Montmorillonite Nanoclay

Authors

  • Abayomi I. Adeleke

    Biomolecular Medicine Laboratory, Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

  • Jonathan R. Sanders *

    Biomolecular Medicine Laboratory, Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

  • Pedro E. Arce

    Biomolecular Medicine Laboratory, Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

    Environmental Catalysis Laboratory, Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

DOI:

https://doi.org/10.55121/nefm.v4i2.747

Keywords:

Polyacrylamide (PAAM), Nanocomposite, Bentonite, Sodium Montmorillonite (Na-MMT), Nanoclay, Electrophoresis, Hydrogel

Abstract

Polyacrylamide (PAAM) hydrogels are widely used in electrophoretic separations of proteins, deoxyribonucleic acid (DNA), and cells due to their high resolving power, optical and ultraviolet (UV) transparency, electro-neutrality, and tunable pore structure. Incorporation of nanomaterials into PAAM gels has been proposed as a strategy to further tailor gel microstructure and transport properties. In this study, sodium montmorillonite (Na-MMT) nanoplatelets, a naturally occurring nanoclay with an average diameter of ~400 nm and an aspect ratio of ~150, were incorporated into PAAM gels to form nanocomposite hydrogels, and their effects on protein mobility were systematically investigated. Native polyacrylamide gel electrophoresis revealed that Na-MMT incorporation consistently reduced protein mobility relative to pure PAAM gels. To elucidate the origin of this behavior, rheological measurements and scanning electron microscopy (SEM) were employed. Rheological analysis showed that pure PAAM gels exhibited greater elasticity than nanocomposite gels, attributed to disruption of the polymer network by nanoplatelet incorporation and extended sonication during sample preparation. SEM image analysis further revealed the absence of well-defined matrix cells in the nanocomposite gels. Instead, osmotic-pressure-driven nanoparticle aggregation produced dense, poorly interconnected nanopores that impeded effective protein transport. These structural changes led to reduced electrophoretic mobility and separation efficiency. Overall, the findings demonstrate that PAAM–bentonite nanocomposite hydrogels exhibit inherent microstructural limitations for electrophoretic applications, emphasizing the need for precise control of nanoparticle dispersion and gel architecture in the design of nanocomposite separation media.

References

[1] Dejene, B.K., 2024. Advancing Natural Fiber-Reinforced Composites Through Incorporating ZnO Nanofillers in the Polymeric Matrix: A Review. Journal of Natural Fibers. 21(1), 2356015. DOI: https://doi.org/10.1080/15440478.2024.2356015

[2] Hajba, L., Jeong, S., Chung, D.S., et al., 2023. Capillary Gel Electrophoresis of Proteins: Historical Overview and Recent Advances. TrAC Trends in Analytical Chemistry. 162, 117024. DOI: https://doi.org/10.1016/j.trac.2023.117024

[3] Khan, I., Khan, I., Saeed, K., et al., 2023. Polymer Nanocomposites: An Overview. In: Ali, N., Bilal, M., Khan, A., et al. (Eds.). Smart Polymer Nanocomposites: Design, Synthesis, Functionalization, Properties, and Applications. pp. 167–184. DOI: https://doi.org/10.1016/B978-0-323-91611-0.00017-7

[4] Chandran, A.J., Rangappa, S.M., Suyambulingam, I., et al., 2024. Micro/Nano Fillers for Value-Added Polymer Composites: A Comprehensive Review. Journal of Vinyl and Additive Technology. 30(5), 1083–1123. DOI: https://doi.org/10.1002/vnl.22106

[5] Guo, D., Xie, G., Luo, J., 2014. Mechanical Properties of Nanoparticles: Basics and Applications. Journal of Physics D: Applied Physics. 47(1), 013001. DOI: https://doi.org/10.1088/0022-3727/47/1/013001

[6] Mouchati, A., Yagoubi, N., 2023. Mechanical Performance and Cytotoxicity of an Alginate/Polyacrylamide Bipolymer Network Developed for Medical Applications. Materials. 16(5), 1789. DOI: https://doi.org/10.3390/ma16051789

[7] Razmjooee, K., Ahmady, A.R., Arabzadeh, N., et al., 2023. Synthesis of Gelatin/Polyacrylamide/Carboxymethyl Chitosan Triple-Network Hydrogels and Evaluation of Their Properties for Potential Biomedical Applications. Materials Science and Engineering: B. 295, 116597. DOI: https://doi.org/10.1016/j.mseb.2023.116597

[8] Awasthi, S., Gaur, J.K., Bobji, M.S., et al., 2022. Nanoparticle-Reinforced Polyacrylamide Hydrogel Composites for Clinical Applications: A Review. Journal of Materials Science. 57(17), 8041–8063. DOI: https://doi.org/10.1007/s10853-022-07146-3

[9] Packirisamy, V., Pandurangan, P., 2023. Polyacrylamide Gel Electrophoresis: A Versatile Tool for the Separation of Nanoclusters. BioTechniques. 74(1), 51–62. DOI: https://doi.org/10.2144/btn-2022-0086

[10] Sule, R., Rivera, G., Gomes, A.V., 2022. Western Blotting (Immunoblotting): History, Theory, Uses, Protocol and Problems. BioTechniques. 75(3), 99–114. Available from: https://www.tandfonline.com/doi/full/10.2144/btn-2022-0034

[11] Arakawa, T., Nakagawa, M., Tomioka, Y., et al., 2022. Gel-Electrophoresis Based Method for Biomolecular Interaction. Methods in Cell Biology. 169, 67–95. DOI: https://doi.org/10.1016/bs.mcb.2021.12.030

[12] Takemori, A., Kaulich, P.T., Cassidy, L., et al., 2022. Size-Based Proteome Fractionation through Polyacrylamide Gel Electrophoresis Combined With LC–FAIMS–MS for In-Depth Top-Down Proteomics. Analytical Chemistry. 94(37), 12815–12821. Available from: https://pubs.acs.org/doi/abs/10.1021/acs.analchem.2c02777

[13] Wang, J., Xu, Y., Li, S. et al., 2025. Physical Entanglement Improves the Anti-adsorption and Super-Lubricity Properties of Polyacrylamide-Based Hydrogels for Biomedical Applications. Advanced Composites and Hybrid Materials. 8(2), 208. DOI: https://doi.org/10.1007/s42114-025-01267-4

[14] Gelfi, C., Righetti, P.G., 1981. Polymerization Kinetics of Polyacrylamide Gels I. Effect of Different Cross-Linkers. Electrophoresis. 2(4), 213–219. DOI: https://doi.org/10.1002/elps.1150020404

[15] Li, C., Arakawa, T., 2019. Application of Native Polyacrylamide Gel Electrophoresis for Protein Analysis: Bovine Serum Albumin as a Model Protein. International Journal of Biological Macromolecules. 125, 566–571. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.090

[16] Sajjadi, S.H., Ahmadzadeh, H., Goharshadi, E.K., 2020. Enhanced Electrophoretic Separation of Proteins by Tethered SiO₂ Nanoparticles in an SDS-Polyacrylamide Gel Network. The Analyst. 145(2), 415–423. DOI: https://doi.org/10.1039/C9AN01759C

[17] Sojka, R.E., Bjorneberg, D.L., Entry, J.A., et al., 2007. Polyacrylamide in Agriculture and Environmental Land Management. Advances in Agronomy. 92, 75–162. DOI: https://doi.org/10.1016/S0065-2113(04)92002-0

[18] Li, J., Zhou, W., Qi, Z., et al., 2019. Morphology and Rheological Properties of Polyacrylamide/Bentonite Organic Crosslinking Composite Gel. Energies. 12(19), 3648. DOI: https://doi.org/10.3390/en12193648

[19] Haris, A., Sanders, J.R., Arce, P.E., 2020. Influence of Pre-Electrophoresis on Protein Separations in Polyacrylamide Gels. Journal of Applied Polymer Science. 137(34), 48994. DOI: https://doi.org/10.1002/app.48994

[20] Green, M.R., Sambrook, J., 2020. Polyacrylamide Gel Electrophoresis. Cold Spring Harbor Protocols. 2020(12), pdb.prot100412. DOI: https://doi.org/10.1101/pdb.prot100412

[21] Kügler, M., Jänsch, L., Kruft, V., et al., 1997. Analysis of the Chloroplast Protein Complexes by Blue-Native Polyacrylamide Gel Electrophoresis. Photosynthesis Research. 53(1), 35–44.

[22] Huang, G., Zhang, Y., Ouyang, J., et al., 2006. Application of Carbon Nanotube-Matrix Assistant Native Polyacrylamide Gel Electrophoresis to the Separation of Apolipoprotein A-I and Complement C3. Analytica Chimica Acta. 557(1–2), 137–145. DOI: https://doi.org/10.1016/j.aca.2005.10.050

[23] Cai, J., Zhao, H., Liu, H., et al., 2024. Magnetic Field Vertically Aligned Co-MOF-74 Derivatives/Polyacrylamide Hydrogels With Bifunction of Excellent Electromagnetic Wave Absorption and Efficient Thermal Conduction Performances. Composites Part A: Applied Science and Manufacturing. 176, 107832. DOI: https://doi.org/10.1016/j.compositesa.2023.107832

[24] Wang, K., Wen, J., Zhang, S., et al., 2024. Magnetic Polyacrylamide-Based Gel with Tunable Structure and Properties and Its Significance in Conformance Control of Oil Reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 702, 135093. DOI: https://doi.org/10.1016/j.colsurfa.2024.135093

[25] Thompson, J.W., Stretz, H.A., Arce, P.E., et al., 2012. Effect of Magnetization on the Gel Structure and Protein Electrophoresis in Polyacrylamide Hydrogel Nanocomposites. Journal of Applied Polymer Science. 126(5), 1600–1612. DOI: https://doi.org/10.1002/app.36660

[26] Lima, B.L.B., Araújo, M.J.F., Souza, E.A., et al., 2025. Hydrogels Based on Polyacrylamide and Bentonite for Trapped Annular Pressure Mitigation. Journal of Molecular Liquids. 434, 127989. DOI: https://doi.org/10.1016/j.molliq.2025.127989

[27] Oppong, S.A., Mandal, M., Ojha, K., 2023. Synthesis and Optimization of Bentonite Enforced Poly(Acrylamide/Co-Sodium Dodecylbenzensulfonate) Preformed Particle Gels for Conformance Control in High Salinity Reservoirs. Petroleum Science and Technology. 41(5), 546–563. DOI: https://doi.org/10.1080/10916466.2022.2063333

[28] Siryk, O., Goncharuk, O., Samchenko, Y., et al., 2024. Comparison of Structural, Water-Retaining and Sorption Properties of Acrylamide-Based Hydrogels Cross-Linked by Physical and Chemical Methods. ChemPhysChem. 25(4), e202300812. Available from: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cphc.202300812

[29] Ploehn, H.J., Liu, C., 2006. Quantitative Analysis of Montmorillonite Platelet Size by Atomic Force Microscopy. Industrial & Engineering Chemistry Research. 45(21), 7025–7034. DOI: https://doi.org/10.1021/ie051392r

[30] Noskov, A.V., Alekseeva, O.V., Shibaeva, V.D., et al., 2020. Synthesis, Structure and Thermal Properties of Montmorillonite/Ionic Liquid Ionogels. RSC Advances. 10(57), 34885–34894. DOI: https://doi.org/10.1039/D0RA06443B

[31] Bhatt, M., Rai, V., Kumar, A., et al., 2022. SDS-PAGE and Western Blotting: Basic Principles and Protocol. In: Deb, R., Yadav, A.K., Rajkhowa, S., et al. (Eds.). Protocols for the Diagnosis of Pig Viral Diseases. Springer: New York, NY, USA. pp. 313–328. DOI: https://doi.org/10.1007/978-1-0716-2043-4_23

[32] Sugiyama, Y., Uezato, Y., 2022. Analysis of Protein Kinases by Phos-Tag SDS-PAGE. Journal of Proteomics. 255, 104485. DOI: https://doi.org/10.1016/j.jprot.2022.104485

[33] Jumrah, E., Sudding, Luqman, A.A., et al., 2024. Utilization of SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel) Electrophoresis in Protein Purification. Hayyan Journal. 1(3), 7–12.

[34] Kumar, V., Kumar, N., Ghosh, U., et al., 2024. Predicting the Electrophoretic Mobility of Charged Particles in an Aqueous Medium. Langmuir. 40(31), 16521–16529. DOI: https://doi.org/10.1021/acs.langmuir.4c01939

[35] Tian, J., Barrat, J.-L., Kob, W., 2025. Influence of Preparation and Architecture on the Elastic Modulus of Polymer Networks. arXiv preprint. arXiv:2506.09670. DOI: https://doi.org/10.48550/arXiv.2506.09670

[36] Sakumichi, N., Yoshikawa, Y., Sakai, T., 2021. Linear Elasticity of Polymer Gels in Terms of Negative Energy Elasticity. Polymer Journal. 53(12), 1293–1303. DOI: https://doi.org/10.1038/s41428-021-00529-4

[37] Liu, X., Wu, J., Qiao, K., et al., 2022. Topoarchitected Polymer Networks Expand the Space of Material Properties. Nature Communications. 13(1), 1622. DOI: https://doi.org/10.1038/s41467-022-29245-0

[38] Hu, L., Han, Y., Rong, C., et al., 2022. Interfacial Engineering With Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. ACS Applied Materials & Interfaces. 14(8), 11016–11027. DOI: https://doi.org/10.1021/acsami.1c24817

[39] Keledi, G., Hári, J., Pukánszky, B., 2012. Polymer Nanocomposites: Structure, Interaction, and Functionality. Nanoscale. 4(6), 1919–1938. DOI: https://doi.org/10.1039/C2NR11442A

[40] Yoon, S.J., Lee, S.J., Jeon, I.-Y., 2024. High-Performance Graphitic Nanoplatelets & High-Density Polyethylene Nanocomposites. Journal of Applied Polymer Science. 141(36), e55914. DOI: https://doi.org/10.1002/app.55914

[41] Suriano, R., Griffini, G., Chiari, M., et al., 2014. Rheological and Mechanical Behavior of Polyacrylamide Hydrogels Chemically Crosslinked With Allyl Agarose for Two-Dimensional Gel Electrophoresis. Journal of the Mechanical Behavior of Biomedical Materials. 30, 339–346. DOI: https://doi.org/10.1016/j.jmbbm.2013.12.006

[42] Lerman, L.S., Frisch, H.L., 1982. Why Does the Electrophoretic Mobility of DNA in Gels Vary with the Length of the Molecule? Biopolymers. 21(5), 995–997. DOI: https://doi.org/10.1002/bip.360210511

[43] Lumpkin, O.J., Zimm, B.H., 1982. Mobility of DNA in Gel Electrophoresis. Biopolymers. 21(11), 2315–2316. DOI: https://doi.org/10.1002/bip.360211116

[44] Rahmannezhad, J., Lee, H.S., 2024. Reptation Theory-Similar Deep Learning Model for Polymer Characterization from Rheological Measurement. Korea-Australia Rheology Journal. 36, 145–153. Available from: https://link.springer.com/article/10.1007/s13367-024-00091-4

[45] Mishra, G., Bigman, L.S., Levy, Y., 2020. ssDNA Diffuses Along Replication Protein A via a Reptation Mechanism. Nucleic Acids Research. 48(4), 1701–1711. Available from: https://academic.oup.com/nar/article/48/4/1701/5699673

[46] Thompson, J.W., Stretz, H.A., Arce, P.E., 2010. Preliminary Observations of the Role of Material Morphology on Protein-Electrophoretic Transport in Gold Nanocomposite Hydrogels. Industrial & Engineering Chemistry Research. 49(23), 12104–12110. DOI: https://doi.org/10.1021/ie100291b

[47] Asakura, S., Oosawa, F., 1954. On Interaction between Two Bodies Immersed in a Solution of Macromolecules. The Journal of Chemical Physics. 22(7), 1255–1256. DOI: https://doi.org/10.1063/1.1740347

[48] Bokobza, L., 2023. Elastomer Nanocomposites: Effect of Filler–Matrix and Filler–Filler Interactions. Polymers. 15(13), 2900. DOI: https://doi.org/10.3390/polym15132900

[49] Baek, K., Park, H., Shin, H., et al., 2021. Multiscale Modeling to Evaluate Combined Effect of Covalent Grafting and Clustering of Silica Nanoparticles on Mechanical Behaviors of Polyimide Matrix Composites. Composites Science and Technology. 206, 108673. DOI: https://doi.org/10.1016/j.compscitech.2021.108673

[50] Karim, M.R., Harun-Ur-Rashid, M., Imran, A.B., 2023. Effect of Sizes of Vinyl Modified Narrow-Dispersed Silica Cross-Linker on the Mechanical Properties of Acrylamide Based Hydrogel. Scientific Reports. 13(1), 5089. DOI: https://doi.org/10.1038/s41598-023-32185-4

Downloads

How to Cite

I. Adeleke, A., R. Sanders, J., & Arce, P. E. (2025). Morphology and Functional Behavior of Polyacrylamide Hydrogels Reinforced with Sustainable Montmorillonite Nanoclay. New Environmentally-Friendly Materials, 4(2), 43–54. https://doi.org/10.55121/nefm.v4i2.747