Effects of Bentonite Nanoplatelets and Low Magnetic Field Intensity on the Pore Structure of Polyacrylamide Gel

Authors

  • Abayomi I Adeleke

    Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

  • Mustafa M. Rajabali

    Physics Department, Tennessee Technological University, Cookeville, TN 38505, USA

    Ion Beam Laboratory, Tennessee Technological University, Cookeville, TN 38505, USA

  • Jonathan R Sanders *

    Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

    Biomolecular Medicine Laboratory, Cookeville, TN 38505, USA

  • Pedro E. Arce

    Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA

    Environmental Catalysis Laboratory, Cookeville, TN 38505, USA

DOI:

https://doi.org/10.55121/nefm.v4i2.782

Keywords:

Polymer, Nanocomposite, Bentonite, Sodium Montmorillonite (MMT), Permanent Magnet

Abstract

This study investigates the effects of low-intensity magnetic fields and nanoplatelet incorporation on the structure and transport behavior of polyacrylamide (PAAM) gel matrices. Gel nanocomposites containing environmentally benign montmorillonite (MMT) nanoplatelets were prepared under controlled magnetic field orientations during gelation and compared with pure PAAM reference gels. The resulting materials were characterized using polyacrylamide gel electrophoresis (PAGE), scanning electron microscopy (SEM), and MATLAB®-based quantitative image analysis to evaluate changes in pore morphology and connectivity. Relative to pure, non-magnetized PAAM gels, magnetically treated PAAM–MMT nanocomposites exhibited more uniform microstructures with reduced characteristic pore sizes. In comparison to nanocomposites prepared without magnetic-field exposure, magnetically treated gels displayed distinct shifts in pore size distributions and corresponding changes in protein mobility, indicating that low-intensity magnetic fields can modify gel microstructure through nanoplatelet redistribution or partial alignment. Orientation-dependent effects were observed, with magnetic fields applied perpendicular to the direction of protein migration producing more pronounced microstructural and transport changes than parallel orientations. The magnitude of these effects increased with nanoplatelet concentration, demonstrating a coupled dependence on filler loading and magnetic field orientation. Overall, the results establish a relationship between nanoplatelet concentration, magnetic field orientation, gel microstructure, and transport behavior in PAAM gels, demonstrating a materials-centric, low-field strategy for tuning polymer gel structure without chemical modification.

References

[1] Kojima, Y., Usuki, A., Kawasumi, M., et al., 1993. Synthesis of Nylon 6–Clay Hybrid by Montmorillonite Intercalated with ϵ-Caprolactam. Journal of Polymer Science Part A: Polymer Chemistry. 31(4), 983–986. DOI: https://doi.org/10.1002/pola.1993.080310418

[2] Usuki, A., Kawasumi, M., Kojima, Y., et al., 1993. Swelling Behavior of Montmorillonite Cation Exchanged for ω-Amino Acids by ϵ-Caprolactam. Journal of Materials Research. 8(5), 1174–1178. DOI: https://doi.org/10.1557/JMR.1993.1174

[3] Usuki, A., Kojima, Y., Kawasumi, M., et al., 1993. Synthesis of Nylon 6–Clay Hybrid. Journal of Materials Research. 8(5), 1179–1184. DOI: https://doi.org/10.1557/JMR.1993.1179

[4] Gilman, J.W., 1999. Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites. Applied Clay Science. 15(1–2), 31–49. DOI: https://doi.org/10.1016/S0169-1317(99)00019-8

[5] Gilman, J.W., Jackson, C.L., Morgan, A.B., et al., 2000. Flammability Properties of Polymer–Layered-Silicate Nanocomposites: Polypropylene and Polystyrene Nanocomposites. Chemistry of Materials. 12(7), 1866–1873. DOI: https://doi.org/10.1021/cm0001760

[6] Morgan, A.B., Gilman, J.W., 2003. Characterization of Polymer-Layered Silicate Nanocomposites by Transmission Electron Microscopy and X-Ray Diffraction: A Comparative Study. Journal of Applied Polymer Science. 87(8), 1329–1338. DOI: https://doi.org/10.1002/app.11884

[7] Haraguchi, K., 2007. Nanocomposite Hydrogels. Current Opinion in Solid State and Materials Science. 11(3–4), 47–54. DOI: https://doi.org/10.1016/j.cossms.2008.05.001

[8] Haraguchi, K., 2011. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/Inorganic Network Structures. Polymer Journal. 43(3), 223–241. DOI: https://doi.org/10.1038/pj.2010.141

[9] Haraguchi, K., Li, H.-J., 2006. Mechanical Properties and Structure of Polymer–Clay Nanocomposite Gels with High Clay Content. Macromolecules. 39(5), 1898–1905. DOI: https://doi.org/10.1021/ma052468y

[10] Haraguchi, K., Li, H.-J., Matsuda, K., et al., 2005. Mechanism of Forming Organic/Inorganic Network Structures during In-Situ Free-Radical Polymerization in PNIPA–Clay Nanocomposite Hydrogels. Macromolecules. 38(8), 3482–3490. DOI: https://doi.org/10.1021/ma047431c

[11] Huang, Z., Wan, T., Chen, Y., et al., 2025. Magnetic Laponite/P(AM–AA) Composite Hydrogels with High Gel Strength and Thermal Stability for Efficient Removal of Heavy Metals. Polymer Bulletin. 82(12), 6669–6689. DOI: https://doi.org/10.1007/s00289-025-05785-5

[12] Gopinadhan, M., Choo, Y., Kawabata, K., et al., 2017. Controlling Orientational Order in Block Copolymers Using Low-Intensity Magnetic Fields. Proceedings of the National Academy of Sciences. 114(45), E9437–E9444. DOI: https://doi.org/10.1073/pnas.1712631114

[13] Tousley, M.E., Feng, X., Elimelech, M., et al., 2014. Aligned Nanostructured Polymers by Magnetic-Field-Directed Self-Assembly of a Polymerizable Lyotropic Mesophase. ACS Applied Materials & Interfaces. 6(22), 19710–19717. DOI: https://doi.org/10.1021/am504730b

[14] Feng, X., Tousley, M.E., Cowan, M.G., et al., 2014. Scalable Fabrication of Polymer Membranes with Vertically Aligned 1 nm Pores by Magnetic-Field-Directed Self-Assembly. ACS Nano. 8(12), 11977–11986. DOI: https://doi.org/10.1021/nn505037b

[15] Kan, W., Nie, Y., Duan, Q., et al., 2025. The Effect of Magnetic Field-Induced Orientation of Fillers on the Performance of Starch Composite Films. International Journal of Biological Macromolecules. 306, 141391. DOI: https://doi.org/10.1016/j.ijbiomac.2025.141391

[16] Zheng, C., Wang, Y., Wang, P., et al., 2025. Highly dependent of reinforcement efficiency on the magnetic field-induced planar orientation of 2D graphene nanofiller in cement paste matrix. Construction and Building Materials. 494, 143346. DOI: https://doi.org/10.1016/j.conbuildmat.2025.143346

[17] Majewski, P.W., Osuji, C.O., 2010. Controlled Alignment of Lamellar Lyotropic Mesophases by Rotation in a Magnetic Field. Langmuir. 26(11), 8737–8742. DOI: https://doi.org/10.1021/la100285j

[18] Kim, D., Ndaya, D., Bosire, R., et al., 2022. Dynamic Magnetic Field Alignment and Polarized Emission of Semiconductor Nanoplatelets in a Liquid Crystal Polymer. Nature Communications. 13(1), 2507. DOI: https://doi.org/10.1038/s41467-022-30200-2

[19] Yan, K., Zhou, K., Guo, X., et al., 2024. Imparting Anisotropic Performance to Soft Materials via a Magnetically Driven Programmable Templating-Deposition Strategy. Surface and Coatings Technology. 477, 130347. DOI: https://doi.org/10.1016/j.surfcoat.2023.130347

[20] Liu, Y., Lin, G., Medina-Sánchez, M., et al., 2023. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS Nano. 17(10), 8899–8917. DOI: https://doi.org/10.1021/acsnano.3c01609

[21] Shi, D., He, P., Zhao, P., et al., 2011. Magnetic Alignment of Ni/Co-Coated Carbon Nanotubes in Polystyrene Composites. Composites Part B: Engineering. 42(6), 1532–1538. DOI: https://doi.org/10.1016/j.compositesb.2011.04.014

[22] Chung, S.-H., Kim, J.T., Kim, J., et al., 2024. Low Magnetic Field Alignment of Carbon Fibers in a Polymer Matrix for High-Performance Thermal Interface Materials. Journal of Alloys and Compounds. 1009, 176888. DOI: https://doi.org/10.1016/j.jallcom.2024.176888

[23] Fournial, A.-G., Zhu, Y., Molinier, V., et al., 2007. Aqueous Phase Behavior of Tetraethylene Glycol Decanoyl Ester (C9COE4) and Ether (C10E4) Investigated by Nuclear Magnetic Resonance Spectroscopic Techniques. Langmuir. 23(23), 11443–11450. DOI: https://doi.org/10.1021/la700993s

[24] Gabinet, U.R., Lee, C., Kim, N.K., et al., 2022. Magnetic Field Alignment and Optical Anisotropy of MoS₂ Nanosheets Dispersed in a Liquid Crystal Polymer. The Journal of Physical Chemistry Letters. 13(34), 7994–8001. DOI: https://doi.org/10.1021/acs.jpclett.2c01819

[25] Majewski, P.W., Gopinadhan, M., Jang, W.-S., et al., 2010. Anisotropic Ionic Conductivity in Block Copolymer Membranes by Magnetic Field Alignment. Journal of the American Chemical Society. 132(49), 17516–17522. DOI: https://doi.org/10.1021/ja107309p

[26] Majewski, P.W., Gopinadhan, M., Osuji, C.O., 2012. Magnetic Field Alignment of Block Copolymers and Polymer Nanocomposites: Scalable Microstructure Control in Functional Soft Materials. Journal of Polymer Science Part B: Polymer Physics. 50(1), 2–8. DOI: https://doi.org/10.1002/polb.22382

[27] Ploehn, H.J., Liu, C., 2006. Quantitative Analysis of Montmorillonite Platelet Size by Atomic Force Microscopy. Industrial & Engineering Chemistry Research. 45(21), 7025–7034. DOI: https://doi.org/10.1021/ie051392r

[28] Thompson, J.W., Stretz, H.A., Arce, P.E., et al., 2012. Effect of Magnetization on the Gel Structure and Protein Electrophoresis in Polyacrylamide Hydrogel Nanocomposites. Journal of Applied Polymer Science. 126(5), 1600–1612. DOI: https://doi.org/10.1002/app.36660

[29] Gopinadhan, M., Choo, Y., Mahajan, L.H., et al., 2017. Directing Block Copolymer Self-Assembly with Permanent Magnets: Photopatterning Microdomain Alignment and Generating Oriented Nanopores. Molecular Systems Design & Engineering. 2(5), 549–559. DOI: https://doi.org/10.1039/C7ME00070G

[30] Arndt, C., Koristka, S., Feldmann, A., et al., 2019. Native Polyacrylamide Gels. In: Kurien, B., Scofield, R. (Eds.). Electrophoretic Separation of Proteins. Methods in Molecular Biology, vol 1855. pp. 87–91. Humana Press: New York, NY, USA. DOI: https://doi.org/10.1007/978-1-4939-8793-1_8

[31] Arndt, C., Koristka, S., Bartsch, H., et al., 2012. Native Polyacrylamide Gels. In: Kurien, B., Scofield, R. (Eds.). Protein Electrophoresis. pp. 49–53. Humana Press: Totowa, NJ, USA. DOI: https://doi.org/10.1007/978-1-61779-821-4_5

[32] Haris, A., Sanders, J.R., Arce, P.E., 2020. Influence of Pre-Electrophoresis on Protein Separations in Polyacrylamide Gels. Journal of Applied Polymer Science. 137(34), 48994. DOI: https://doi.org/10.1002/app.48994

[33] Green, M.R., Sambrook, J., 2020. Polyacrylamide Gel Electrophoresis. Cold Spring Harbor Protocols. 2020(12), pdb.prot100412. DOI: https://doi.org/10.1101/pdb.prot100412

[34] Yasutake, Y., Maehashi, K., Matano, M., et al., 2019. Structure of Ovalbumin from Emu (Dromaius novaehollandiae). RCSB PDB: 6KGA. Available from: https://www.rcsb.org/structure/6KGA (cited 12 June 2024).

[35] Mitsuhashi, S., Mizushima, T., Yamashita, E., et al., 2000. X-Ray Structure of a Beta-Carbonic Anhydrase from the Red Alga, Porphyridium purpureum R-1. RCSB PDB: 1DDZ. Available from: https://www.rcsb.org/structure/1ddz (cited 12 June 2024).

[36] Cai, J., Zhao, H., Liu, H., et al., 2024. Magnetic Field Vertically Aligned Co-MOF-74 Derivatives/Polyacrylamide Hydrogels with Bifunctional Electromagnetic Wave Absorption and Thermal Conduction Performances. Composites Part A: Applied Science and Manufacturing. 176, 107832. DOI: https://doi.org/10.1016/j.compositesa.2023.107832

[37] Simeonov, M., Apostolov, A.A., Georgieva, M., et al., 2023. Poly(acrylic acid-co-acrylamide)/Polyacrylamide pIPNs/Magnetite Composite Hydrogels: Synthesis and Characterization. Gels. 9(5), 365. DOI: https://doi.org/10.3390/gels9050365

[38] Aalaie, J., Vasheghani-Farahani, E., Rahmatpour, A., et al., 2008. Effect of Montmorillonite on Gelation and Swelling Behavior of Sulfonated Polyacrylamide Nanocomposite Hydrogels in Electrolyte Solutions. European Polymer Journal. 44(7), 2024–2031. DOI: https://doi.org/10.1016/j.eurpolymj.2008.04.031

[39] Liu, M., Ishida, Y., Ebina, Y., et al., 2015. An Isotropic Hydrogel with Embedded Electrostatic Repulsion among Cofacially Oriented 2D Electrolytes. Nature. 517(7532), 68–72. DOI: https://doi.org/10.1038/nature14060

[40] Lu, X., Feng, X., Werber, J.R., et al., 2017. Enhanced Antibacterial Activity through the Controlled Alignment of Graphene Oxide Nanosheets. Proceedings of the National Academy of Sciences. 114(46), E9793–E9801. DOI: https://doi.org/10.1073/pnas.1710996114

[41] Wu, L., Ohtani, M., Takata, M., et al., 2014. Magnetically Induced Anisotropic Orientation of Graphene Oxide Locked by in Situ Hydrogelation. ACS Nano. 8(5), 4640–4649. DOI: https://doi.org/10.1021/nn5003908

[42] Gao, D., Heimann, R.B., Williams, M.C., et al., 1999. Rheological Properties of Poly(acrylamide)–Bentonite Composite Hydrogels. Journal of Materials Science. 34, 1543–1552. DOI: https://doi.org/10.1023/A:1004516330255

[43] Santiago, F., Mucientes, A.E., Osorio, M., et al., 2007. Preparation of Composites and Nanocomposites Based on Bentonite and Poly(sodium acrylate): Effect of Bentonite Content on Swelling Behaviour. European Polymer Journal. 43(1), 1–9. DOI: https://doi.org/10.1016/j.eurpolymj.2006.07.023

[44] Tiwari, A., Panda, S.K., 2023. Magnetic Field-Induced Alignment of Graphene Nanoplatelets in Epoxy Resin to Develop Model Nanocomposite. Journal of Composite Materials. 57(15), 2451–2466. DOI: https://doi.org/10.1177/00219983231172063

[45] Wang, Z., Gao, C., Zhang, S., et al., 2022. Magnetic Field-Induced Alignment of Nickel-Coated Copper Nanowires in Epoxy Composites for High Thermal Conductivity with Low Filler Loading. Composites Science and Technology. 218, 109137. DOI: https://doi.org/10.1016/j.compscitech.2021.109137

[46] Waugaman, S.D., Dementyev, M., Abbasi GharehTapeh, E., et al., 2025. Nanoparticle Loading in Swollen Polymer Gels: An Unexpected Thermodynamic Twist. Nano Letters. 25(8), 3323–3329. DOI: https://doi.org/10.1021/acs.nanolett.4c06501

[47] Ganguly, S., Das, P., Srinivasan, S., et al., 2024. Superparamagnetic Amine-Functionalized Maghemite Nanoparticles as a Thixotropy Promoter for Hydrogels and Magnetic Field-Driven Diffusion-Controlled Drug Release. ACS Applied Nano Materials. 7(5), 5272–5286. DOI: https://doi.org/10.1021/acsanm.3c05543

[48] Liu, Z., Qiao, J., Liu, C., et al., 2024. High-Energy Density Pure Polyvinylidene Difluoride with Magnetic Field Modulation of Free-Volume Pore Size and Other Microstructures. Polymers. 16(21), 2979. DOI: https://doi.org/10.3390/polym16212979

[49] Parameswarreddy, G., Hosoki, M., Suematsu, H., et al., 2025. Magnetic Field-Induced Alignment of Graphene Nanoplatelets in Carbon Fiber–Silicone Rubber Composites for Superior EMI Shielding and Thermal Conductivity. IEEE Transactions on Magnetics. 61(7), 1–10. DOI: https://doi.org/10.1109/TMAG.2025.3563124

[50] Choudhary, A., Sharma, A., Singh, A., et al., 2024. Strategy and Advancement in Hybrid Hydrogel and Their Applications: Recent Progress and Trends. Advanced Engineering Materials. 26(21), 2400944. DOI: https://doi.org/10.1002/adem.202400944

[51] Quazi, M.Z., Quazi, A.S., Song, Y., et al., 2025. Functional Hydrogels: A Promising Platform for Biomedical and Environmental Applications. International Journal of Molecular Sciences. 26(18), 9066. DOI: https://doi.org/10.3390/ijms26189066

[52] Nicolae-Maranciuc, A., Chicea, D., 2025. Polymeric Systems as Hydrogels and Membranes Containing Silver Nanoparticles for Biomedical and Food Applications: Recent Approaches and Perspectives. Gels. 11(9), 699. DOI: https://doi.org/10.3390/gels11090699

Downloads

How to Cite

I Adeleke, A., M. Rajabali, M., R Sanders, J., & E. Arce, P. (2025). Effects of Bentonite Nanoplatelets and Low Magnetic Field Intensity on the Pore Structure of Polyacrylamide Gel. New Environmentally-Friendly Materials, 4(2), 55–67. https://doi.org/10.55121/nefm.v4i2.782