Nanotechnology in Aquaculture: Food Safety, Human Health Risks, and Regulatory Challenges

Authors

  • Ntombikayise Mahaye *

    Agricultural Research Council-Tropical and Subtropical Crops, Nelspruit 1200, South Africa

DOI:

https://doi.org/10.55121/fds.v2i2.661

Keywords:

Nanotechnology, Aquaculture, Food Safety, Human Health, Bioaccumulation, Regulatory Frameworks

Abstract

The integration of nanotechnology into aquaculture presents transformative opportunities to enhance feed efficiency, disease control, and sustainability. However, the potential for engineered nanoparticles (ENPs) to accumulate in edible tissues raises significant food safety and human health concerns. Recent analyses using single-particle ICPMS have detected ENPs in seafood at trace but measurable concentrations. For example, titanium dioxide ENPs were identified in tuna and clam samples at levels ranging from 0.5 to 2.5 mg/kg, corresponding to estimated dietary exposures of 0.9–3.2 µg/kg body weight/day. Similarly, experimental exposure studies show that silver ENPs can accumulate in edible fish muscle at concentrations ranging from 10 to 80 µg/kg, depending on particle size and exposure duration. These findings underscore the need for strengthened analytical monitoring and risk assessment frameworks to evaluate potential human health implications. This review focuses on nano-enabled applications that directly affect seafood safety, including nano-feed additives, antimicrobial agents, and nanocarriers for therapeutics. Evidence from bioaccumulation studies, toxicokinetics, and in vitro assays is examined to assess potential human exposure and risks via seafood consumption. Regulatory frameworks from the EFSA, FDA, and Codex Alimentarius are compared to highlight gaps in oversight. Risk mitigation strategies, including Safe-by-Design nanomaterials and improved analytical detection, are also discussed. The review concludes with research priorities aimed at ensuring the safe and sustainable adoption of nanotechnology in the seafood sector.

References

[1] Organisation for Economic Co-operation and Development (OECD), 2025. OECD-FAO Agricultural Outlook 2025-2034: Fish and Other Aquatic Products. OECD: Paris, France. Available from: https://www.oecd.org/en/publications/oecd-fao-agricultural-outlook-2025-2034_601276cd-en/full-report/fish-and-other-aquatic-products_ed13346f.html

[2] Food and Agriculture Organization, 2022. The State of World Fisheries and Aquaculture 2022. FAO: Rome, Italy. DOI: https://doi.org/10.4060/cc0461en

[3] Britsch, M.L., Leslie, H.M., Stoll, J.S., 2021. Diverse Perspectives on Aquaculture Development in Maine. Marine Policy. 131, 104697. DOI: https://doi.org/10.1016/j.marpol.2021.104697

[4] Tan, S.-Y., Sethupathi, S., Leong, K.-H., et al., 2024. Challenges and Opportunities in Sustaining Aquaculture Industry in Malaysia. Aquaculture International. 32(1), 489–519. DOI: https://doi.org/10.1007/s10499-023-01173-w

[5] Shinn, A., Pratoomyot, J., Bron, J., et al., 2015. Economic Impacts of Aquatic Parasites on global Finfish Production. Available from: https://www.researchgate.net/publication/283506528_Economic_impacts_of_aquatic_parasites_on_global_finfish_production (cited 22 July 2025).

[6] Ruben, M.O., Akinsanola, A.B., Okon, M.E., et al., 2025. Emerging Challenges in Aquaculture: Current Perspectives and Human Health Implications. Veterinary World. 15–28. DOI: https://doi.org/10.14202/vetworld.2025.15-28

[7] Cabello, F.C., Godfrey, H.P., Buschmann, A.H., et al., 2016. Aquaculture as yet Another Environmental Gateway to the Development and Globalisation of Antimicrobial Resistance. The Lancet Infectious Diseases. 16(7), e127–e133. DOI: https://doi.org/10.1016/S1473-3099(16)00100-6

[8] Lowry, G.V., Avellan, A., Gilbertson, L.M., 2019. Opportunities and Challenges for Nanotechnology in the Agri-Tech Revolution. Nature Nanotechnology. 14(6), 517–522. DOI: https://doi.org/10.1038/s41565-019-0461-7

[9] Farré, M., Gajda-Schrantz, K., Kantiani, L., et al., 2009. Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment. Analytical and Bioanalytical Chemistry. 393(1), 81–95. DOI: https://doi.org/10.1007/s00216-008-2458-1

[10] Khan, S.K., Dutta, J., Ahmad, I., et al., 2024. Nanotechnology in Aquaculture: Transforming the Future of Food Security. Food Chemistry: X. 24, 101974. DOI: https://doi.org/10.1016/j.fochx.2024.101974

[11] Nguyen, M.Q., Nguyen, D.M., Toan, T.T.T., et al., 2024. Review—Nanotechnology in Aquaculture: Applications and Challenges. Journal of The Electrochemical Society. 171(5), 057507. DOI: https://doi.org/10.1149/1945-7111/ad48c2

[12] Harshitha, M., Nayak, A., Disha, S., et al., 2023. Nanovaccines to Combat Aeromonas Hydrophila Infections in Warm-Water Aquaculture: Opportunities and Challenges. Vaccines. 11(10), 1555. DOI: https://doi.org/10.3390/vaccines11101555

[13] Jayasri, M., Shyamala, G., Thirumalarao, G., 2025. Nano Material Application in Wastewater Treatment. E3S Web of Conferences. 619, 04011. DOI: https://doi.org/10.1051/e3sconf/202561904011

[14] Mahmud, M.N., Haque, M.M., 2025. Reassessing the Role of Nanoparticles in Core Fields of Aquaculture: A Comprehensive Review of Applications and Challenges. Aquaculture Research. 2025(1), 6897333. DOI: https://doi.org/10.1155/are/6897333

[15] Mahaye, N., Thwala, M., Cowan, D.A., et al., 2017. Genotoxicity of Metal Based Engineered Nanoparticles in Aquatic Organisms: A Review. Mutation Research/Reviews in Mutation Research. 773, 134–160. DOI: https://doi.org/10.1016/j.mrrev.2017.05.004

[16] More, S., Bampidis, V., Benford, D., et al., 2021. Guidance on Risk Assessment of Nanomaterials to Be Applied in the Food and Feed Chain: Human and Animal Health. EFSA Journal. 19(8). DOI: https://doi.org/10.2903/j.efsa.2021.6768

[17] U.S. Food and Drug Administration, 2014. Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considering-whether-fda-regulated-product-involves-application-nanotechnology (cited 6 June 2025).

[18] Ma, F., Fan, Z., Nikolaeva, A., et al., 2025. Redefining Aquaculture Safety with Artificial Intelligence: Design Innovations, Trends, and Future Perspectives. Fishes. 10(3), 88. DOI: https://doi.org/10.3390/fishes10030088

[19] Ghara, S., Biswas, S., Patel, R.S., et al., 2025. CRISPR-Cas and Nanotech in Aquaculture: Pioneering Genetic Advancements for Food Security. In: Ahmed, I., Ahmad, I. (Eds.). Aquaculture: Enhancing Food Security and Nutrition. Springer Nature: Cham, Switzerland. pp. 287–311. DOI: https://doi.org/10.1007/978-3-031-92858-1_14

[20] Rana, K.J., Hasan, M.R., Siriwardena, S., 2009. Impact of Rising Feed Ingredient Prices on Aquafeeds and Aquaculture Production. FAO: Rome, Italy. Available from: https://www.fao.org/4/i1143e/i1143e00.htm

[21] White, P.G., 2013. Environmental Consequences of Poor Feed Quality and Feed Management. FAO: Rome, Italy. Available from: https://www.fao.org/fishery/docs/CDrom/T583/root/21.pdf

[22] Munguti, J.M., Kirimi, J.G., Obiero, K.O., et al., 2020. Aqua-Feed Wastes: Impact on Natural Systems and Practical Mitigations—A Review. Journal of Agricultural Science. 13(1), 111. DOI: https://doi.org/10.5539/jas.v13n1p111

[23] Tacon, A.G.J., Metian, M., 2015. Feed Matters: Satisfying the Feed Demand of Aquaculture. Reviews in Fisheries Science & Aquaculture. 23(1), 1–10. DOI: https://doi.org/10.1080/23308249.2014.987209

[24] Chatterjee, P., Khan, A., 2025. Nanotechnology’s Voyage: Enriching Aquafeed with Nutraceuticals. Uttar Pradesh Journal Of Zoology. 46(1), 199–216. DOI: https://doi.org/10.56557/upjoz/2025/v46i14755

[25] Dube, E., 2024. Nanoparticle-Enhanced Fish Feed: Benefits and Challenges. Fishes. 9(8), 322. DOI: https://doi.org/10.3390/fishes9080322

[26] Mondal, A.H., Behera, T., Swain, P., et al., 2020. Nano Zinc Vis‐À‐Vis Inorganic Zinc as Feed Additives: Effects on Growth, Activity of Hepatic Enzymes and Non‐Specific Immunity in Rohu, Labeo Rohita (Hamilton) Fingerlings. Aquaculture Nutrition. 26(4), 1211–1222. DOI: https://doi.org/10.1111/anu.13077

[27] Vijayaram, S., Ghafarifarsani, H., Vuppala, S., et al., 2025. Selenium Nanoparticles: Revolutionizing Nutrient Enhancement in Aquaculture – A Review. Biological Trace Element Research. 203(1), 442–453. DOI: https://doi.org/10.1007/s12011-024-04172-x

[28] Ashouri, S., Keyvanshokooh, S., Salati, A.P., et al., 2015. Effects of Different Levels of Dietary Selenium Nanoparticles on Growth Performance, Muscle Composition, Blood Biochemical Profiles and Antioxidant Status of Common Carp (Cyprinus Carpio). Aquaculture. 446, 25–29. DOI: https://doi.org/10.1016/j.aquaculture.2015.04.021

[29] Ahmed, J., Vasagam, K.P.K., Ramalingam, K., 2023. Nanoencapsulated Aquafeeds and Current Uses in Fisheries/Shrimps: A Review. Applied Biochemistry and Biotechnology. 195(11), 7110–7131. DOI: https://doi.org/10.1007/s12010-023-04418-9

[30] Gómez, B., Barba, F.J., Domínguez, R., et al., 2018. Microencapsulation of Antioxidant Compounds Through Innovative Technologies and Its Specific Application in Meat Processing. Trends in Food Science & Technology. 82, 135–147. DOI: https://doi.org/10.1016/j.tifs.2018.10.006

[31] Malekhosseini, P., Alami, M., Khomeiri, M., et al., 2019. Development of Casein‐Based Nanoencapsulation Systems for Delivery of Epigallocatechin Gallate and Folic Acid. Food Science & Nutrition. 7(2), 519–527. DOI: https://doi.org/10.1002/fsn3.827

[32] Taouzinet, L., Djaoudene, O., Fatmi, S., et al., 2023. Trends of Nanoencapsulation Strategy for Natural Compounds in the Food Industry. Processes. 11(5), 1459. DOI: https://doi.org/10.3390/pr11051459

[33] Hossam-Elden, N., Abu-Elala, N.M., AbuBakr, H.O., et al., 2024. Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas Veronii Biovar Sobria Resistance in Nile Tilapia Oreochromis Niloticus. Fishes. 9(10), 388. DOI: https://doi.org/10.3390/fishes9100388

[34] Samimi, M., Bahri, A.H., Mohammadizadeh, F., 2024. Assessing the Impact of a Diet Incorporating Folic Acid and/or Chitosan Nanoparticles Loaded with Folic Acid (FA/CNPs) on the Growth Performance and Immune Response of Juvenile Beluga Sturgeon (Huso Huso). Aquaculture Reports. 38, 102335. DOI: https://doi.org/10.1016/j.aqrep.2024.102335

[35] Raslan, W.S., Shehab, A., Matter, A.F., et al., 2025. Impact of Essential Oil and Probiotics Supplementation on Growth Performance, Serum Biomarkers, Antioxidants Status, Bioenergetics and Histomorphometry of Intestine of Nile Tilapia Fingerlings Challenged with Aeromonas Veronii. BMC Veterinary Research. 21(1), 6. DOI: https://doi.org/10.1186/s12917-024-04433-w

[36] Roldan-Juarez, J., Pinares, R., Smith, C.E., et al., 2023. Microencapsulated Essential Oils Influence the Growth and Foregut Histomorphometry of Nile Tilapia (Oreochromis Niloticus) Fingerlings. Veterinary and Animal Science. 22, 100316. DOI: https://doi.org/10.1016/j.vas.2023.100316

[37] Ali, S.E., Jansen, M.D., Mohan, C.V., et al., 2020. Key Risk Factors, Farming Practices and Economic Losses Associated with Tilapia Mortality in Egypt. Aquaculture. 527, 735438. DOI: https://doi.org/10.1016/j.aquaculture.2020.735438

[38] Brugere, C., Kumar, G., Bondad-Reantaso, M.G., 2025. Bridging Aquatic Organism Health and Economics in the Analysis of Disease Impacts and Biosecurity Strategies in Aquaculture: A Conceptual Framework. Critical Insights in Aquaculture. 1(1), 2441506. DOI: https://doi.org/10.1080/29932181.2024.2441506

[39] Food and Agriculture Organization, 2023. The Progressive Management Pathway for Aquaculture Biosecurity. FAO: Rome, Italy. DOI: https://doi.org/10.4060/cc6858en

[40] Wu, Y., Rashidpour, A., Almajano, M.P., et al., 2020. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers. 12(5), 1177. DOI: https://doi.org/10.3390/polym12051177

[41] Nandhakumar, Ramachandran, I., Elumalai, P., 2025. Mucoadhesive Chitosan-Based Nano Vaccine as Promising Immersion Vaccine Against Edwardsiella Tarda Challenge in Nile Tilapia (Oreochromis Niloticus). Veterinary Immunology and Immunopathology. 286, 110976. DOI: https://doi.org/10.1016/j.vetimm.2025.110976

[42] Ibrahim, R.E., Elshopakey, G.E., Abdelwarith, A.A., et al., 2023. Chitosan Neem Nanocapsule Enhances Immunity and Disease Resistance in Nile Tilapia (Oreochromis Niloticus). Heliyon. 9(9), e19354. DOI: https://doi.org/10.1016/j.heliyon.2023.e19354

[43] Saleh, M., El-Moghazy, A., Elgohary, A.H., et al., 2025. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines. 13(2), 126. DOI: https://doi.org/10.3390/vaccines13020126

[44] Patel, P., Garala, K., Singh, S., et al., 2024. Lipid-Based Nanoparticles in Delivering Bioactive Compounds for Improving Therapeutic Efficacy. Pharmaceuticals. 17(3), 329. DOI: https://doi.org/10.3390/ph17030329

[45] Jonjaroen, V., Charoonnart, P., Jitrakorn, S., et al., 2024. Nanoparticles‐Based Double‐Stranded RNA Delivery as an Antiviral Agent in Shrimp Aquaculture. Reviews in Aquaculture. 16(4), 1647–1673. DOI: https://doi.org/10.1111/raq.12916

[46] Chariou, P.L., Ortega-Rivera, O.A., Steinmetz, N.F., 2020. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano. 14(3), 2678–2701. DOI: https://doi.org/10.1021/acsnano.0c00173

[47] Egwu, C.O., Aloke, C., Onwe, K.T., et al., 2024. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules. 29(11), 2584. DOI: https://doi.org/10.3390/molecules29112584

[48] Dube, E., 2024. Antibacterial Activity of Engineered Nanoparticles Against Fish Pathogens. Aquaculture Reports. 37, 102240. DOI: https://doi.org/10.1016/j.aqrep.2024.102240

[49] Camacho-Jiménez, L., Álvarez-Sánchez, A.R., Mejía-Ruíz, C.H., 2020. Silver Nanoparticles (AgNPs) as Antimicrobials in Marine Shrimp Farming: A Review. Aquaculture Reports. 18, 100512. DOI: https://doi.org/10.1016/j.aqrep.2020.100512

[50] Abdelkarim, E.A., Elsamahy, T., El Bayomi, R.M., et al., 2025. Nanoparticle-Driven Aquaculture: Transforming Disease Management and Boosting Sustainable Fish Farming Practices. Aquaculture International. 33(4), 288. DOI: https://doi.org/10.1007/s10499-025-01952-7

[51] Dang, L.T., Nguyen, L.T., Pham, V.T., et al., 2021. Usage and Knowledge of Antibiotics of Fish Farmers in Small‐Scale Freshwater Aquaculture in the Red River Delta, Vietnam. Aquaculture Research. 52(8), 3580–3590. DOI: https://doi.org/10.1111/are.15201

[52] Ogunfowora, L.A., Iwuozor, K.O., Ighalo, J.O., et al., 2021. Trends in the Treatment of Aquaculture Effluents Using Nanotechnology. Cleaner Materials. 2, 100024. DOI: https://doi.org/10.1016/j.clema.2021.100024

[53] Ozkaleli, M., Erdem, A., 2020. The Role of TiO2 Nanoparticles in Disinfection of Gram (+) Bacteria Under Visible Light. Fresenius Environmental Bulletin. 28, 2780–2786. Available from: https://www.researchgate.net/publication/339643462_THE_ROLE_OF_TiO2_NANOPARTICLES_IN_DISINFECTION_OF_GRAM_BACTERIA_UNDER_VISIBLE_LIGHT

[54] Şimşek, B., Sevgili, İ., Ceran, Ö.B., et al., 2018. Nanomaterials Based Drinking Water Purification: Comparative Study with a Conventional Water Purification Process. Periodica Polytechnica Chemical Engineering. 63(1), 96–112. DOI: https://doi.org/10.3311/PPch.12458

[55] Dagil, G.J., Nyuk-Ting, N., Keyon, A.S.A., et al., 2022. Magnetic Nanoparticles As Effective Adsorbents For The Removal of Heavy Metals From Water: A Review of Surface Modification (2015-2022). Malaysian Journal of Analytical Sciences. 26(6). 1344–1377. Available from: https://mjas.analis.com.my/mjas/v26_n6/pdf/Dagil_26_6_16.pdf

[56] Ahmad, A.L., Chin, J.Y., Mohd Harun, M.H.Z., et al., 2022. Environmental Impacts and Imperative Technologies Towards Sustainable Treatment of Aquaculture Wastewater: A Review. Journal of Water Process Engineering. 46, 102553. DOI: https://doi.org/10.1016/j.jwpe.2021.102553

[57] Sheta, B., El-Zahed, M., Nawareg, M., et al., 2024. Nanoremediation of Tilapia Fish Culture Using Iron Oxide Nanoparticles Biosynthesized by Bacillus Subtilis and Immobilized in a Free-Floating Macroporous Cryogel. BMC Veterinary Research. 20(1), 455. DOI: https://doi.org/10.1186/s12917-024-04292-5

[58] Lyu, T., Wu, S., Mortimer, R.J.G., et al., 2019. Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges. Environmental Science & Technology. 53(13), 7175–7176. DOI: https://doi.org/10.1021/acs.est.9b02821

[59] Yaparatne, S., Morón-López, J., Bouchard, D., et al., 2024. Nanobubble Applications in Aquaculture Industry for Improving Harvest Yield, Wastewater Treatment, and Disease Control. Science of The Total Environment. 931, 172687. DOI: https://doi.org/10.1016/j.scitotenv.2024.172687

[60] Xiao, W., Xu, G., 2020. Mass Transfer of Nanobubble Aeration and Its Effect on Biofilm Growth: Microbial Activity and Structural Properties. Science of The Total Environment. 703, 134976. DOI: https://doi.org/10.1016/j.scitotenv.2019.134976

[61] Nghia, N.H., Van, P.T., Giang, P.T., et al., 2021. Control of Vibrio Parahaemolyticus (AHPND Strain) and Improvement of Water Quality Using Nanobubble Technology. Aquaculture Research. 52(6), 2727–2739. DOI: https://doi.org/10.1111/are.15124

[62] Thanh Dien, L., Linh, N.V., Sangpo, P., et al., 2021. Ozone Nanobubble Treatments Improve Survivability of Nile Tilapia ( Oreochromis Niloticus ) Challenged with a Pathogenic Multi‐Drug‐Resistant Aeromonas Hydrophila. Journal of Fish Diseases. 44(9), 1435–1447. DOI: https://doi.org/10.1111/jfd.13451

[63] Linh, N.V., Dien, L.T., Sangpo, P., et al., 2022. Pre-Treatment of Nile Tilapia (Oreochromis Niloticus) with Ozone Nanobubbles Improve Efficacy of Heat-Killed Streptococcus Agalactiae Immersion Vaccine. Fish & Shellfish Immunology. 123, 229–237. DOI: https://doi.org/10.1016/j.fsi.2022.03.007

[64] de Camargo, E.T., Spanhol, F.A., Slongo, J.S., et al., 2023. Low-Cost Water Quality Sensors for IoT: A Systematic Review. Sensors. 23(9), 4424. DOI: https://doi.org/10.3390/s23094424

[65] Mohd Jais, N.A., Abdullah, A.F., Mohd Kassim, M.S., et al., 2024. Improved Accuracy in IoT-Based Water Quality Monitoring for Aquaculture Tanks Using Low-Cost Sensors: Asian Seabass Fish Farming. Heliyon. 10(8), e29022. DOI: https://doi.org/10.1016/j.heliyon.2024.e29022

[66] Shehata, N., Kandas, I., Samir, E., 2020. In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen. Nanomaterials. 10(2), 314. DOI: https://doi.org/10.3390/nano10020314

[67] Silvanir, Foo, W.H., Chia, W.Y., et al., 2024. Nanomaterials in Aquaculture Disinfection, Water Quality Monitoring and Wastewater Remediation. Journal of Environmental Chemical Engineering. 12(5), 113947. DOI: https://doi.org/10.1016/j.jece.2024.113947

[68] Huang, Y.-P., Khabusi, S.P., 2025. Artificial Intelligence of Things (AIoT) Advances in Aquaculture: A Review. Processes. 13(1), 73. DOI: https://doi.org/10.3390/pr13010073

[69] Chandran, P.J.I., Khalil, H.A., Hashir, P., et al., 2025. Smart Technologies in Aquaculture: An Integrated IoT, AI, and Blockchain Framework for Sustainable Growth. Aquacultural Engineering. 111, 102584. DOI: https://doi.org/10.1016/j.aquaeng.2025.102584

[70] Cabello, F.C., Godfrey, H.P., Tomova, A., et al., 2013. Antimicrobial Use in Aquaculture Re‐Examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environmental Microbiology. 15(7), 1917–1942. DOI: https://doi.org/10.1111/1462-2920.12134

[71] Nowack, B., Krug, H.F., Height, M., 2011. 120 Years of Nanosilver History: Implications for Policy Makers. Environmental Science & Technology. 45(4), 1177–1183. DOI: https://doi.org/10.1021/es103316q

[72] Levard, C., Hotze, E.M., Lowry, G.V., et al., 2012. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environmental Science & Technology. 46(13), 6900–6914. DOI: https://doi.org/10.1021/es2037405

[73] Sharma, V.K., 2009. Aggregation and Toxicity of Titanium Dioxide Nanoparticles in Aquatic Environment—A Review. Journal of Environmental Science and Health, Part A. 44(14), 1485–1495. DOI: https://doi.org/10.1080/10934520903263231

[74] Huang, J., Li, S., Lin, Y., 2022. Effects and Mechanism of Two Nanoparticles (Titanium Dioxide and Silver) to Moina Mongolica Daday (Crustacea, Cladocera). Frontiers in Marine Science. 9, 909701. DOI: https://doi.org/10.3389/fmars.2022.909701

[75] Amin, N., Erfan, M.A., 2025. Environmental Fate and Toxicity of Zinc Oxide Nanoparticles in Aquatic Ecosystems: A Comprehensive Review. Journal of Natural Science Review. 3(1), 104–125. DOI: https://doi.org/10.62810/jnsr.v3i1.103

[76] Tang, S., Wang, J., Zhu, X., et al., 2024. Ecological Risks of Zinc Oxide Nanoparticles for Early Life Stages of Obscure Puffer (Takifugu obscurus). Toxics. 12(1), 48. DOI: https://doi.org/10.3390/toxics12010048

[77] Lai, R.W.S., Kang, H.-M., Zhou, G.-J., et al., 2021. Hydrophobic Surface Coating Can Reduce Toxicity of Zinc Oxide Nanoparticles to the Marine Copepod Tigriopus Japonicus. Environmental Science & Technology. 55(10), 6917–6925. DOI: https://doi.org/10.1021/acs.est.1c01300

[78] Saxena, P., Harish, Shah, D., et al., 2024. A Critical Review on Fate, Behavior, and Ecotoxicological Impact of Zinc Oxide Nanoparticles on Algae. Environmental Science and Pollution Research. 31(13), 19105–19122. DOI: https://doi.org/10.1007/s11356-024-32439-2

[79] Dobretsov, S., Sathe, P., Bora, T., et al., 2020. Toxicity of Different Zinc Oxide Nanomaterials at 3 Trophic Levels: Implications for Development of Low-Toxicity Antifouling Agents. Environmental Toxicology and Chemistry. 39(7), 1343–1354. DOI: https://doi.org/10.1002/etc.4720

[80] Ma, H., Williams, P.L., Diamond, S.A., 2013. Ecotoxicity of Manufactured ZnO Nanoparticles – A Review. Environmental Pollution. 172, 76–85. DOI: https://doi.org/10.1016/j.envpol.2012.08.011

[81] Suárez-Oubiña, C., Herbello-Hermelo, P., Mallo, N., et al., 2024. Bioaccumulation and Human Risk Assessment of Inorganic Nanoparticles in Aquaculture Species. Environmental Science: Nano. 11(7), 2937–2947. DOI: https://doi.org/10.1039/D4EN00167B

[82] Kaya, H., Aydın, F., Gürkan, M., et al., 2015. Effects of Zinc Oxide Nanoparticles on Bioaccumulation and Oxidative Stress in Different Organs of Tilapia (Oreochromis Niloticus). Environmental Toxicology and Pharmacology. 40(3), 936–947. DOI: https://doi.org/10.1016/j.etap.2015.10.001

[83] Sukhsangchan, R., Phaksopa, J., Uchuwittayakul, A., et al., 2024. Effects of Zinc Oxide Nanoparticles (ZnO NPs) on Growth, Immune Responses and Histopathological Alterations in Asian Seabass (Lates Calcarifer, Bloch 1790) Under Low-Salinity Conditions. Animals. 14(18), 2737. DOI: https://doi.org/10.3390/ani14182737

[84] Paul, V., Krishnakumar, S., Gowd, G.S., et al., 2021. Sex-Dependent Bioaccumulation of Nano Zinc Oxide and Its Adverse Effects on Sexual Behavior and Reproduction in Japanese Medaka. ACS Applied Bio Materials. 4(10), 7408–7421. DOI: https://doi.org/10.1021/acsabm.1c00575

[85] Sibiya, A., Jeyavani, J., Ramesh, D., et al., 2024. Ecotoxicological Research on the Toxic Impact of Zinc Oxide and Silver Nanoparticles on Oreochromis Mossambicus. Environmental Toxicology. 39(11), 4946–4959. DOI: https://doi.org/10.1002/tox.24365

[86] Babaei, M., Tayemeh, M.B., Jo, M.S., et al., 2022. Trophic Transfer and Toxicity of Silver Nanoparticles Along a Phytoplankton-Zooplankton-Fish Food Chain. Science of The Total Environment. 842, 156807. DOI: https://doi.org/10.1016/j.scitotenv.2022.156807

[87] Guo, J., Liu, N., Xie, Q., et al., 2023. Polystyrene Microplastics Facilitate the Biotoxicity and Biomagnification of ZnO Nanoparticles in the Food Chain from Algae to Daphnia. Environmental Pollution. 324, 121181. DOI: https://doi.org/10.1016/j.envpol.2023.121181

[88] Mahaye, N., Leareng, S.K., Musee, N., 2021. Cytotoxicity and Genotoxicity of Coated-Gold Nanoparticles on Freshwater Algae Pseudokirchneriella Subcapitata. Aquatic Toxicology. 236, 105865. DOI: https://doi.org/10.1016/j.aquatox.2021.105865

[89] Mahaye, N., Thwala, M., Musee, N., 2021. Interactions of Coated-Gold Engineered Nanoparticles with Aquatic Higher Plant Salvinia Minima Baker. Nanomaterials. 11(12), 3178. DOI: https://doi.org/10.3390/nano11123178

[90] Ghannam, H.E., Khedr, A.I., El-Sayed, R., et al., 2025. Oxidative Stress Responses and Histological Changes in the Liver of Nile Tilapia Exposed to Silver Bulk and Nanoparticles. Scientific Reports. 15(1), 15390. DOI: https://doi.org/10.1038/s41598-025-97731-8

[91] Mahaye, N., Musee, N., 2023. Evaluation of Apical and Molecular Effects of Algae Pseudokirchneriella subcapitata to Cerium Oxide Nanoparticles. Toxics. 11(3), 283. DOI: https://doi.org/10.3390/toxics11030283

[92] Grasso, A., Ferrante, M., Zuccarello, P., et al., 2020. Chemical Characterization and Quantification of Titanium Dioxide Nanoparticles (TiO2-NPs) in Seafood by Single-Particle ICP-MS: Assessment of Dietary Exposure. International Journal of Environmental Research and Public Health. 17(24), 9547. DOI: https://doi.org/10.3390/ijerph17249547

[93] Kakakhel, M.A., Wu, F., Sajjad, W., et al., 2021. Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus Carpio). Environmental Sciences Europe. 33(1), 14. DOI: https://doi.org/10.1186/s12302-021-00453-7

[94] Pathak, G., Mangla, S., Gupta, G.K., et al., 2025. Toxicological Assessment and Risk Management of Nanoparticles Mediated Composite Materials-Critical Review: State of the Art. Discover Polymers. 2(1), 12. DOI: https://doi.org/10.1007/s44347-025-00023-7

[95] Lane, T., Wardani, I., Koelmans, A.A., 2025. Exposure Scenarios for Human Health Risk Assessment of Nano- and Microplastic Particles. Microplastics and Nanoplastics. 5(1), 28. DOI: https://doi.org/10.1186/s43591-025-00134-9

[96] Lamas, B., Martins Breyner, N., Houdeau, E., 2020. Impacts of Foodborne Inorganic Nanoparticles on the Gut Microbiota-Immune Axis: Potential Consequences for Host Health. Particle and Fibre Toxicology. 17(1), 19. DOI: https://doi.org/10.1186/s12989-020-00349-z

[97] Campos, D., Goméz-García, R., Oliveira, D., et al., 2022. Intake of Nanoparticles and Impact on Gut Microbiota: In Vitro and Animal Models Available for Testing. Gut Microbiome. 3, e1. DOI: https://doi.org/10.1017/gmb.2021.5

[98] Zhang, L., Wu, C., Wang, Q., 2025. Toxicity of Engineered Nanoparticles in Food: Sources, Mechanisms, Contributing Factors, and Assessment Techniques. Journal of Agricultural and Food Chemistry. 73(22), 13142–13158. DOI: https://doi.org/10.1021/acs.jafc.5c01550

[99] Utembe, W., Tlotleng, N., Kamng’ona, A., 2022. A Systematic Review on the Effects of Nanomaterials on Gut Microbiota. Current Research in Microbial Sciences. 3, 100118. DOI: https://doi.org/10.1016/j.crmicr.2022.100118

[100] Ma, Y., Zhang, J., Yu, N., et al., 2023. Effect of Nanomaterials on Gut Microbiota. Toxics. 11(4), 384. DOI: https://doi.org/10.3390/toxics11040384

[101] Chen, Z., Han, S., Zhou, D., et al., 2019. Effects of Oral Exposure to Titanium Dioxide Nanoparticles on Gut Microbiota and Gut-Associated Metabolism in Vivo. Nanoscale. 11(46), 22398–22412. DOI: https://doi.org/10.1039/C9NR07580A

[102] Gangadoo, S., Nguyen, H., Rajapaksha, P., et al., 2021. Inorganic Nanoparticles as Food Additives and Their Influence on the Human Gut Microbiota. Environmental Science: Nano. 8(6), 1500–1518. DOI: https://doi.org/10.1039/D1EN00025J

[103] Organisation for Economic Co-operation and Development (OECD), 2023. Test No.125: Nanomaterial Particle Size and Size Distribution of Nanomaterials. OECD: Paris, France. Available from: https://www.oecd.org/en/publications/test-no-125-nanomaterial-particle-size-and-size-distribution-of-nanomaterials_af5f9bda-en.html

[104] Food and Drug Administration (FDA), 2015. CVM GFI #220 Use of Nanomaterials in Food for Animals. FDA: Silver Spring, MD, USA. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-220-use-nanomaterials-food-animals

[105] Parsai, T., Kumar, A., 2024. Incorporating Size-Dependent Reference Dose (RfD) and Gastric System Effect in Estimation of Nanoparticles Risks to Human. Environmental Processes. 11(3), 42. DOI: https://doi.org/10.1007/s40710-024-00717-3

Downloads

Issue

Section

Review