Cognitive Limits of AI: A Key to Enhancing AI

Authors

  • Primavera Fisogni *

    La Provincia daily newspaper, Como 22100, Italy

DOI:

https://doi.org/10.55121/prr.v2i1.359

Keywords:

Hands, Mind, Knowledge, AI, Machine Learning, Porous Materials, Enlarged Sensitivity, Quasi-knowledge

Abstract

The correlation between the human hand and the mind is a well-documented phenomenon in the fields of philosophy, anthropology and neuroscience. However, the intellectual potential of the hand and embodiment as a whole remains underestimated in the domain of cyber technology. This philosophical paper examines the gap between hand-centred knowledge and machine understanding, to explore whether there are margins of cognitive enhancement for machines through the improvement of their sensing capabilities. The author begins with a historical introduction to the relationship between hand and mind in classical and contemporary philosophy. The ensuing discourse will focus on elucidating the function of hands as activators of knowledge, thereby addressing the dual question of how hands and machines acquire knowledge. Finally, it will be considered the prospective use of porous materials, which embody the latest frontiers of digital technology, to advance the cognitive development of artificial intelligence. It will be argued that this represents a commitment to future research in cybernetics, with particular reference to the use of analogies with the properties of the hand (e.g. flexibility, touch and sensing). The concept of machine quasi-knowledge is introduced as an analogy to human understanding. The final discussion will focus on the claim that such a category has the capacity to serve as a zero degree for the formulation of a theory of personhood, including that of digital machines endowed with artificial intelligence.

References

[1] Radman, Z., 2013. The Hand, an Organ of the Mind: What the Manual Tells the Mental. The MIT Press: Boston, MA, USA.

[2] Aristotle, 1971. Aristotele, Opere biologiche, a cura di D. Lanza e M. Vegetti. Einaudi: Torino, Italy. (in Italian).

[3] Fisogni, P., 2019. Nel segno del pensiero (Come pensavano gli antichi egizi). Santelli: Milano, Italy. (in Italian).

[4] Fisogni, P., 2022. Prima della psiche: Energia e disagio spirituale nell’Antico Egitto. Lupi Editore: Sulmona, Italy. (in Italian).

[5] Gallagher, S., Hutto, D.D., Slaby, J., et al., 2013. The brain as part of an enactive system. Behavioural Brain Sciences. 36(4), 421–422. DOI: https://doi.org/10.1017/S0140525X12002105

[6] Goodale, M.A., 2011. Transforming vision into action. Vision Research. 51(13), 1567–1587. DOI: https://doi.org/10.1016/j.visres.2010.07.027

[7] Cazzato, V., Macaluso, E., Crostella, F., et al., 2012. Mapping reflexive shifts of attention in eye-centered and hand-centered coordinate systems. Human Brain Mapping. 33(1), 165–178. DOI: https://doi.org/10.1002/hbm.21202

[8] Corbetta, M., Patel, G., Shulman, G.L., 2008. The reorienting system of the human brain: From environment to theory of mind. Neuron. 58(3), 306–324.

[9] Craighero, L., Bello, A., Fadiga, L,. et al., 2002. Hand action preparation influences the response to hand pictures. Neuropsychologia. 40(5), 492–502. DOI: https://doi.org/10.1016/s0028-3932(01)00134-8

[10] Stuart, S.A.J., 2013. Privileging exploratory hands: prehension, apprehension, comprehension. In: Radman, Z. (eds.) .The Hand, an Organ of the Mind: What the Manual Tells the Mental. MIT Press: Cambridge, MA, USA. pp. 167–186.

[11] Rizzolatti, G., Fadiga, L., Fogassi, L., et al., 1997. The space around us. Science. 277(5323), 190–191. DOI: https://doi.org/10.1126/science.277.5323.190

[12] Brozzoli, C., Makin, T.R., Cardinali, L., et al., 2012. Peripersonal Space. In: Murray, M., Wallace, M. (eds.). The Neural Bases of Mulitsensory Processes. pp. 1–19.

[13] Rabellino, D., Frewen, P.A., McKinnon, M.C., et al., 2020. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Frontiers in Neuroscience. 14, 586605. DOI: https://doi.org/10.3389/fnins.2020.586605

[14] Makin, T.R., Holmes, N.P., Ehrsson, H.H., 2008. On the other hand: dummy hands and peripersonal space. Behavioural Brain Research. 191(1), 1–10. DOI: https://doi.org/10.1016/j.bbr.2008.02.041

[15] Fossataro, C., Bruno, V., Bosso, E., et al., 2020. The sense of body-ownership gates cross-modal improvement of tactile extinction in brain-damaged patients. Cortex. 127, 94–107. DOI: https://doi.org/10.1016/j.cortex.2020.02.004

[16] Bogdanova, O.V., Bogdanov, V.B., Dureux, A., et al., 2021. The Peripersonal Space in a social world. Cortex. 142, 28–46. DOI: https://doi.org/10.1016/j.cortex.2021.05.005

[17] Castro,. F, Lenggenhager, B., Zeller, D., et al., 2023. From rubber hands to neuroprosthetics: Neural correlates of embodiment. Neurosciences Biobehavioural Review. 153, 105351. DOI: https://doi.org/10.1016/j.neubiorev.2023.105351

[18] Merleau-Ponty, M., 1962. Phenomenology of Perception. Routledge & Kegan Paul: London, UK.

[19] Aristotele, 2000. Metafisica. Bompiani: Milano, Italy. (in Italian).

[20] Peirce, C.S., 1958. The Collected Papers, Volumes 7 & 8. Burks, A. (eds.). Harvard University Press: Cambridge, MA, USA.

[21] Atkin, A., 2005. Peirce On The Index and Indexical Reference.Transactions of The Charles S. Peirce Society. 41(1), 161–188.

[22] Dreyfus, H.L., 1972. What Computers still Can't Do: A Critique Of Artificial Reason. Harper & Row: New York, NY, USA.

[23] Bihl, T., Young, W.A., Moyer, A., et al., 2023. Arificial Neural Networks and Data Science. In: Wang, J. (eds.). Encyclopedia of Data Science and Machine Learning. Igi Global: New York, NY, USA. pp. 899–921.

[24] Orduño-Osuna, J.H., Raygoza. L.M.E., Jiménez-Sánchez, R., et al., 2024. Machine Learning and Emotions: The Hidden Language in Your Voice. IGI Global: Hershey, PA, USA. pp. 1–23.

[25] Fisogni, P., 2023. Machine Learning and Emotions. In: Wang, J. (eds.). Encyclopedia of Data Science and Machine Learning. IGI Global: New York, NY, USA. pp. 961–970.

[26] Baia, A.E., Biondi, G., Franzoni, V., et al., 2022. Lie To Me: Shield Your Emotions from Prying Software. Sensors (Basel). 22(3), 967. DOI: https://doi.org/10.3390/s22030967

[27] Balamurani, R., Lall, P.B., Taneja, K., et al., 2022. Detecting Human Emotions Through Physiological Signals Using Machine Learning. In: Raje, R.R., Hussain, F., Kannan, R.J. (eds.). Artificial Intelligence and Technology. Springer: Cham, Switzerland. pp. 587–602.

[28] Floridi, L., 2014. The Fourth Revolution – How the Infosphere is reshaping Human Reality, Oxford University Press: Oxford, UK.

[29] Oftadeh, R., Mojtaba, A.S., Donovan, M., et al., 2023. Poroelastic behavior and water permeability of human skin at the nanoscale. PNAS Nexus. 2, 1–11. DOI: https://doi.org/10.1093/pnasnexus/pgad240

[30] Zhang, H., Diesendruck, C.E., 2024. Mechanochemical Diversity in Block Copolymers. Chemistry Europe. 30, e202402632. DOI: https://doi.org/10.1002/chem.202402632

[31] Agazzi, E., 2019. Systemic Thinking: An Introduction. In: Urbani Ulivi, L. (eds.). The Systemic Turn in Human and Natural Sciences: A Rock in The Pond. Springer: Cham, Switzerland. pp. xi–xvii.

[32] Urbani Ulivi, L., 2019. Mind and Body. Whose? Philosophy of Mind and the Systemic Approach. In: Urbani Ulivi, L. (eds.). The Systemic Turn in Human and Natural Sciences: A Rock in the Pond. Springer: Charm, Switzerland. pp. 185–205.

[33] Minati, G., Pessa, E., 2018. From Collective Beings to Quasi-Systems. Springer: New York, NY, USA.

[34] Turuk, P.M., Sreemathy, R., Khandekar, S.S., et al., 2023. AI-Based Emotion Recognition. In: Wang, J. (eds.). Encyclopedia of Data Science and Machine Learning. IGI Global: New York, NY, USA. pp. 849–869.

[35] Sahana, S., Dharmpal, S., Nath, I., 2023. Importance of AI and ML Towards Smart Sensor Network Utility Enhancement. In: Wang, J. (eds.). Encyclopedia of Data Science and Machine Learning. IGI Global: New York, NY, USA. pp. 240–262.

[36] Peirce, C.S., 1958. Collected Papers of Charles Sanders Peirce: Vols. 1–6. In: Hartshorne, C., Weiss, P. (eds.). Harvard University Press: Cambridge, MA, USA.

[37] Urbani Ulivi, L., 2016. L’abduzione come momento della scoperta in contesti di realtà. Cassazione penale. 56(5), 2240–2251. (in Italian).

[38] Magnani, L., 2023. Abductive Strategies in Human Cognition and in Deep Learning Machines. In: Wang, J. (eds.). Encyclopedia of Data Science and Machine Learning. IGI Global: New York, NY, USA.

[39] Novelli, C., Floridi, L., Sartor, G., 2024. AI as Legal Persons: Past, Patterns, and Prospects. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5032265 (cited 5 March 2025).

[40] Brown, R.D., 2021. Property ownership and the legal personhood of artificial intelligence. Information & Communications Technology Law. 30(2), 208–234. DOI: https://doi.org/10.1080/13600834.2020.1861714

[41] Bryson, J.J., Diamantis, M.E., Grant, T.D., 2017. Of, for, and by the people: The legal lacuna of synthetic persons. Artificial Intelligence and Law. 25(3), 273–291.

[42] Allgrove, B., 2004. Legal Personality for Artificial Intellects: Pragmatic Solution or Science Fiction? Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=926015 (cited 5 March 2025).

Downloads

Issue

Section

Articles